Unioni finite e numerabili di intervalli, il volume degli insiemi aperti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Unioni finite e numerabili di intervalli, il volume degli insiemi aperti"

Transcript

1 ed Unioni finite e numerbili di intervlli, il volume degli insiemi erti In quest esosizione chimeremo brevemente intervllo in R ogni insieme del tio, b = { x R ; x < b dove, b sono numeri reli ovvimente,, b < b in R n ogni insieme del tio numeri reli j, b j dove j, b j, j n, sono Rimrchimo che l intersezione di due intervlli I = j, b j e I = j, b j è ure un intervllo : I I = mx j, j, minb j, b j Le estremità di I =, b srnno indicti con I = e bi = b Se I = j, b j e b = = b n n llor diremo che I è un cubo Se I = j, b j e le estremità j e b j sono numeri rzionli dell form q con q Z e k 0 intero llor diremo che I è un intervllo didico 2k Il volume di I = j, b j è er definizione Dimostrimo l seguente vi = b j j Formul er il volume degli intervlli Per ogni intervllo I R n vle vi = lim I q q crd q n Zn *

2 Dimostrzione Useremo induzione risetto ll dimensione n Per n = : Sino I =, b e q Elenchimo gli elementi di I Z in ordine q crescente : Allor q < + q < < 2 q q, 2 I q q, 2 + q e risult 2 vi q q q cioè I q crd q Z q vi q I crd q Z + q Di conseguenz vi I q crd q Z q e risult * er n = Il sso di induzione : Suonimo che n 2 e che * vle er n l osto di n Si or I = j, b j un qulsisi intervllo n-dimensionle Allor I = I I 2 con I =, b un intervllo in R e I 2 = j, b j un intervllo n -dimensionle j=2 2

3 Per l rim rte dell dimostrzione e er l iotesi di induzione bbimo vi = lim I q q crd q Z, vi 2 = lim crd I q qn 2 q Zn, erciò vi = vi vi 2 = lim I q q crd n q Z crd I 2 q Zn = lim q q crd I n q Z I 2 q Zn = lim I q q crd q n Zn Lemm Se I R n è un intervllo e I j è un fmigli finit j k di intervlli in R n che ricorono I llor vi vi j j k Dimostrzione usndo l formul * Per ogni q bbimo I q Zn I j q Zn e quindi j k crd I q Zn j k Usndo * risult : vi = lim I q q crd q n Zn j k lim q q n crd crd I j q Zn I j q Zn = vi j 3 j k

4 Dimostrzione usndo rtizioni rodotto Poiché I I j I = I Ij, j k j k ossimo ssumere senz minore generlità che I = j k Possimo nche ssumere che nessuno degli intervlli I, I,, I k vuoto, cioè che, con I =, b, bbimo I j = = = < b er ogni n Mettimo gli elementi di in ordine crescente : Allor j k j { j e j, b j, j k, < b j, j k,, b j, n x 0 < x < < x m x 0 = e x m = b, n I j si ed, indicndo er ogni 0 < l m,, 0 < l n m n bbimo I = I j = J l,,l n := x l, x l 0<l m J l,,l n, j <x l b j j n <x n ln b n j J l,,l n = x l n J l,,ln I j n, x n ln, J l,,l n, j k, 4

5 quindi vi = vj l,,l n, vi j = 0<l m vj l,,l n, j k Or imlic vi j = j k J l,,ln I j j k J l,,ln I j = 0<l m vj l,,l n crd { j k ; J l,,l n I j vjl,,l n Poiché vi = vj l,,l n, 0<l m er dimostrre l disuguglinz vi er ogni J l,,l n M j k crd { j k ; J l,,l n I j 0<l m J l,,l n = I = vi j bst verificre che j k imlic che ogni J l,,l n intersec un I jl,,l n con jl,, l n k ed llor J l,,l n I jl,,l n : I j 5

6 Inftti, se esiste x,, x n J l,,l n I jl,,l n llor bbimo mx x l, jl,,l n Per ogni n risultno < min x l, b jl,,l n, n jl,,l n x l < x l < b jl,,l n = jl,,l n = x l x l, b jl,,l n e quindi Cosicché x l, x l J l,,l n = x l, x l jl,,l n jl,,l n, b jl,,l n = I jl,,l n x l n, x ln n, b jl,,l n n jl,,l n n, b jl,,l n n Si otrebbe chiedere: erché dre l second dimostrzione di Lemm qundo l rim è molto iù semlice e breve? L risost è che l second dimostrzione funzion nche in un mbito iù generle Inftti, se g j : R R, j n sono funzioni crescenti, continue sinistr, llor ossimo definire il volume di Stieltjes di I = j, b j corrisondente queste funzioni trmite v g,,g n I = gj b j g j j e l second dimostrzione di Lemm funzion er dimostrre Lemm nche er v g,,g n l osto di v Lemm 2 Se I R n è un intervllo e I j è un fmigli numerbile j di intervlli in R n che ricorono I, llor vi j vi j 6

7 Dimostrzione Per j vi j = + e er vi = 0 l disuguglinz dimostrre è bnle, erciò ssumeremo nel seguito che j vi > 0 Sino = I = I j =, b, = = j, b j, j = vi j < + e Si 0 < ε < min b qulsisi e sceglimo er ogni j un εj > 0 n tle che n b j j + ε j b j j ε + 2 j Poiché I j I j, gli insiemi erti = j ε j, b j Ij, j ricorono l insieme comtto, b ε ] I = Perciò esiste kε diendente d ε! tle che, b ε, b ε ] = = j kε = j ε j, b j j kε = j ε j, b j e Lemm imlic che b ε n = v, b ε = = 7

8 v = j kε = j kε = j kε j n = ε + j Pssndo l limite er ε 0 si ottiene vi = lim ε 0 = = n b j = b j vi j j b j b ε lim ε + ε 0 j ε j, b j j + ε j j ε + 2 j j ε + 2 j vi j = j vi j Lemm 3 Se I R n è un intervllo e I j è un fmigli finit j k di intervlli due due disgiunti in R n che sono contenuti in I, llor vi j vi j k Dimostrzione usndo l formul * Per ogni q bbimo I j q Zn I q Zn j k e, oiché gli insiemi I j q Zn, j k, sono due due disgiunti, risult j k crd I j q Zn = crd j k crd I q Zn I j q Zn 8

9 Usndo * concludimo : j k vi j = j k lim q lim q q crd n = vi I q crd n j q Zn I q Zn Dimostrzione usndo rtizioni rodotto Possimo suorre senz minore generlità che nessuno degli intervlli I, I,, I k si vuoto, cioè che, con I =, b, bbimo er ogni n I j = = = < b j Mettimo gli elementi di {, b b in ordine crescente : Allor j k e j, b j, j k, { j < b j, j k,, b j, n x 0 < x < < x m x 0 = e x m = b, n ed, indicndo er ogni 0 < l m,, 0 < l n m n bbimo I = J l,,l n := x l, x l J l,,l n, x l n n, x n ln, 0<l m 9

10 quindi I j = j <x l b j j n <x n ln b n j vi = J l,,l n = J l,,ln I j vj l,,l n, J l,,l n, j k, vi j = 0<l m vj l,,l n, j k 2 Or 2 imlic vi j = j k J l,,ln I j j k J l,,ln I j = 0<l m vj l,,l n crd { j k ; J l,,l n I j vjl,,l n M oiché gli intervlli I j, j k, sono due due disgiunti, e risult j k crd { j k ; J l,,l n I j = 0 oure vi j = 0<l m 0<l m = vi crd { j k ; J l,,l n I j vjl,,l n vj l,,l n 0

11 Lemm 4 Se I R n è un intervllo e I j è un fmigli numerbile j di intervlli due due disgiunti in R n che sono contenuti in I, llor vi j vi j Dimostrzione Lemm 3 imlic k vi j vi er ogni k e risult : j vi j = lim k k vi j vi Teorem sul volume di unioni numerbili di intervlli Sino Ij j e J k fmiglie numerbili di intervlli in k Rn e suonimo che I j, Allor k J k j J k, k, sono due due disgiunti vj k vi j j k Dimostrzione Definimo gli intervlli Per Lemm 2 J k = j I kj := J k I j, k, j I kj = vj k vi kj, k j e er Lemm 4 erciò k I kj I j = k vi kj vi j, j,

12 vj k k k vi kj = j j vi kj vi j j k Risult subito che l somm dei volumi di un successione di intervlli due due disgiunti diende solo dll unione degli intervlli dell successione In ltre role, se due successioni di intervlli due due disgiunti hnno l stess unione, llor hnno nche l stess somm di volumi di intervlli : Corollrio Sino I j e J j k fmiglie numerbili di intervlli in k R n e suonimo che I j, Allor k J k = j J k, k, sono due due disgiunti, I j, j, sono due due disgiunti vj k = vi j j k Teorem sull decomosizione di insiemi erti in intervlli Per ogni insieme erto U R n ed ogni ε > 0 esiste un successione I j j di cubi didici due due disgiunti e di dimetro < ε tle che U = j I j = j I j Dimostrzione Indichimo er ogni intero k { q J k := 2, q + qn 2, q n +, q,, q n Z { U k := I J k ; I U, Gli intervlli rtenenti d ogni J k quindi nche gli intervlli rtenenti d ogni U k sono cubi didici due due disgiunti Ogni I J k è unione di 2 n cubi rtenenti I J k+ : se 2

13 llor Risult I = q I = 2, q + qn 2, q n + 2q r 2q + 2q n r n 2q n+ Mostrimo or che I U I L inclusione è ovvi, r 2, r + rn k+ 2 k+ 2, r n + k+ 2 k+ I U 2 I I U k I 3 U = I : 4 k I U k Si desso x,, x n U rbitrrio Poiché U è erto, esiste δ > 0 tle che x δ, x + δ x n δ, x n + δ U Scelto un intero k con < δ, indichimo, er ogni j n, 2k con q j l rte inter di 2 k x j, cioè l intero definito dll condizione Allor q j 2 k x j < q j + q j 2 k x j < q j + 2 k I x,,x n := q 2, q + qn 2, q n + J k contiene x,, x n e risulterà x,, x n Ix,,x n k se mostrimo che I x,,x n = I U k I q 2, q ] + qn 2, q ] n + x δ, x + δ x n δ, x n + δ, 3

14 cioè che x j δ < q j 2 x k j < q j 2 + δ e k q j + < x 2 k j + δ q j δ 2 2 < x k k j er ogni j n M x j < q j + e 2 k 2 < δ imlicno x k j < q j 2 + δ, k mentre d q j 2 x k j e 2 < δ risult q j δ k 2 2 < x k k j n Si k ε un intero soddisfcente < ε Poiché il dimetro = il digonle di ogno cubo rtenente U k con k k ε è < ε, 3 e 4 imlicno U = I 5 k k ε I U k dove il dimetro di ogni cubo rtenente I è < ε k k ε I U k Indichimo er ogni k > { D k := I U k ; I J = J U k Allor I = I, k > : 6 I U k I U k D k L inclusione risult dl ftto che ogni I U k è l unione di 2 n cubi rtenenti U k Si or I o U k rbitrrio Se I o J = llor I o D k e risult J U k I o I I U k D k Se invece I o J llor esiste un J o U k con I o J o e J U k risult I o J o I : I U k D k k ε 4

15 Sino I o = J o = = q 2, q + qn 2, q n +, k 2 k r 2, r + rn k 2 k 2, r n + k 2 k 2r 2, 2r + 2rn 2, 2r n + 2 e x,, x n Io J o Per ogni j n, oiché qj mx 2, 2r j qj + x j < min, 2r j e quindi bbimo mx q j, 2r j < min qj +, 2r j + 2, 2r j < q j + = 2r j q j e Risult = r j 2 k = 2r j 2 k q j 2 k q j < 2r j + 2 = q j + 2r j + 2 = q j + 2 k 2r j k = r j + 2 k qj 2, q j + rj 2, r j +, j n k 2 k e di conseguenz I o J o Usndo 6 si ottiene er induzione I = I, I U k I U kε D kε+ D k k > k ε 5

16 dove i cubi rtenenti U kε D kε+ D k sono due due disgiunti Or er 5 concludimo che U = I = I I U k I U kε D kε+ D kε+2 k k ε con i cubi rtenenti U kε D kε+ D kε+2 due due disgiunti Si U R n un insieme erto Se U = j I j è un decomosizione di U in intervlli due due disgiunti ossibile er il teorem recedente llor ossimo definire il volume di U trmite vu := j vi k Per il Corollrio del Teorem sul volume di unioni numerbili di intervlli il vlore vu ottenuto non diende dll scelt dell decomosizione Usndo or il Teorem sull decomosizione di insiemi erti in intervlli ed il Teorem sul volume di unioni numerbili di intervlli si uò fcilmente verificre esercizio!: U V erti in R n = vu vv ; U j R n, j, erti due due disgiunti = v U j = vu j ; j j U U 2 erti in R n = v U j = lim vu j j j 6

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Chapter 1. Integrali doppi

Chapter 1. Integrali doppi Chpter 1 Integrli doppi Nelle presenti note esporremo un pproccio semplificto ll teori degli integrli doppi. efiniremo tli integrli direttmente su domini normli, come limiti di opportune somme integrli.

Dettagli

15AM120: Settimana 9

15AM120: Settimana 9 15AM120: Settimn 9 NTGAZON SU NSM MSUABL Deinizione di insieme misurbile e dell su misur Diremo che é misurbile se χ é integrbile e scriveremo Σ := { : χ é integrbile} = misur di := χ Σ SMP Un insieme

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

IL LEMMA DI RICOPRIMENTO DI VITALI IL TEOREMA DI LEBESGUE-BESICOVITCH

IL LEMMA DI RICOPRIMENTO DI VITALI IL TEOREMA DI LEBESGUE-BESICOVITCH AM30 202- Sett. 2. IL LEMMA DI RICOPRIMENTO DI VITALI ed IL TEOREMA DI LEBESGUE-BESICOVITCH Se f C(R n, R) il Teorem dell medi dice che, R n, r > 0, ξ(r) B r (): f(y) f() dy = f(ξ(r)) f() 0 In prticolre,

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

0.1 Teorema di Lax-Milgram

0.1 Teorema di Lax-Milgram 0. Teorem di Lx-Milgrm Definizione. (Form sesquilinere) Si H uno spzio di Hilbert su C. Un form sesquilinere sul cmpo C è un ppliczione : H H C linere nell prim componente e ntilinere nell second (cioè

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

CURVE NELLO SPAZIO LORENZO BRASCO. x i. i=1

CURVE NELLO SPAZIO LORENZO BRASCO. x i. i=1 CURVE NELLO SPAZIO LORENZO BRASCO Indice 1. Preliminri 1 2. Definizioni 3 3. Curve rettificbili 6 4. Riprmetrizzzioni 9 5. Curve nel pino 11 5.1. Curve in form crtesin 11 5.2. Curve in form polre 11 5.3.

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Capitolo 1. Insiemi e funzioni. per elencazione: si elencano uno ad uno gli elementi dell insieme.

Capitolo 1. Insiemi e funzioni. per elencazione: si elencano uno ad uno gli elementi dell insieme. Cpitolo 1 Insiemi e funzioni Con gli insiemi introducimo il linguggio universle dell mtemtic. Il linguggio degli insiemi ci permette di utilizzre l minimo le lingue nturli. 1.1 L descrizione degli insiemi

Dettagli

Integrale e Primitiva

Integrale e Primitiva Alm Mter Studiorum Università di Bologn FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Lure in Mtemtic Integrle e Primitiv Tesi di Lure in Anlisi Mtemtic Reltore: Chir.mo Prof. Ermnno Lnconelli

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri ANALISI 1 1 VENTIDUESIMA LEZIONE Integrli impropri 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un I RADICALI Per ricordre H L misur di un segmento non eá semre esrimiile medinte un numero rzionle er esemio, se un qudrto h lto unitrio, l misur dell su digonle, che eá, non eá rzionle. Per misurre occorre

Dettagli

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 20 marzo 2017

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 20 marzo 2017 Polinomi ortogonli Alvise Sommriv Università degli Studi di Pdov Diprtimento di Mtemtic 20 mrzo 2017 Alvise Sommriv Polinomi ortogonli 1/ 22 Il problem i minimi qudrti Definizione (Spzio di Hilbert) Uno

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic,.. 011-01 Diprtimento di Mtemtic, Università di Milno 9 Novembre 01 1 Spzio L Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni pprtengono

Dettagli

Diario del Corso di Analisi Matematica II - Mod. 2

Diario del Corso di Analisi Matematica II - Mod. 2 Dirio del Corso di Anlisi Mtemtic II - Mod. 2 Corso di Lure: Mtemtic Applict Docente: Sisto Bldo ATTENZIONE: Il presente Dirio del Corso vuole essere un rissunto bbstnz dettglito di quello che è stto detto

Dettagli

Questa successione è tale, per la disuguaglianza di Bessel, c n 2. n=1

Questa successione è tale, per la disuguaglianza di Bessel, c n 2. n=1 14.1. ABC di nlisi funzionle II. 14.1.1. Un ltro teorem sulle serie di Fourier. Nell lezione 13.1.5 si è visto che, fissto un sistem ortonormle {e n }, d un vettore u è ssocit l successione delle sue coordinte

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

DEFINIZIONI E TEOREMI

DEFINIZIONI E TEOREMI Anlisi Mtemtic L-A Anno Accdemico 2006/07 Docente prof Giovnni Dore DEFINIZIONI E TEOREMI Riccrdo Trevisn 19 gennio 2007 Sommrio ( * richiede dimostrzione) 1 Prodotto crtesino 1 2 Intervllo 1 3 Funzione

Dettagli

Esercizi di Informatica Teorica Pumping lemma e proprietà di

Esercizi di Informatica Teorica Pumping lemma e proprietà di 04-pumping-lemm-regolri-01 Esercizi di Informtic Teoric Pumping lemm e proprietà di chiusur per i linguggi regolri 1 Pumping lemm per linguggi regolri richimi pumping lemm: se L è un linguggio regolre

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 9 Sommrio. Crtterizzimo l equivlenz elementre in termini di sistemi di isomorfismi przili e di giochi di Ehrenfeucht-Frïssé. 1. Giochi di Ehrenfeucht-Frïssé

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Trasformate di Laplace nel campo reale

Trasformate di Laplace nel campo reale Trsformte di Lplce nel cmpo rele Funzioni generlmente continue Definizione. Un funzione f si dice generlmente continu in (, b) se esistono un numero finito di punti x = < x < < x n = b tli che f è definit

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Cpitolo 1 ANALISI COMPLESSA 1 1.3 Integrzione in Cmpo Complesso 1.3.1 Curve (richimi) Un curv nel pino complesso è un ppliczione continu : J C J = [, b] R dove J è un intervllo rele limitto e chiuso: :

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Un introduzione alle serie di Fourier

Un introduzione alle serie di Fourier Cpitolo 3 Un introduzione lle serie di Fourier 3.1 Considerzioni preinri Dto un sistem numerbile di funzioni φ 1 (x),...,φ n (x),... definite su un intervllo [, b] dir e un funzione f(x): [, b] R (C),

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi: (*) fcile, (**) non difficile

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

Successioni di Funzioni e Serie di Potenze 1

Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni e Serie di Funzioni 1.1 Successioni di Funzioni Al lettore sono già note le successioni numeriche.

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Algebra» Appunti» Disequazioni esponenziali

Algebra» Appunti» Disequazioni esponenziali MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Appunti» Disequzioni esponenzili DEFINIZIONE Si definisce disequzione esponenzile ogni disequzione nell qule l incognit è presente nell esponente di

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48 Integrli impropri Riccrd Rossi Università di Bresci Anlisi I Riccrd Rossi (Università di Bresci) Integrli impropri Anlisi I 1 / 48 (2) α > 0 f (x) = 1 (0, + ). Inftti, x α NON È integrbile in senso improprio

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli