Imetodi d abbassamento della superficie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Imetodi d abbassamento della superficie"

Transcript

1 Metodi di lolo - Introduzione Imetodi d ssmento dell superfiie freti sono molteplii e il loro utilizzo dipende d molti fttori: quot dell superfiie freti, profondità ed estensione dello svo, quot del sustrto impermeile, ntur del terreno on prtiolre riferimento ll grnulometri. E evidente quindi he, per operre in questo mpo, si devono vere portt di mno le vrie equzioni reltive ll idruli delle que di fld, dei pozzi e delle trinee. Colgo l osione di quest mi introduzione ll prte di lolo, per dre luni onsigli prtii hi si inge d operre in questo mpo. 1) Non determinre mi l onduiilità idruli del terreno quifero operndo on il metodo di ssorimento (onosiuto ome metodo efrn) si rio ostnte he vriile in qunto si ottengono sempre vlori di 3-5 volte più ssi di quelli reli. 2) Poihé qusi sempre si oper in presenz di flde fretihe molto superfiili, onviene instllre non meno di tre pozzetti (è suffiiente infiggere nel terreno delle puntzze filtrnti fino un metro o poo più l di sotto del livello sttio) posti diverse distnze, non inferiori ll lunghezz del pozzo d emungimento. 3) Per determinre il vlore dell trsmissività, si può operre utilizzndo questi tre pozzetti medinte il metodo di Thiem per pozzi rtesini in regime stzionrio (è suffiiente inizire il pompggio ll mttin e misurre gli ssmenti l mttin suessiv). 4) Con questi tre pozzetti è possiile trire più rette s-lg r (vrizione dell ssmento on il logritmo dell distnz) operndo on lmeno tre portte e, quindi, rivre i reltivi rggi d influenz. Tli rette poi servono ontrollre se gli ssmenti rivti on le vrie equzioni orrispondono ll reltà. 5) Poihé qusi sempre si oper on pozzi inompleti he rihiedono metodi di nlisi omplessi, onviene esminre i dti rolti riferendosi direttmente i pozzi ompleti (metodi di nlisi più semplii); inftti, si il pozzo per le prove he quelli per il prosiugmento dell fld, sono del medesimo tipo e quindi il vlore di T (trsmissività) osì rivto, per qunto non si quello rele, può dre uoni risultti. 6) Per qunto si operi qusi sempre in flde fretihe, onviene utilizzre le equzioni di Thiem reltive lle flde rtesine he sono più semplii; inftti, on le equzioni delle flde rtesine pplite in flde fretihe, si ottengono vlori degli ssmenti minori di quelli reli; tle diversità può essere onsidert un fttore di siurezz per il progettist. 7) undo si devono fre svi stretti e molto lunghi, l teori die d instllre dei pozzi nhe oltre le due estremità dello svo, dto he tli estremità sono due punti ritii: inftti si hnno in queste posizioni ssmenti del livello di fld non di rilievo. Un volt determint l portt d estrrre dl sottosuolo per ottenere l ssmento voluto, e quindi nhe il numero di pozzi neessri, onviene disporre i pozzi distnze vriili logritmimente prtire dll metà dello svo. In questo modo i pozzi tendono d vviinrsi sempre più tr di loro mn mno he i si vviin lle due estremità. Guido Chies Ingegnere Minerrio Esperto di Costruzione e Idruli dei pozzi

2 Metodi di lolo Iprolemi reltivi ll ptzione delle que di fld possono essere studiti onsiderndo un regime trnsitorio o stzionrio. Nel regime trnsitorio il ono d'influenz si espnde nel orso del pompggio mentre, nel regime stzionrio, il ono di depressione rggiunge un su geometri he rimne fiss nel tempo. Per qunto rigurd le opere di ptzione si onsider solo il regime stzionrio poihé tli opere, in genere, drenno ed emungono per lunghi periodi di tempo. In tli ondizioni si rggiunge quindi il regime stzionrio. Nello studio dell'idruli delle que di fld vengono in genere poste lune esemplifizioni di rttere generle, per l trttzione teori del prolem. Ad esempio: 8. Il pozzo o i punti di ptzione devono vere un effiienz del 100% e, pertnto, non vi deve essere differenz di perdit di rio tr il pozzo e l fld. 9. Nelle flde rtesine l urv di depressione deve rordrsi senz disontinuità ll superfiie piezometri e ll sse del pozzo. Come si può intuire, le ondizioni soprelente sono diffiilmente risontrili in ntur dove invee le rtteristihe idrulihe dei terreni possono presentre nhe forti vrizioni nello spzio. Nelle pgine seguenti è espost un rssegn di lune delle espressioni di lolo più onosiute e utilizzte nel mpo dell idrogeologi. 1. Il moto dell'qu deve essere onsiderto di tipo lminre, rendendo osì vlid l legge di Dry. 2. fld deve essere priv di moto proprio e quindi l su superfiie deve essere orizzontle. 3. o spessore dell fld deve onsiderrsi ostnte. 4. Il terreno quifero deve onsiderrsi ontinuo, omogeneo ed isotropo. 5. fld deve ritenersi di estensione infinit. 6. veloità del flusso non deve vrire on l profondità e quindi le linee equipotenzili devono essere delle rette vertili. 7. omponente vertile dell veloità deve onsiderrsi null, ioè le linee di flusso devono essere rppresentte d delle rette orizzontli.

3 Metodi di lolo Impinto wellpoint e trinee drennti Nel lolo teorio delle portte d estrrre dl terreno on un impinto wellpoint, per ottenere un determinto ssmento del livello di fld, è onveniente ssimilre l llinemento dei wellpoints d un trine drennte. uesto prllelismo, in grdo di semplifire notevolmente il lolo, è giustifito dl ftto he l rete di flusso reltiv un tteri di pozzi llineti è nlog, d un ert distnz dll fil dei pozzi, quell di un trine drennte. Pozzo drennte Trine omplet (regime stzionrio) Fld rtesin on limentzione d un solo lto s 0 x s h Trine omplet in fld rtesin. q y Per il lolo dell portt unitri: q 0 = T s 0 / Per il lolo dell ssmento del livello di fld: s = ( q 0 / T ) ( - x ) Se l trine rieve l qu dlle due prti dell fld, l posto di q 0 si deve porre q 0 /2. Rete di flusso reltivo un tteri di pozzi llineti. q 0 = portt unitri dell trine (m 2 /s) T = trsmissività (m 2 /s) = distnz di influenz (m) x = distnz tr l sse dell trine e un punto di misur dell ssmento (m) s = ssmento del livello di fld in un punto di misur posto ll distnz x dll trine (m) s 0 = ssmento del livello di fld in orrispondenz ll trine (m)

4 Metodi di lolo Fld freti on limentzione d un solo lto Trine inomplet (regime stzionrio) Fld freti on limentzione d un solo lto s 0 s h q x Trine omplet in fld freti. h D h s Not: lrghezz dello spessore,, onsiderto = 0 linere Per il lolo dell portt unitri: ( ) q 0 = K ( 2-2 ) 2 Per il lolo dell ssmento del livello di fld: ( ) h 2 = x + uest ultim equzione è vlid per x (1,0 2,0). q 0 = portt unitri dell trine (m 2 /s) K = onduiilità idruli (m/s) = distnz d influenz (m) x = distnz tr l sse dell trine e un punto di misur dell ssmento (m) h = spessore dell fld in un punto di misur posto ll distnz x dll trine (m) = spessore dell fld in orrispondenz ll trine (m) = ltezz dell fld indistrut (m/s) Se il flusso fosse d entrme le prti, si nel so di flde fretihe he rtesine, si oper on le medesime equzioni ponendo q 0 /2l posto di q 0. Per il lolo dell portt totle: [ ( ) ] = 0,73 + 0,27 ( - ) Ky ( 2-2 ) 2 Per il lolo dell ssmento del livello di fld: [ ] h D = h 1,48 0 ( - ) + 1 = portt totle dell trine (m 3 /s) y = lunghezz dell trine (m) = spessore dell fld indisturt (m) = spessore dell fld in orrispondenz ll trine (m) h s = differenz tr il livello dinmio di fld esterno ed interno ll trine (m) - tle dislivello è piolo, pprossimtivmente pri 0,001 h D = spessore minimo dell fld vlle dell trine (m) K = onduiilità idruli (m/s) = distnz di influenz (m)

5 Metodi di lolo Fld rtesin on limentzione d un solo lto Per il lolo dell portt totle: = K y ( - h e ) + EA Per il lolo dell ssmento del livello di fld: hd = EA ( - he ) + EA + he E A = grndezz ottenut dl grfio sottostnte h e = spessore dell fld in orrispondenz ll trine (m) = spessore dell quifero in pressione K = onduiilità idruli (m/s) = distnz di influenz (m) y = lunghezz dell trine (m) = ltezz piezometri (m) Fld rtesin on limentzione d entrmi i lti linere Per il lolo dell portt totle: Not: lrghezz dello spessore,, onsiderto = 0 Mentre il signifito delle singole vriili è deduiile dll figur sovrstnte, y = lunghezz dell trine (m). Per il lolo dell ssmento del livello di fld: d x h linere 0 / = 0,5 / = 0,2 0,4 d/ 0,6 0,8 E A h e d linere = fttore dimensionle he dipende dl rpporto d/ e he viene ottenuto dl grfio seguente d = penetrzione di un trtto di trine ll interno dell quifero 0 1,0 0,005 0,01 0,05 0,1 0,5 1,0 5,0 E A / Grfio per l determinzione di E A. d/ 0,2 0,4 0,6 0,8 1,0 0 0,5 1,0 1,5 2,0

6 Metodi di lolo Fld freti on limentzione d entrmi i lti Fld freti on limentzione d entrmi i lti l l linere h s linere linere h D h s linere Per il lolo dell portt totle: [( ) ] = 0,73 + 0,27 ( - ) Ky ( 2-2 ) Trinee inomplete e prllele (regime stzionrio) Fld rtesin on limentzione d entrmi i lti linere Per il lolo dell portt totle di ogni singol trine: = 2K y ( - h e ) + E A Per il lolo dell ssmento del livello di fld: h D = q l l E A ( - h e ) + E A + he dove E A è ottenuto dl «Grfio per l determinzione di E A» di pg. 39. h D d h e linere Per il lolo dell portt totle di ogni singol trine: = 0,73 + 0,27 ( - ) Ky ( 2-2 ) [( ) ] Per il lolo dell ssmento del livello di fld: [ ] C h D = h 1 C 2 0 ( - ) + 1 dove i vlori di C 1 e C 2 possono essere rivti di grfii sottostnti. 1,2 1,0 0,8 0,6 C 1 C 2 0,4 0,5 0, l/ e formule soprriportte sono vlide lle seguenti ondizioni: / 3. 1,5 1, ,05 C 0,10 0,15

7 Metodi di lolo Pozzi Pozzo ompleto (regime stzionrio) T R x = trsmissività (m 2 /s) = rggio di influenz (m) = distnz del punto di misur dll sse del pozzo (m) Fld rtesin Fld freti S 0 S S 0 S h h Shem di un pozzo in fld rtesin illimitt, isotrop, omogene e di spessore ostnte. Per il lolo dell portt: x R Per il lolo dell portt: K ( 2-2) = ln (R/r 0 ) x R T = trsmissività (m 2 /s) s 0 = ssmento dell piezometri in oinidenz l pozzo (m) R = rggio di influenz (m) = rggio del pozzo (m) r 0 profondità dell piezometri, lle diverse distnze dll sse del pozzo, è ottenut invee dll seguente equzione: = portt del pozzo ( m 3 /s) K = onduiilità idruli (m/s) = spessore dell fld indisturt (m) R = rggio di influenz (m) r 0 = rggio del pozzo (m) = spessore dell fld in orrispondenz l pozzo (m) s = ( / 2T) ln (R/x) s = ssmento dell piezometri ll distnz x (m) = portt del pozzo (m 3 /s)

8 Metodi di lolo superfiie freti re dell quifero. In questi si le linee di flusso, nelle viinnze del pozzo, sono di tipo rdile e non rdilpino e le linee equipotenzili sono di tipo ellittio. diversità dell ndmento delle linee di flusso tr pozzo ompleto e inompleto si h solo nell viinnz del pozzo, entro un distnz r (1,5-2,0), dove rppresent lo spessore dell quifero. ono ssmenti Vrizione dell rete di flusso vertile, nel tempo, viino d un pozzo ompleto in fld freti. (d: Idruli delle que di fld - Guido Chies - Flovio Editore) Per rivre invee l ndmento dell superfiie freti lle diverse distnze dll sse del pozzo, viene utilizzt l seguente espressione: h = x ln + h 2 0 K r 0 = portt del pozzo ( m 3 /s) K = onduiilità idruli (m/s) x = distnz tr l sse del pozzo ed il punto di misur (m) r 0 = rggio del pozzo (m) = spessore dell fld in orrispondenz l pozzo (m) Pozzo inompleto (regime stzionrio) Andmento delle linee di flusso ed equipotenzili in un pozzo inompleto. Fld rtesin (d: Idruli delle que di fld - Guido Chies - Flovio Editore) Pozzo inompleto in fld rtesin. (d: Idruli delle que di fld - Guido Chies - Flovio Editore) Un pozzo inompleto non filtr tutto lo spesso-

9 Metodi di lolo Fld freti 0,88 0,86 h Pozzo inompleto in fld freti. Per il lolo dell portt: = K (1 + r 0 / ) [( - ) 2 - ( - ) 2 ] dove i vlori di e possono essere ottenuti dl digrmm sottoriportto. S h Pozzo equivlente Nei si di pozzi drennti disposti on regolrità lungo il perimetro di uno svo, è possiile stimre le portte di emungimento, riorrendo d un semplifizione del prolem. Mentre le equzioni utilizzte sono quelle reltive i pozzi drennti, il vlore di r viene rivto dll espressione sottoriportt. tteri di pozzi viene ioé riondott d un unio pozzo di rggio medio: r A m = A = re delimitt dll tteri dei pozzi Per svi rtterizzti d un geometri rettngolre, il vlore del rggio medio deve essere moltiplito per un oeffiiente he su volt è funzione del rpporto tr il lto mggiore e minore del rettngolo. 0,84 0,82 8 1,5 0,80 7 0,78 0,76 0, ,0 0,72 0,70 0,68 0,66 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 / ,

10 Metodi di lolo Gruppo di pozzi ompleti Nel so di estrzione d qu dl sottosuolo, ttrverso un tteri di pozzi, si deve tenere onto dell sovrpposizione degli effetti drennti. undo ioè i pozzi si trovno d un distnz reipro minore del loro rggio di influenz R, isun pozzo interferise on gli ltri viini e quindi l ssmento del livello di fld è pri ll somm lgeri degli ssmenti prodotti d ogni singolo pozzo. Pozzi i vertii di un qudrto 1 2 C 4 3 Nel so di pozzi posti l vertie di un qudrto e on portt identi si h: Componente di ssmento del pozzo immgine Portt del pozzo rele ivello indisturto di fld Componente di ssmento del pozzo rele Portt del pozzo immgine in orrispondenz di uno dei pozzi: s 1 s 2 Cono di Fld quifer depressione risultnte Fld quifer l entro del qudrto: Mterile sottostnte l l Sovrpposizione degli effetti drennti prodotti d n 2 pozzi. Di seguito vengono esminti luni esempi di pozzi, posti seondo geometrie differenti.

11 Metodi di lolo Pozzi posti lungo due file prllele le formule soprindite lle flde fretihe è neessrio porre: ( 2 - h 2 ) / 2 = s P B C Pozzi posti lungo un ironferenz 1 Nel so di pozzi posti lungo due file prllele e nel so di fld illimitt è possiile riorrere lle seguenti equzioni: 7 8 C fld rtesin l entro delle due file, punto C: sc in orrispondenz del punto P: sp = portt dei pozzi (m 3 /s) T = trsmissività ( m 2 /s) R = rggio di influenz (m) = intersse tr i pozzi (m) = distnz tr gli llinementi di pozzi (m) Con un ert pprossimzione si può ritenere he, ll interno e ll esterno di tle ironferenz, l ssmento si ugule quello dto d un pozzo posto l entro e on portt n. n = numero di pozzi = portt totle di ogni singolo pozzo (m 3 /s) - fld rtesin in orrispondenz di uno dei pozzi: s fld freti on un ert pprossimzione le formule ppen itte possono essere nhe pplite lle flde fretihe; per pplire esttmente l entro dei pozzi: sc

12 Metodi di lolo - fld freti on un ert pprossimzione, le equzioni utilizzte nel so delle flde rtesine sono vlide nhe per le flde fretihe. Nel so delle flde fretihe l ssmento l entro dell ironferenz può essere lolto nhe on l seguente espressione: Pozzi posti lungo i lti di un rettngolo 1 2 Per i pozzi posti lungo i lti di un rettngolo si utilizzno le equzioni reltive l so dei pozzi posti lungo i vertii di un ironferenz ponendo:

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto Alger Condizioni di Esistenz n N x D x A(x) on n pri D x 0 A x 0 tn f(x) f x + k se f(x) f x + k log A x B(x) A x > 0 A x B x > 0 f x α f x 0 on α > 0 irrz. f x α f x > 0 on α < 0 irrz. f x g x f x > 0

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Grafici elementari 1 - geometria analitica

Grafici elementari 1 - geometria analitica Grfii elementri - geometri nliti Un equzione rppresent un funzione se è possiile metterl in form espliit (rivre l y) ottenendo un sol espressione. Un urv rppresent un funzione se, preso un qulsisi punto

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro;

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato;

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

La risoluzione di una disequazione di secondo grado

La risoluzione di una disequazione di secondo grado L risoluzione di un disequzione di seondo grdo Quest nno le disequzioni srnno importntissime. Non si prlerà però proprimente di disequzioni m di studire il segno di un funzione. In effetti un numero può

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

I. S. I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I. S. I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico I. S. I. E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Ghilrdui Pol Gli insiemi numerii I numeri nturli i numeri interi reltivi i numeri rzionli. ddizione

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Numeri nello spazio n dimensionale

Numeri nello spazio n dimensionale Numeri nello spzio n dimensionle Niol D Alfonso Riertore indipendente niol.dlfonso@hotmil.om Sommrio Questo pper introdue i numeri nello spzio n dimensionle. Vle dire, se nell prim dimensione bbimo i numeri

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto d Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pg. 1/5 Sessione ordinri 2018 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE LI15 - SCIENTIFICO - SEZIONE AD INDIRIZZO

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Lure di I Livello in Ingegneri Informtic Sede di Mntov 5.02.2004 Prolem I Nel circuito in figur, in cui i genertori funzionno in regime stzionrio, l interruttore viene chiuso nell istnte t = 0. Si determini

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

Problema: Calcolo dell'area di una superficie piana

Problema: Calcolo dell'area di una superficie piana Corso di Lure in Disegno Industrile Corso di Metodi Numerii per il Design Lezione 7 Novemre 00 Integrle definito F. Cliò Prolem: Clolo dell're di un superfiie pin Metodi Numerii per il Design - Lezione

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

Nomogrammi logaritmici

Nomogrammi logaritmici Prinipi e etodi di relizzzione Prinipi e etodi di relizzzione Versione 1.1 del31/12/99 Distriuzione 31/12/99 Prinipi e etodi di relizzzione Prinipi - 2 1. PRINIPI Un noogr è ostituito d un gruppo di tre

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca)

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca) Prov Sritt Elettromgnetismo - 24.7.2017 (.. 2016/17, S. Gigu/F. Lv/S. Petrr) reupero primo esonero: risolvere l eserizio 1: tempo mssimo 1.5 ore. reupero seondo esonero: risolvere l eserizio 2: tempo mssimo

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli