XVII GARA NAZIONALE DI MATEMATICA Ceseatico, 4 maggio 2001 Soluzioi C 1) Siao a c e i lati ell'esagoo co a =5, =,c =6, =7. Si prolughio i lati a, c, e

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "XVII GARA NAZIONALE DI MATEMATICA Ceseatico, 4 maggio 2001 Soluzioi C 1) Siao a c e i lati ell'esagoo co a =5, =,c =6, =7. Si prolughio i lati a, c, e"

Transcript

1 XVII GARA NAZIONALE DI MATEMATICA Ceseatico, 4 maggio ) U esagoo equiagolo ha quattro lati cosecutivi lughi ell'orie 5,, 6 e 7. Determiare le lughezze egli altri ue lati. 2) I u toreo i pallacaestro ogi squara arota esattamete ue volte tutte le altre square partecipati. Il toreo viee vito a ua squara sola i testa alla classica co 26 puti, metre esattamete ue square arrivao ultime co 20 puti. Quate square hao partecipato al toreo? (Ricoriamo che ella pallacaestro si assegao 2 puti alla squara vicete e 0 a quella scotta, metre o e possiile che ua partita isca i parita.) ) Si cosieri l'equazioe x 2001 = y x : (a) Determiare tutte le coppie (x y) i soluzioi i cui x e u umero primo e y e u itero positivo. () Determiare tutte le coppie (x y) i soluzioi i cui x e y soo iteri positivi. (Si ricori che 2001 = 2 29) 4) Chiamiamo umeri mootoi gli iteri positivi tali che { si scrivoo usao almeo ue cire { essua cira e zero { le cire compaioo i orie strettamete crescete o strettamete ecrescete. (A esempio 127 e 9742 soo umeri mootoi, metre 172, 1224 e 720 o lo soo.) (a) Calcolare la somma i tutti i umeri mootoi i cique cire. () Determiare co quati zeri termia il miimo comue multiplo i tutti i umeri mootoi (seza vicoli sul umero i cire). 5) Sia ABC u triagolo e sia la circoereza iscritta i ABC. La circoereza e tagete al lato AB el puto T. Sia D il puto i iametralmete opposto a T, e sia S il puto i itersezioe ella retta passate per C e D co il lato AB. Dimostrare che AT = SB. 6) U paello cotiee 100 lampaie, isposte i moo a ormare u quarato i 10 righe e 10 coloe. Alcue i esse soo accese, le altre soo spete. L'impiato elettrico e tale che quao si preme il pulsate corrispoete a ua qualuque elle lampaie, camiao i stato (cioe, si acceoo o si spegoo) tutte le lampaie che si trovao sulla sua coloa e tutte quelle che si trovao sulla sua riga (compresa la lampaia corrispoete all'iterruttore premuto). (a) Parteo a quali cogurazioi, operao opportuamete, e possiile are i moo che alla e tutte le lampaie risultio accese? () Qual e la risposta alla omaa preceete se le lampaie soo 81, isposte i moo a ormare u paello i 9 righe e 9 coloe?

2 XVII GARA NAZIONALE DI MATEMATICA Ceseatico, 4 maggio 2001 Soluzioi C 1) Siao a c e i lati ell'esagoo co a =5, =,c =6, =7. Si prolughio i lati a, c, e o a icotrarsi ei puti B, C, A (vei gura). Poiche gli agoli iteri ell'esagoo soo tutti i 120, il triagolo ABC e i tre triagolii etermiati a ciascuo ei lati e rispettivamete ai vertici A B C soo tutti equilateri, ato che tutti i loro agoli soo i 60. Aiamo pertato che + c + = + e + = + a + a cui, sostitueo i valori oti, si ricava acilmete che =8 e e =1. Secoa soluzioe Iicati i lati come ella soluzioe preceete, si maio le perpeicolari al lato a per i puti E e J siao A D e I F le itersezioi i tali perpeicolari co le rette ei lati a e rispettivamete (vei gura). Poiche gli agoli iteri ell'esagoo soo tutti i 120, tutti i triagoli i gura hao agoli i 60,0 e90 quii AI e DF soo perpeicolari ache a IF e segue che AD e parallelo a IF,eil quarilatero ADF I e u rettagolo come i gura. Co acili calcoli si ricava che A e IH G F J e c A B a C D a c E B AD = AB + BC + CD = 2 + a + 2 IF = IH + HG + GF = e c 2 p p AI = AJ + JI = 2 ( + e) FD = FE + ED = (c + ): 2 Sostitueo i valori oti i a,, c,, e impoeo le uguagliaze AD = IF, AI = FD, si ottiee che ; e =7, + e =9,acui =8ee =1. 2) Iichiamo co il umero elle square partecipati. Il umero i partite giocate urate tutto il toreo sara uguale a (;1), tate quate soo le coppie oriate i elemeti istiti i u isieme co elemeti. Iichiamo co M la meia aritmetica ei puteggi totalizzati alle square alla e el toreo. Siccome a ogi partita si assegao 2 puti, si ha M =2( ; 1)= =2( ; 1). Notiamo che, poiche ogi squara puo aver otteuto solo u umero pari i puti, tutte le square che o si soo classicate e al primo e all'ultimo posto hao coquistato al piu 24 puti. Si ha allora ( ; ) ( ; ) M 6 = = 24 ; 6 < 24 : D'altra parte M e pari e maggiore i 20, perche tutte le square hao almeo 20 puti e e esiste ua che e ha i piu. Pertato l'uico valore possiile per M e 22,a cui si ricava che il umero i square partecipati al toreo e uguale a 12. E ie acile vericare che esiste u toreo a 12 square che soisa le ipotesi el prolema. Se iatti la squara A atte le square B e C i tutti gli icotri, metre tutti gli altri scotri si cocluoo co ua vittoria per parte, alla e el toreo A avra totalizzato 26 puti, B e C e avrao totalizzati 20 e gli altri 9 partecipati cocluerao il toreo co 22 puti. 1

3 ) Parte (a). Le coppie richieste soo: ( 667 ), ( ), ( ). Sia iatti x = p u umero primo. Allora all'equazioe segue che ella attorizzazioe i y o ci possoo essere attori primi iversi a p, uque y = p per u qualche. Sostitueo ell'equazioe aiamo cos che p 2001 = p p, a cui 2001 = p. Ne segue che p eve essere u attore primo i 2001 e =2001=p. Otteiamo i questo moo le tre coppie elecate. Parte (). Le coppie richieste soo (1 1) ( 667 ) ( ) ( ) ( ) ( ) ( ) ( ): Sia p u primo che compare co espoete ella attorizzazioe i x. Allora all'equazioe aiamo che p compare ache ella attorizzazioe i y, co u espoete che iichiamo co k. Possiamo pertato scrivere x = p a, y = p k, ove a e o soo ivisiili per p. Sostitueo ell'equazioe troviamo che p 2001 a 2001 = p kp a p a. Uguagliao gli espoeti relativi al primo p, si ha uque che 2001 = kap, e quii p ivie Aiamo ora ue casi. { Se p o ivie 2001, allora p eve iviere, il che e impossiile visto che p > (poiche p 2 =(1+1) =1 + 1 ;1 + :::>). { Se p e u attore i 2001, allora p ;1 eve iviere, il che e possiile solo per =1. Iatti per >1 si ha che p ;1 2 ;1 =(1+1) ;1 =1 +( ; 1) 1 ;1 + :::>. Aiamo cos imostrato che p puo essere solo, 2, o 29, e eve comparire co espoete 1 ella attorizzazioe i x. Pertato x e ecessariamete u ivisore i D'altra parte se e u qualuque ivisore i 2001, posto e = 2001= si ottiee immeiatamete 2001 = e =( e ) quii la coppia ( e ) e soluzioe ell'equazioe. Secoa Soluzioe Sia il M.C.D. tra x e 2001, e pogasi x = a 2001 = e cosicche a e soo primi ra loro. L'equazioe si semplica i x e = y a, e quii si ha x = z a, per u opportuo z, come si evice al coroto tra gli espoeti i ciascu attore primo i x ei ue memri ell'equazioe. Poiche x e z hao gli stessi attori primi e, come ivisore i 2001, e prootto i primi istiti, si ha ache z = e quii a =() a, ossia a = a a;1. Questo implica che x =, e quii x ivie Iatti se >1, allora a >a, metre se =1 e a > 1, allora a;1 a;1 > 2 a;1 a. (Si ricori che per ogi 2 e ogi itero a 0 si ha a =(1+(;1)) a =1+a(;1)+::: a+1): D'altra parte se e u qualuque ivisore i 2001, posto e = 2001= si ottiee immeiatamete 2001 = e =( e ) quii la coppia ( e ) e soluzioe ell'equazioe. 4) Parte (a). Chiamiamo cresceti i umeri mootoi le cui cire compaioo i orie crescete, e aalogamete chiamiamo ecresceti i umeri mootoi le cui cire compaioo i orie ecrescete. Chiamiamo ioltre gemello i u umero mootoo N, l'itero che si scrive sostitueo ogi cira i N co il suo complemetare a 10. Cos, a esempio, il gemello i e Si oti che ogi umero ecrescete e il gemello i u umero crescete, e viceversa. Ioltre, e acile veere che la somma i u umero mootoo i cique cire e el suo gemello e sempre uguale a Suppoiamo ora i aver scritto la somma S i tutti i umeri mootoi i cique cire. I tale somma possiamo raggruppare gli aei a ue a ue, i moo che a ogi umero crescete corrispoa il suo gemello ecrescete. Per l'osservazioe preceete, aceo le somme a ue a ue, aiamo che S iveta la somma i aei tutti uguali a Ioltre gli aei soo tati quati i umeri cresceti, i quali a loro volta soo tati quati i moi i scegliere cique cire iverse i u isieme i ove, e cioe 9 = 9! 5 5! 4! = 126 : 2

4 Seza utilizzare il sigicato comiatorio ei coecieti iomiali si puo ragioare el moo seguete. Scegliamo azitutto le 5 cire iverse che costituiscoo il umero: la prima si puo' scegliere i 9 moi iversi, la secoa i 8, :::, la quita i 5. Cos aceo o otteiamo sempre u umero crescete: iatti, per otteerlo, la prima cira eve essere la piu piccola elle 5 scelte, il che succee solo ua volta su 5, la secoa eve essere la piu piccola elle 4 rimaste, il che succee solo ua volta su 4, e cos via. Di cosegueza i umeri cresceti soo = 126: Pertato la somma i tutti iumeri mootoi i cique cire e = : Parte (). Iichiamo co M il miimo comue multiplo i tutti i umeri mootoi. Osserviamo prelimiarmete che l'isieme ei umeri mootoi e ito (perche essu umero mootoo puo avere piu i ove cire), uque M e e eito. Per sapere co quati zeri termia M, occorre cooscere la piu grae poteza i 10 che ivie M. A tale scopo cosieriamo separatamete le poteze i 2 ei5.icomiciamo a aalizzare il caso el 5. La piu grae poteza i 5 che ivie M e uguale alla piu grae poteza i 5 per cui e ivisiile u umero mootoo. Tale poteza e almeo, poiche 5 = 125 e u umero mootoo. Ioltre tutti gli iteri ivisiili per 125 termiao ecessariamete co 000, 125, 250, 75, 500, 625, 750, 875, e i cosegueza i multipli mootoi i 125 possoo termiare solo co 125 o 875. I soli umeri mootoi a avere tale termiazioe soo 125, 875, 9875, essuo ei quali e ivisiile per 5 4. Pertato la piu grae poteza i 5 che ivie M e 5. Poiche ovviamete M cotiee piu i tre attori 2 (a esempio 2 4 =16e u umero mootoo), e segue che M termia co esattamete zeri. 5) Co rierimeto alla gura a aco, tracciamo la retta r passate per D e parallela al lato AB. Siao L e M, rispettivamete, le itersezioi i r co i lati AC e BC. Deotiamo ioltre co H e K, rispettivamete, i puti i tageza i co i lati AC e BC. Poiche sulle tageti cootte a u puto estero a ua circoereza risultao uguali i segmeti compresi ra il ato puto estero e i rispettivi puti i cotatto (el seguito \teorema elle tageti") aiamo CH = CK, LH = LD e MK = MD. Scriveo CH = CL+LH, CK = CM+MK e, sruttao le uguagliaze preceeti, si ha CL + LD = CM + MD : C L M H D K A T S B I triagoli CLM e CAB soo simili, perche hao i lati paralleli. Moltiplicao l'uguagliaza preceete per il rapporto i similituie, otteiamo CA + AS = CB + BS, ossia CH + HA + AT + TS = CK + KB + BS. Utilizzao acora il teorema elle tageti, aiamo CH = CK, AH = AT e KB = TB = TS + SB. Ne segue che 2AT + TS = TS +2BS, e quii AT = BS. 6) (a) E acile vericare che se si preme il pulsate i tutte le lampaie i ua riga e i ua coloa tutte le lampaie el paello camiao i stato u umero pari i volte, co l'uica eccezioe proprio ella lampaia che si trova all'icrocio ella riga e ella coloa cosierata, che camia stato 19 volte. I eitiva queste \mosse" cosetoo i acceere ua lampaia alla volta. E uque possiile raggiugere la cogurazioe i cui tutte le lampaie soo accese parteo a qualsiasi cogurazioe. () I questo caso e acile vericare che premeo il pulsate i ua sigola lampaia il umero i lampaie che camiao i stato su ogi sigola riga e su ogi sigola coloa e comuque ispari (o 1 o 9). Cosegueza i questo atto e che coizioe ecessaria per raggiugere la cogurazioe r

5 i cui tutte le lampaie soo accese e che all'iizio il umero i lampaie accese sia pari per tutte le righe e per tutte le coloe o sia ispari per tutte le righe e tutte le coloe. Tale coizioe e 'altra parte ache suciete. Suppoiamo iatti i partire a ua cogurazioe i cui ci sia u umero ispari i lampaie spete i ogi riga e ogi coloa. Premiamo il pulsate i tutte le lampaie spete. I questo moo ogi lampaia accesa camia i stato tate volte quate soo le lampaie spete sulla sua stessa riga e sulla sua stessa coloa, quii u umero pari i volte (ispari + ispari), metre ogi lampaia speta camia i stato u umero ispari i volte (ispari + ispari ;1, ove il \;1" serve a o cotare ue volte la lampaia speta i questioe, ua volta come compoete ella sua riga e u'altra come compoete ella sua coloa): uque tutte le lampaie accese rimagoo accese, e tutte quelle spete si acceoo. La stessa mossa, cioe premere il pulsate i tutte le lampaie spete, uzioa ache se ella cogurazioe i parteza c'e u umero pari i lampaie spete i ogi riga e ogi coloa. Iatti ache i questo caso le lampaie accese camiao stato u umero pari i volte (pari + pari), metre quelle spete camiao stato u umero ispari i volte (pari + pari ;1). Osservazioe. L'uica iormazioe usata ella imostrazioe ella parte (a) e che il paello ha u umero pari i righe e coloe, cos come ella imostrazioe ella parte () si e usato solo che il paello ha u umero ispari i righe e coloe. 4

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

Insieme dei numeri razionali

Insieme dei numeri razionali Isieme ei umeri razioali Q - 1 Isieme ei umeri razioali Per iicare il quoziete fra ue umeri e, si scrive ua frazioe che ha come umeratore il ivieo e per eomiatore il ivisore ella ivisioe. Qualsiasi ivisioe

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Insieme dei numeri razionali

Insieme dei numeri razionali Isieme ei umeri razioali Q - 1 Isieme ei umeri razioali Per iicare il quoziete fra ue umeri e, si scrive ua frazioe che ha come umeratore il ivieo e per eomiatore il ivisore ella ivisioe. Qualsiasi ivisioe

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Successioni di variabili aleatorie

Successioni di variabili aleatorie 0 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria.

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combiatorio Il pricipio fodametale del calcolo combiatorio Il pricipio fodametale del calcolo combiatorio può essere euciato così: Se dobbiamo fare N scelte e la prima scelta può essere fatta i

Dettagli

MATERIALE DIDATTICO AGGIUNTIVO - ANALISI MATEMATICA II 1 CAMBIAMENTO DI VARIABILI NEGLI INTEGRALI MULTIPLI

MATERIALE DIDATTICO AGGIUNTIVO - ANALISI MATEMATICA II 1 CAMBIAMENTO DI VARIABILI NEGLI INTEGRALI MULTIPLI MATERIALE IATTICO AGGIUNTIVO - ANALISI MATEMATICA II CAMBIAMENTO I VARIABILI NEGLI INTEGRALI MULTIPLI I uesti apputi stuieremo alcui teoremi che, i aalogia al Teorema i itegrazioe per sostituzioe per fuzioi

Dettagli

Interpolazione polinomiale di dati sperimentali

Interpolazione polinomiale di dati sperimentali Apputi i Calcolo Numerico Lezioi-4 Iterpolazioe poliomiale i ati sperimetali Il problema ell iterpolazioe i ati sperimetali asce all esigeza i rappresetare i maiera cotiua u eomeo reale i cui abbiamo solo

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Problem solving elementare su dati scalari. Esercizi risolti

Problem solving elementare su dati scalari. Esercizi risolti 1 Esercizio: Fattoriale Esercizi risolti Si realizzi u programma che, letto u umero, stampi il valore del fattoriale per tutti i umeri da 0 a. Si ricordi che 0!=1. void mai (void) it i,, fatt; pritf ("Valore

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

1. Suddivisione di triangoli

1. Suddivisione di triangoli 1. Suddivisioe di triagoli 1.1 Il problema proposto da Silvao Rossetto La costruzioe descritta dalla figura seguete divide il triagolo C, rettagolo i, i due parti equiestese: r t s C g P g 1 K M 1 1) Precisare

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Esercitazione del 25/11/2011 Calcolo delle probabilità

Esercitazione del 25/11/2011 Calcolo delle probabilità Esercitazioe el 25//20 Calcolo elle robabilità Covergeza i istribuzioe. Sia {X } N ua successioe i variabili aleatorie reali. Sia X u ulteriore variabile aleatoria reale. Defiizioe. Diremo che la successioe

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Per questi argomenti ti consiglio anche di effettuare questo collegamento:

Per questi argomenti ti consiglio anche di effettuare questo collegamento: Prof. Roberto Milizia, presso Liceo Scietifico E. Ferdiado Mesage BR) UNITA 8. IL CALCOLO COMBINATORIO.. Itroduzioe al calcolo combiatorio.. I raggruppameti. 3. Esercizi vari co i raggruppameti. 4. Il

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

1. Tra angoli e rettangoli

1. Tra angoli e rettangoli . Tra agoli e rettagoli Attività : il foglio A4 e le piegature Predi u foglio di carta A4 e piegalo a metà. Cota di volta i volta quati rettagoli si ottegoo piegado a metà più volte il foglio. Immagia

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2.

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2. 60 Cotare sequeze e collezioi Passiamo ad ua formula meo semplice dato che o sembra avere ua facile iterpretazioe combiatoria. Proposizioe. Siao r, s, m, N. Allora r s + s m ( ) =( ) m + r+m. (.) r Z Osservazioe.

Dettagli