TEORIA E TECNICA DELLA CIRCOLAZIONE
|
|
|
- Teodoro Gianni
- 9 anni fa
- Visualizzazioni
Transcript
1 PROBLEMI DI TEORIA E TECNICA DELLA CIRCOLAZIONE 3 A cura di : Prof. Astarita Vittorio ing. Giofrè Vincenzo Pasquale Argomenti: Distribuzione di Poisson 26
2 3.1 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Il numero medio di telefonate ad un centralino è di 10 telefonate all ora. Calcolare la probabilità che in 15 minuti vi sia almeno una telefonata. 3.2 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Le telefonate ad un centralino arrivano al ritmo di una ogni 5 minuti (1/12 ora). Calcolare la probabilità che in 15 minuti vi sia almeno una telefonata. 27
3 3.3 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Le telefonate ad un centralino arrivano al ritmo di una ogni 10 minuti (1/6 ora). Calcolare la probabilità che in 10 minuti non vi sia nessuna telefonata. 3.4 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Il tempo medio di durata di una ruota di auto è pari a 5 anni. Calcolare la probabilità di dover cambiare una ruota ad un auto nel primo anno. La probabilità che non si guasti una ruota è: La probabilità che non se ne guastino quattro è: Che se ne guasti una è: 28
4 3.5 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Le telefonate ad un centralino arrivano al ritmo di una ogni 10 minuti (1/6 ora). Calcolare la probabilità che in 10 minuti vi siano più di due telefonate. La probabilità che non arrivino telefonate si calcola con Poisson: La probabilità che ne arrivi 1 e 2: La probabilità che ne arrivino più di 2: 3.6 PROBLEMA Distribuzione di Poisson ed esponenziale negativa Le telefonate ad un centralino arrivano al ritmo di una ogni 10 minuti (1/6 ora). Calcolare la probabilità che in 5 minuti vi siano meno di tre telefonate. La probabilità che non arrivino telefonate o che ne arrivi 1 e 2, si calcolano con Poisson: La probabilità che ne arrivino meno di tre è uguale a quella da 0 a 2: 29
5 3.7 PROBLEMA Distribuzione Normale ed esponenziale negativa Sia X il tempo di partenza in minuti dopo le 11 nel quale un autobus lascia la fermata. Assumendo che la distribuzione del tempo di partenza sia approssimativamente una normale con media 15 e deviazione standard 4 minuti. a. se una persona arriva alla fermata alle ore 11.10, qual è la probabilità di aver perso l autobus? Utilizzando Microsoft Excel il risultato si ottiene come (esattamente= 0,10565) b. se una persona è disponibile a rischiare non più del 20% di probabilità di perdere l autobus qual è il tempo massimo di arrivo alla fermata? Utilizzando Microsoft Excel il risultato si ottiene come (esattamente= 11,63351) c. quando dovrebbe presentarsi alla stazione una persona per avere una probabilità del 50% di prendere l autobus? 30
6 Ricalcolare le risposte alle domande A,B e C per una distribuzione del tempo di partenza approssimativamente esponenziale negativa con media 15 minuti. a. se una persona arriva alla fermata alle ore 11.10, qual è la probabilità di aver perso l autobus? (esattamente=0, ) b. se una persona è disponibile a rischiare non più del 20% di probabilità di perdere l autobus qual è il tempo massimo di arrivo alla fermata? LOGn e λt ( ) = LOGn( 0,8) LOGn λt = LOGn( 0,8 ) > t = λ t = 15LOGn 0,8 = 3,34 ( ) (Cioè al tempo 11,00 + 3,34 minuti) ( 0,8) c. quando dovrebbe presentarsi alla stazione una persona per avere una probabilità del 50% di prendere l autobus? 31
7 LOGn e λt ( ) = LOGn( 0,5) LOGn λt = LOGn( 0,5 ) > t = λ t = 15LOGn 0,5 = 10,39 ( ) (Cioè al tempo 11, ,39 minuti) ( 0,5) 3.8 PROBLEMA esponenziale negativa (paradosso del bus) Un utente arriva alla fermata dell autobus ad un istante casuale nel tempo. Gli autobus arrivano alla fermata secondo un processo di Poisson e l intervallo medio fra due autobus è di 10 minuti. Qual è il tempo medio di attesa per il prossimo autobus? La risposta è 10 minuti. Supponendo di avere una rulet composta da celle di larghezza variabile che segue un processo di Poisson. Considerando la somma degli spazi S = e la larghezza media pari a E(x) = 2 cm, se lanciamo una pallina, sarà più probabile che cada in una cella grande che in una cella piccola, perché lo spazio è maggiore. 32
8 Cadendo nella cella, lo spazio fra la palla è il bordo della cella, sia da un lato che dall altro sarà 2 cm Perché se consideriamo la funzione con cui la palla attraversa gli spazi, essa sarà formata da tanti triangoli quante sono le celle. Con media Quindi si note che le celle più grandi contribuiscono di più di quelle piccole e al crescere di S -> si ha che: Quindi Per la distribuzione esponenziale si ha 33
9 Ottenendo quindi La cella è quindi grande il doppio della media delle celle, ovvero 4 cm. Oppure possiamo considerare che la probabilità che venga scelto un intervallo sia: Dove la funzione f(t) è la funzione esponenziale negativa e: Per ricavare la costante c integriamo: Presentandoci quindi a caso alla fermata del bus la funzione di distribuzione degli intervalli, per t > 0, sarà: La media del singolo intervallo è quindi: Mentre degli intervalli, ovvero di g(t) sarà: 34
10 Che si risolve per parti come: 35
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
λ è detto intensità e rappresenta il numero di eventi che si
ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di
Distribuzione di Poisson Una v. casuale di Poissonè una v. casuale discreta che può assumere qualsiasi valore intero non-negativo
Distribuzione di Poisson Una v. casuale di Poissonè una v. casuale discreta che può assumere qualsiasi valore intero non-negativo E' un modello probabilistico adoperato per rappresentare situazioni di
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si
ISTOGRAMMI E DISTRIBUZIONI:
ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
Esercitazione # 3. Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti
Statistica Matematica A Esercitazione # 3 Binomiale: Esercizio # 1 Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti 1. mai 2. almeno una volta 3. quattro volte Esercizio #
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente;
0.00 0.05 0.10 0.15 0.20 STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 4 Maggio 2015 Esercizio 1 (Uniforme discreta) Si consideri l esperimento lancio di un dado non truccato. Sia X la variabile casuale
Variabili casuali II
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE
PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
Variabili aleatorie continue
Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare
Distribuzioni di probabilità
Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Esercizi svolti di statistica. Gianpaolo Gabutti
Esercizi svolti di statistica Gianpaolo Gabutti ([email protected]) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione
L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO
CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.
1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un
Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni
Corso di Laurea in Ingegneria Informatica corso di Telecomunicazioni (Prof. G. Giunta) (editing a cura dell ing. F. Benedetto) Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni Esame
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE Analisi prestazioni protocolli Allocazione statica Confronto ritardo temporale multiplazione FDM e TDM Ipotesi Numero stazioni: N Capacità canale: C bps Lunghezza coda: infinita
ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006
Scuola Specializzata per le Professioni Sanitarie e Sociali 69 Canobbio ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 006 Avvertenza: - in tutti gli esercizi i risultati devono essere corredati da calcoli
ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita
ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
STATISTICA APPLICATA Prof.ssa Julia Mortera. Concentrazione
STATISTICA APPLICATA Prof.ssa Julia Mortera Concentrazione Questo materiale non sufficiente per la conoscenza/preparazione dell argomento per il quale si rimanda al testo: Cicchitelli (2012) Statistica:
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
mc342 Sapendo che la corda tangente al bordo interno di una corona circolare misura 6.864, (Prof. Massimo Piai - 16 febbraio 2009)
1 mc342 (Prof. Massimo Piai - 16 febbraio 2009) Problema: interno di una corona circolare misura 4.068 m, calcolare approssimativamente l area della Svolgimento: Siano R ed r il raggio esterno e il raggio
1. i limiti di p che garantiscono un funzionamento stabile del sistema ;
Problema 1 Un router collega una rete locale ad Internet per mezzo di due linee dedicate, la prima di capacità C 1 = 2.048 Mbit/s e la seconda di capacità C 2 = 512 Kbit/s. Ciascuna linea è dotata di una
Note sulla probabilità
Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda
PROBLEMI DI PROBABILITÀ 2
PROBLEMI DI PROBABILITÀ 2. Si sceglie a caso un numero X nell intervallo (0, ). (a) Qual è la probabilità che la usa prima cifra decimale sia? (b) Qual è la probabilità che la seconda cifra decimale sia
Calcolo delle Probabilità Esercizi
Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,
Calcolo integrale: esercizi svolti
Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione
Laboratorio di Giochi Matematici
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA ʺF. ENRIQUESʺ Progetto Lauree Scientifiche Laboratorio di Giochi Matematici (responsabile Prof. Stefania De Stefano) Incontro presso il Liceo
Probabilità esempi. Aiutiamoci con una rappresentazione grafica:
Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a
Proprietà della varianza
Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Intermezzo: ma perché dovremmo darci la pena di studiare come calcolare la varianza nel caso di somme,
4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.
1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE TEORIA DELLE CODE Teoria delle code Obiettivo Avere uno strumento analitico per determinare le condizioni di funzionamento di una rete in termini prestazionali La teoria delle
DISTRIBUZIONE NORMALE (1)
DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale
Corso di Calcolo Numerico
Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale
X = X 1 + X 2 +... + X n. dove. 1 se alla i-esima prova si ha un successo 0 se alla i-esima prova si ha un insuccesso. X i =
PIU DI UNA VARIABILE CASUALE Supponiamo di avere n variabili casuali, X 1, X 2,..., X n. Le n variabili casuali si dicono indipendenti se e solo se P(X 1 x 1 X 2 x 2... X n x n ) = = P(X 1 x 1 ) P(X 2
La probabilità matematica
1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi
PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE
Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
Esercitazioni di Statistica Matematica A Lezioni 4-5. Calcolo combinatorio
Esercitazioni di Statistica Matematica A Lezioni -5 Calcolo combinatorio 1.1) Un treno ha n carrozze, sulla banchina della stazione vi sono r passeggeri (r n). Se i passeggeri scelgono a caso ed indipendentemente
Modelli e Metodi per l Automazione
Prof. Davide Giglio Modelli e Metodi per l Automazione Facoltà di Ingegneria Anno Accademico 2011/2012 ESEMPI ED ESERCIZI CATENE DI MARKOV 5.1 Si consideri un sistema di produzione costituito da un unica
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Matematica II: Calcolo delle Probabilità e Statistica Matematica
Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 3 1 Distribuzione di Bernoulli e Distribuzione Binomiale Esercizio 1 Sia n un intero maggiore
TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo
TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti)
METODO DI CVLIERI-SIMPSON (o delle parabole) (per il calcolo approssimato di integrali definiti) ssieme ai metodi dei Rettangoli e dei Trapezi costituisce l insieme dei metodi di Integrazione Numerica
LE PROVE DI AFFIDABILITA
4. LE PROVE DI AFFIDABILITA Ed.1 del 14/09/98 Rev. 3 del 08/09/00 AFFIDABILITA' DI COMPONENTI E SCHEDE ELETTRONICHE-sez 4 1 LE PROVE DI AFFIDABILITA SI RICAVANO INFORMAZIONI RELATIVE AD UN CAMPIONE E SI
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?
Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.
FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.
Esercitazioni di Statistica
Esercitazioni di Statistica La distribuzione delle statistiche campionarie Teorema del limite centrale Prof. Livia De Giovanni [email protected] Esercizio (Scozzafava) Una ferrovia metropolitana
Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:
ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente
I TEOREMI DI EUCLIDE
I TEOREMI DI EUCLIDE 1 Teorema di Euclide Dato il triangolo rettangolo ABC: consideriamo i triangoli ABC e ABH simili I due triangoli sono simili perché se consideriamo gli angoli: - l'angolo A è comune
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.
Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi
Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc
Integrazioni al corso di Economia Politica (anno accademico 2013-2014) Marianna Belloc 1 L elasticità Come è già noto, la funzione di domanda di mercato indica la quantità che il mercato è disposto ad
L AREA DELLE FIGURE PIANE
L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
C.I. di Metodologia clinica
C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni
Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue
1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare
Test di sopravvivenza
Dipartimento di Fisica a.a. 24/25 Fisica Medica 2 Test di sopravvivenza 9/5/24 Analisi della sopravvivenza Esiste un punto di partenza ben identificabile ad esempio: inizio di un mal di schiena? primo
Teoria della probabilità Variabili casuali
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni
la velocità degli uccelli è di circa (264:60= 4.4) m/s)
QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,
a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..
Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,
MICROSOFT EXCEL / OPENOFFICE CALC LE FORMULE CONDIZIONALI
MICROSOFT EXCEL / OPENOFFICE CALC LE FORMULE CONDIZIONALI Si definiscono formule condizionali quelle formule che consentono di estrarre delle informazioni da un foglio di calcolo in base ad una o più condizioni.
ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI
ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 Se 2 x 2.5 e 5 y 6, fra quali limiti sono compresi i numeri x + y, y x, x y e y/x? 7 x
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
Fondamenti di Infrastrutture Viarie
Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) MEDIA aritmetica semplice
