Distribuzioni di probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Distribuzioni di probabilità"

Transcript

1 Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la distribuzione multinomiale. Distribuzione binomiale. Supponiamo di avere due esiti esclusivi A e Ā di un certo esperimento: A è chiamato un successo e Ā un insuccesso. Per ogni esperimento sia p ( 0 p 1 ) la probabilità che si verifichi un successo e q=1- p la probabilità di un insuccesso. Allora per una successione di n prove indipendenti, la probabilità di avere r successi e n-r insuccessi è data :

2 ( ) ( ) p r ( 1-p) n-r dove il coefficiente binomiale ( ) = ( ) tiene conto che non è importante l ordine con cui si verificano gli r successi. Questa distribuzione si dice anche di Bernoulli, dal nome dello scienziato svizzero Jakob Bernoulli. Si può dimostrare ( vedi Severi ) che μ= E(r) = np e che la varianza V(r) =np(1-p). Il grafico che segue mostra l andamento di una binomiale per diversi valori di p e di n: all aumentare di n tende ad una distribuzione normale.

3

4 Distribuzione di Poisson In una distribuzione binomiale può capitare che p sia molto piccola ed n molto grande, ma che il valore atteso μ = np possa essere finito e diverso da zero. Nel caso limite che p tenda a zero ed n tenda all infinito con μ finito e diverso da zero, si dimostra che la binomiale può essere scritta come ( ) con r=1,2,. che costituisce la distribuzione scoperta da Siméon_Denis Poisson. Un tipico caso in cui si applica questa distribuzione è quella degli eventi rari. Si può dimostrare che E(r) = μ e che la varianza vale ancora μ.

5 La prossima figura illustra la distribuzione di Poisson per diversi valori di p: anche essa tende ad una distribuzione normale al crescere di μ.

6 Distribuzione uniforme Immaginiamo di avere una variabile continua x che abbia p.d.f. costante sull intero intervallo in cui essa sia definita. Allora ( ) = con a x b fornisce una p.d.f. costante. Si può vedere che ( ) ( ) ( ) ( ) ( ) dove F(x) è la funzione di distribuzione cumulativa. La prossima figura illustra f(x) e F(x).

7 Distribuzione normale ( o di Gauss ) Questa distribuzione deriva da una binomiale quando n tende all infinito. Fu trovata inizialmente da Abraham de Moivre e da Pierre-Simon de Laplace;

8 deve il suo nome anche a Gauss in quanto egli l ha applicata agli errori di misura. La p.d.f. normale ad una dimensione ha la forma generale : ( ) con - x ( ) Si può dimostrare che E(x) = μ e che V(x) = σ 2. Quindi i parametri μ e σ 2 che compaiono nella distribuzione hanno il solito significato di valore medio e varianza della distribuzione. La distribuzione normale è simmetrica intorno a μ e quindi la mediana coincide con μ. Inoltre ha la sua moda ( ossia il suo massimo) per x = μ.

9 Si può vedere inoltre che ad una distanza ± σ da μ si hanno due punti di flesso. La figura successiva illustra differenti distribuzioni normali aventi la stessa media.

10 La distribuzione normale N(μ, σ 2 ) può essere trasformata in una forma più conveniente mediante l introduzione della variabile ridotta z = (x-μ)/σ. Questo dà origine alla p.d.f. normale N(0,1) = 1/ 2π exp( -1/2 z 2 ) con z compreso fra - e +. Questa forma di p.d.f. è più semplice da tabellare perché dipende dalla sola variabile z. La distribuzione cumulativa G(z) gode della proprietà che G(-z) = 1 G(z). La successiva figura illustra N(0,1) e la sua funzione di distribuzione cumulativa.

11 La funzione di distribuzione cumulativa standard G(z) è usata per determinare il contenuto di probabilità di un dato

12 intervallo per un valore distribuito normalmente e viceversa per determinare un intervallo corrispondente ad una certa probabilità. Sia x una variabile casuale distribuita secondo N(μ, σ 2 ). Vogliamo determinare la probabilità che x cada entro un certo intervallo [a,b]. Ora P( a x b) = P( x b) P( x a), che è equivalente a scrivere che P( a x b) = G[(b-μ)/σ] - G[(a-μ)/σ]. Usando le opportune tavole si trova che : P( - ) = 2 G(1) -1 = 0,6827 P( - ) = 2 G(2) -1 = 0,9545

13 P( - ) = 2 G(3) -1 = 0,9973 La prossima figura mostra N(μ, σ 2 ) con le varie zone che corrispondono a scarti da μ pari a 1 σ, 2 σ e 3 σ.

14 È interessante sapere che la media aritmetica di un campione di dimensione n, estratto da una popolazione normale, si distribuisce normalmente con media μ e varianza σ 2 /n. È interessante sapere inoltre che (n-1) s 2 / σ 2 si distribuisce come un χ 2 con n-1 gradi di libertà, come vedremo in seguito. Concludiamo con l enunciare il teorema del Limite Centrale dovuto sempre a Laplace. Se x 1, x 2, x N sono un insieme di N variabili casuali indipendenti, ognuno

15 aventi media della popolazione μ i e varianza finita, allora la variabile ha, come distribuzione limite, una distribuzione normale, centrata su zero e varianza pari ad 1. In particolare la media aritmetica di n misure x i della stessa grandezza fisica x nelle stesse condizioni tende ad una distribuzione normale con media µ e varianza σ² per n anche se la distribuzione di x non è normale: la cosa importante è che la varianza sia finita. Il motivo per cui in laboratorio è consigliabile effettuare misure ripetute è proprio legato al Teorema del Limite Centrale.

16 La distribuzione del χ 2 Consideriamo una grandezza x, che si distribuisca secondo una distribuzione normale, centrata intorno a X con varianza σ². Introduciamo il concetto di variabile standard z definendola come z = (x-x)/σ. Si può dimostrare che z si distribuisce secondo una distribuzione normale, centrata sullo zero e con varianza pari ad 1. Consideriamo ora ν variabili standard z i. Possiamo definire allora la grandezza χ 2 come la somma dei quadrati di ν variabili standard:

17 Il parametro ν viene chiamato numero di gradi di libertà. Si può ricavare la funzione di distribuzione f ν (χ 2 ), tale che f ν (χ 2 ) d χ 2 dia la probabilità di trovare un valore del chi quadro compreso fra χ 2 e χ 2 +d χ 2 : dove C è un fattore di normalizzazione. Si può vedere che C= (2 ½ν Γ(½ν)) -1 dove Γ è la funzione Gamma di Eulero, che le seguenti proprietà : Γ(x+1) = x Γ(x) Γ(½) = π

18 Γ(1) = 1 A questo punto è possibile ricavare la probabilità P(χ 2 > χ 2 0 ), ossia la probabilità di trovare un valore di χ 2 maggiore di uno fissato χ 2 0. e quindi ottenere il valore atteso e la varianza del chi quadro :

19 In alcune situazioni è più opportuno usare il cosiddetto chi quadro ridotto, definito come rapporto fra il chi quadro e il numero di gradi di libertà. Si ha in tal caso La tabella A.16 del Severi mostra i valori del χ 2 ridotto ordinati per righe, individuate dai valori di ν e per colonne individuate dai valori di P(χ 2 / χ 2 0/ν ). La tabella D del Taylor illustra i valori di P(χ 2 / χ 2 0/ν ) in funzione di ν e di χ 2 0/ν.

20 Nella figura seguente sono riportati gli andamenti della funzione di distribuzione f ν (χ 2 )=f(u,ν) al variare di χ 2 per diversi valori di ν.

21 In particolare si nota che f 1 (χ 2 ), essendo proporzionale a exp(-χ 2 /2)/ χ 2, diverge per χ 2 tendente a zero. Inoltre si nota che f 2 (χ 2 ), essendo proporzionale a exp(- χ 2 /2 ), ha l'andamento di un esponenziale decrescente. Per ν maggiore di due, la funzione vale zero per χ 2 uguale a zero, manifesta un massimo per un valore del χ 2 pari a ν-2 e poi decresce con una coda, più o meno lunga, verso lo zero al divergere di χ 2. Come si vede, la funzione non è simmetrica, ma tende, al crescere di ν ad una distribuzione normale di pari valore atteso e varianza. Nella pratica questo limite si ritiene raggiunto per ν pari a circa 30.

22 È opportuno rimarcare infine che, quando viene usato ai fini di test di ipotesi, il χ 2 sperimentale χ 2 0 deve essere tale che P(χ 2 > χ 2 0 ) 0.05 ( ossia l'area sottesa dalla funzione di distribuzione fra χ 2 0 e deve essere maggiore od uguale al 5 per cento ), affinché l'ipotesi non sia rigettata. Talora questo taglio del 5 per cento viene portato al 10 per cento. Il motivo di questo taglio è dovuto al desiderio di ridurre la possibilità di accettare per buona un'ipotesi falsa a costo di perdere un'ipotesi buona ma avente bassa probabilità di verificarsi.

23 Ancora la binomiale e il Teorema di Bernoulli Talora ( come nel caso in cui si vuole valutare l efficienza di un rivelatore ) si è interessati alla quantità φ=r/n, il numero relativo di successi in n prove, ossia alla frequenza relativa dei successi. In tal caso ( ) = E(r) = p V( ) = ( )² V(r) = ( ) Usando la diseguaglianza di Bienaymé- Čebičev si può dimostrare che P[ ( -p ε ] ( ) che costituisce il Teorema di Bernoulli, secondo il quale la probabilità che la

24 frequenza relativa e p differiscano di una quantità maggiore od uguale a ε tende a zero al tendere di n a. Questo teorema è importante perché afferma che asintoticamente l approccio classico e l approccio frequentistico sono consistenti fra di loro. Una generalizzazione della binomiale : la multinomiale. Immaginiamo di avere n eventi indipendenti classificati in k categorie. Sia p i la probabilità di avere un successo nella i-ma categoria: la somma di tutte le p i vale chiaramente 1. La probabilità di avere r 1, r 2, r k successi nelle categorie 1,2,..k è data da

25 ( ) dove sta per l insieme di r 1, r k e per l insieme di p 1, p k. I valori di r i non sono indipendenti poiché la loro somma deve valere n. Si può dimostrare che, per ogni categoria, : E(r i ) = np i V(r i ) = np i (1-p i ) Cov(r i, r j ) = -np i p j Un esempio di multinomiale è l istogramma, in cui suddividiamo n eventi in k canali, contenenti ognuno n i eventi. Supponiamo adesso di sapere, a meno di eventuali parametri da determinare, la

26 probabilità p i di avere un evento nell i-mo canale. Quindi il valore atteso f i della frequenza degli eventi nell i-mo canale sarà np i e la condizione di normalizzazione = 1 implica che = = n. Se vogliamo verificare che il modello teorico, che fornisce le p i, sia corretto potremmo costruire una grandezza tipo χ², andando a considerare la somma degli scarti al quadrato di ogni n i da np i, diviso per la varianza np i (1-p i ) tenendo in conto la condizione di normalizzazione. ( ) ( )

27 Questo problema può essere affrontato in maniera più semplice. Infatti si può dimostrare che si tiene conto della normalizzazione se si scrive un χ² che ha al denominatore non la varianza di una binomiale ma la varianza di una poissoniana. Si tratta della famosa formula ( ) già usata per verificare la bontà del piano di riferimento usato con lo sferometro.

28 Principio di massima verosimiglianza per grandezze gaussiane : giustificazione della media aritmetica come migliore stima del valore atteso della popolazione ( vedi Taylor, 5.6 ) e media pesata ( vedi Taylor, 7.2) Osservazione : una volta ottenuto il valore della media pesata X, bisogna controllare l ipotesi di partenza, ossia quella che stiamo pesando n misure x i della stessa grandezza fisica ottenute in esperimenti differenti ( e quindi con diverse σ ).

29 Se l ipotesi è corretta allora la quantità ( ) ² si distribuisce come un χ² non n-1 gradi di libertà. Un valore troppo elevato del χ² segnala che almeno uno dei valori delle x i è incompatibile con tutti gli altri.

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

tabelle grafici misure di

tabelle grafici misure di Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine

Dettagli

f (a)δa = C e (a a*)2 h 2 Δa

f (a)δa = C e (a a*)2 h 2 Δa Distribuzione di Gauss Se la variabile non e` discreta ma puo` variare in modo continuo in un certo intervallo e ad ogni suo valore resta assegnata una probabilita` di verificarsi, dalla distribuzione

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

L istogramma dei nomi degli studenti presenti può essere descritto tranquillamente da un istogramma a barre. L istogramma dei voti riportati ad un

L istogramma dei nomi degli studenti presenti può essere descritto tranquillamente da un istogramma a barre. L istogramma dei voti riportati ad un Gli istogrammi L istogramma è una rappresentazione grafica di una distribuzione di frequenza di una certa grandezza, ossia di quante volte in un insieme di dati si ripete lo stesso valore. Esistono diversi

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

I modelli probabilistici

I modelli probabilistici e I modelli probabilistici Finora abbiamo visto che esistono modelli probabilistici che possiamo utilizzare per prevedere gli esiti di esperimenti aleatori. Naturalmente la previsione è di tipo probabilistico:

Dettagli

V.C. RETTANGOLARE o UNIFORME

V.C. RETTANGOLARE o UNIFORME V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità Lezioni di Statistica VARIABILITA Si definisce variabilità la proprietà di alcuni fenomeni di assumere

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

INFERENZA STATISTICA I (CANALE B)

INFERENZA STATISTICA I (CANALE B) INFERENZA STATISTICA I (CANALE B) FORMULE E TAVOLE a.a. 2005/06 Indice A. Formule 2 B. Quantili di una distribuzione normale standard 4 C. Quantili di una distribuzione t di Student 5 D. Quantili di una

Dettagli

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella

Dettagli

Fondamenti statistici : Test d Ipotesi (1)

Fondamenti statistici : Test d Ipotesi (1) Fondamenti statistici : Test d Ipotesi (1) Ipotesi statistica: È una assunzione formulata su un particolare aspetto della popolazione considerazioni teoriche Informazioni relative a popolazioni analoghe

Dettagli

La casualità nello spazio o nel tempo: la distribuzione di Poisson

La casualità nello spazio o nel tempo: la distribuzione di Poisson La casualità nello spazio o nel tempo: la distribuzione di Poisson Cosa potrebbero rappresentare questi punti? o Organismi o eventi presenti in una certa area Per esempio, ci interessa capire come avviene

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

Esercizio 1. La variabile casuale G, somma di due V.C. normali, si distribuisce anch essa come una normale.

Esercizio 1. La variabile casuale G, somma di due V.C. normali, si distribuisce anch essa come una normale. Esercizio 1. La V.C. Y segue una distribuzione normale con media 45 e varianza 9. La V.C. X segue una legge normale con media 12 e varianza 4. Calcolare come si distribuisce e quali sono i parametri della

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE DI GAUSS o DISTRIBUZIONE NORMALE 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809)

Dettagli

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek PRINCIPALI DISTRIBUZIONI DI PROBABILITA Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 000/001 dott. Corrado Caudek 1 DISTRIBUZIONE BINOMIALE Possiamo definire un processo bernoulliano come una

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

GLI EVENTI. Probabilità di un evento P(A)

GLI EVENTI. Probabilità di un evento P(A) GLI EVENTI Nel calcolo delle probabilità con la parola evento si intende ogni fatto che in seguito ad una prova può accadere oppure no. Qualche esempio: - l'apparizione di testa quando si lancia una moneta

Dettagli

Capitolo 5 Confidenza, significatività, test di Student e del χ 2

Capitolo 5 Confidenza, significatività, test di Student e del χ 2 Capitolo 5 Confidenza, significatività, test di Student e del χ 5.1 L inferenza Se conosciamo la legge di probabilità di un evento (a priori o a posteriori) possiamo fare delle previsioni su come l evento

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

La distribuzione normale o distribuzione di Gauss

La distribuzione normale o distribuzione di Gauss La distribuzione normale o distribuzione di Gauss Gauss ha dimostrato che secondo questa legge si possono ritenere distribuiti gli errori accidentali di misura di una qualsivoglia grandezza. Densità di

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

Sommario. 2 I grafici Il sistema di coordinate cartesiane Gli istogrammi I diagrammi a torta...51

Sommario. 2 I grafici Il sistema di coordinate cartesiane Gli istogrammi I diagrammi a torta...51 Sommario 1 I dati...15 1.1 Classificazione delle rilevazioni...17 1.1.1 Esperimenti ripetibili (controllabili)...17 1.1.2 Rilevazioni su fenomeni non ripetibili...18 1.1.3 Censimenti...19 1.1.4 Campioni...19

Dettagli

Test per l omogeneità delle varianze

Test per l omogeneità delle varianze Test per l omogeneità delle varianze Le carte di controllo hanno lo scopo di verificare se i campioni estratti provengono da un processo produttivo caratterizzato da un unico valore dello s.q.m. σ. Una

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

MEDIA aritmetica semplice (Gli indicatori di posizione)

MEDIA aritmetica semplice (Gli indicatori di posizione) STATISTICA E RICERCA DIDATTICA Note di statistica e metodi di ricerca Il 94.5 % delle statistiche e' sbagliato. Woody Allen Non esistono i dati, solo interpretazioni! Friedrich Nietzsche Laurea in Scienze

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Problema. Determinare come la media campionaria x e la deviazione standard campionaria s misurano la media µ e la deviazione standard σ della popolazione. È data una popolazione

Dettagli

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore medio, Errore quadratico medio (eqm), Deviazione standard,

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Variabili aleatorie. continue. Discreto continuo

Variabili aleatorie. continue. Discreto continuo Variabili aleatorie continue Discreto continuo.18 Uniforme discreta, n=11 n=21 n=11 n=6 n=51 n=51 Uniforme.16.14.12.1.8.6?.4.2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Per passare dal modello discreto al modello continuo

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

DISTRIBUZIONI DI CAMPIONAMENTO

DISTRIBUZIONI DI CAMPIONAMENTO DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,

Dettagli

Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T?

Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T? Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T? Il problema dell'inferenza: dato un campione, individuare la distribuzione di probabilità da cui ha avuto origine.

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di

Dettagli

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176 INDICE i Statistica ed analisi dei dati 1 1 Propagazione degli errori. Parte I 5 1.1 Terminologia 5 1.2 Propagazione dell incertezza massima (errore massimo) 7 1.2.1 Somma 8 1.2.2 Differenza 9 1.2.3 Prodotto

Dettagli