Il trasformatore 1/55

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il trasformatore 1/55"

Transcript

1 l trasformatore /55

2 Costituzione di un trasformatore monofase l trasformatore monofase è costituito da un nucleo di ferro, formato da un pacco lamellare di lamierini sagomati (colonne e gioghi) e isolati uno rispetto all altro, sulle colonne sono applicati due avvolgimenti: il primario (ingresso della potenza) e secondario (prelievo della potenza). /55

3 Andamento dei flussi magnetici 3/55

4 La tensione alternata applicata al primario genera in questo una corrente che crea nel nucleo un flusso Φ, che si concatena sia con il primario che con il secondario: N R Ö La f.m.m. (N) applicata al primario genera nel circuito magnetico (a bassa riluttanza R) il flusso Φ. 4/55

5 per la legge di Lenz: e d Φ d t quindi, ai morsetti del secondario si può prelevare la sommatoria delle tensioni indotte su ciascuna spira del secondario stesso. Un trasformatore è ideale quando non vi sono perdite nel rame e nel ferro: cioè quando non vi sono perdite per effetto Joule nel rame e per correnti parassite ed isteresi nel ferro. 5/55

6 Funzionamento a vuoto del trasformatore ideale monofase l trasformatore è detto a vuoto quando il secondario è aperto, cioè non è chiuso su alcun carico. l primario assorbe una corrente µ di magnetizzazione che serve per generare il flusso Φ, che è una grandezza alternata in fase con la corrente µ che lo ha generato. l flusso Φ, grandezza sinusoidale, concatenandosi con il primario induce in questo una f.e.m. totale e : e d Φ N d t 6/55

7 n una rappresentazione fasoriale: E j ω Ö N d Φ d t ωφ M cos Φ (t) Φ sin ( ωt) ( ωt) ωφ sin ωt + jωφ sin ( ωt) M M π M ove E rappresenta la f.e.m. indotta nel primario; essa risulta sfasata di 90 in ritardo rispetto al flusso Φ. 7/55

8 Equilibrio del primario: avendo ipotizzato l assenza di perdite nel rame, si ha: + E 0 E j ω Ö N 8/55

9 Equilibrio del secondario: nel funzionamento a vuoto il circuito secondario è aperto e, quindi, non vi scorre alcuna corrente: l flusso sinusoidale Φ generato dal primario si concatena con il secondario e vi induce una f.e.m. pari a: La tensione che si preleva all uscita del secondario è uguale alla forza E in esso indotta: E 0 E E j ω Ö N 9/55

10 Rapporto di trasformazione k. Nel trasformatore ideale risulta, in modulo: E ; E dividendo membro a membro: E E N N k 0/55

11 Funzionamento del trasformatore ideale sotto carico Si chiuda il secondario su un carico induttivo: R jx Z + Circolerà in esso una corrente dovuta alla forza elettromotrice E, che, in assenza di perdite nel rame, si applicherà tutta sull impedenza di carico Z. n questo caso: E ( R + jx ) ( R + jx ) con: ϕ arctg X R /55

12 La corrente che circola nell avvolgimento secondario genera una f.m.m. N. Quando dalla condizione di funzionamento a vuoto si passa a quella sotto carico, alla f.m.m. N µ, si somma la f.m.m. N prodotta dalla. Per effetto di N il flusso Φ tende a variare, ma questo non può avvenire a regime. nfatti se si verificasse una variazione del flusso dalla condizione a vuoto a quella sotto carico, varierebbe anche la forza elettromotrice E indotta sul primario E j Ö N mentre questa, per l equilibrio, dovrà essere sempre uguale alla tensione di alimentazione. ω /55

13 Affinché quando si chiude il circuito secondario su di un carico, il flusso possa rimanere costante, occorre che il circuito primario assorba dalla rete un ulteriore corrente (oltre quella di magnetizzazione µ ) tale che la f.m.m. N da essa generata equilibri la f.m.m. N prodotta dal secondario. N + ' ' N 0 N N n valore assoluto: N N ' k 3/55

14 Sotto carico, a regime, la f.m.m. risultante è uguale a quella che si ha a vuoto N µ che serve per generare il flusso Φ. La corrente assorbita dal primario è data dalla somma vettoriale della corrente di magnetizzazione µ e della corrente di reazione. ' µ + 4/55

15 5/55 Per l equilibrio del primario del primario risulterà ancora: Riassumendo nel trasformatore ideale si ha: E M M f f Φ Φ N 4,44 E N 4,44 E Da cui: ' N N E E

16 Trasformatore reale Durante il funzionamento del trasformatore si presentano delle perdite di potenza: sulla resistenza ohmica dei conduttori che costituiscono gli avvolgimenti primario e secondario, proporzionale al quadrato della corrente assorbita: P rame R. nel ferro dovute al fenomeno di isteresi magnetica. Si dimostra che esse sono date dalle seguenti espressioni: P ist 365 f B M,6 W/m 3 P ist 00 f B M,6 W/m 3 lamiere normali lamiere al silicio sono proporzionali alla frequenza e a circa il quadrato della induzione, cioè della tensione. 6/55

17 alle perdite nel ferro dovute alle correnti parassite indotte dalla variazione del flusso: P cp 4 f δ B M W/m 3 P cp 5 f δ B M W/m 3 lamiere normali lamiere al silicio ove δ è lo spessore dei lamierini in mm. Le perdite sono proporzionali al quadrato della frequenza e della induzione (quadrato della tensione). 7/55

18 Funzionamento a vuoto di un trasformatore reale. Nel funzionamento a vuoto il primario assorbe una piccola corrente 0 ed una piccola corrente attiva P o che viene dissipata tutta in calore, essendo nulla la potenza utilizzata ( 0). conduttori del primario hanno una bassa resistenza, per cui a vuoto ( 0 piccola) risulta trascurabile la potenza dissipata sul rame. La potenza assorbita P 0 e dissipata a vuoto coincide con le perdite nel ferro per isteresi e correnti parassite: P 0 P fe P ist + P cp 8/55

19 La potenza P 0 dissipata a vuoto non può che dipendere da una componente a della corrente totale 0, in fase con la tensione e dovuta in pratica alle perdite nel ferro. 0 a + µ 0 + La potenza a vuoto, coincidente con le perdite nel ferro: a µ tg ϕ 0 ì a P 0 Pfe 0 cos ϕ 0 Nella prova a vuoto del trasformatore vengono misurate la corrente 0 e la potenza P 0 assorbite da cui si può ricavare: P0 cos ϕ0 0 cos sin 0 a 0 ϕ ϕ 0 µ 0 9/55

20 0/55

21 Circuito equivalente del primario cos P 0 Pfe R f a R f a a Con E P ϕ ( ) 0 cos ϕ0 a La corrente che attraversa la reattanza magnetizzazione: X µ µ è quella di /55

22 Conclusioni sulla prova a vuoto Con la prova a vuoto del trasformatore si misura una potenza assorbita, che in pratica si può far coincidere con le perdite nel ferro P fe. Misurando la corrente assorbita 0 si possono determinare le sue due componenti µ e a e il circuito equivalente, composto dalla resistenza R f e dalla resistenza X µ in parallelo all alimentazione. /55

23 Trasformatore sotto carico Chiuso il circuito secondario su di un carico esterno: Z R + (normalmente è induttivo), la tensione, disponibile ai capi dell avvolgimento secondario, garantisce in uscita la corrente che attraversa Z. L impedenza Z assorbe potenza attiva e reattiva, le quali dovranno essere dal circuito primario, il quale a sua volta le preleva dalla linea di alimentazione. jx Ne deriva che alla corrente erogata dal secondario deve corrispondere una corrente che circola nel primario in modo che sia rispettato il bilancio delle potenze: 3/55

24 Reattanza di dispersione Sotto carico, sugli avvolgimenti primario e secondario circolano le correnti e. Queste producono la forza magnetomotrice: N + N che genera il flusso Φ che attraversa il circuito ferromagnetico a bassa riluttanza. 4/55

25 Oltre al flusso utile occorre considerare che ciascuna corrente attraversando il proprio avvolgimento genera un flusso che si disperde nell aria senza concatenarsi nel circuito elettromagnetico. flussi dispersi del primario e del secondario sono proporzionali alle rispettive correnti: Ö L ; Ö d d L Detti flussi dispersi determinano nei propri avvolgimenti delle forze elettromotrici di autoinduzione e quindi si comportano come se in serie agli avvolgimenti vi fossero delle reattanze: X L ; X ω ω L 5/55

26 l circuito equivalente del trasformatore risulta quello rappresentato in figura: 6/55

27 Diagramma vettoriale del trasformatore sotto carico La fase ϕ della corrente, erogata dal secondario, rispetto alla tensione dipende dalla impedenza di carico Z: tg ϕ L equilibrio vettoriale della maglia formata dal circuito secondario è: E + + R jx X R 7/55

28 a cui corrisponde il diagramma vettoriale: con: R + jx risulta anche: E ( R + R ) + j( X + X ) tg ψ X R + + X R 8/55

29 La rappresentazione vettoriale delle grandezze elettriche del primario è: Trascurando la E sull avvolgimento primario era: + E 0 E Considerando ora anche la Z R +jx : E R jx E R jx 9/55

30 La rappresentazione vettoriale delle grandezze elettriche del primario è: + + E R jx con: E N ' k ' E N N N 30/55

31 Circuito equivalente semplificato riportato al primario La corrente che attraversa le resistenze R ed R e le reattanze X ed X del secondario, determina l assorbimento di potenze attive sulle prime e di potenza reattiva sulle seconde. Si possono determinare le equivalenti resistenze e reattanze poste sul circuito primario, tali che, percorse dalla corrente di reazione, assorbono le stesse potenze di quelle assorbite dagli elementi resistivi e induttivi presenti sul secondario. 3/55

32 Essendo R la resistenza del rame che costituisce il circuito secondario (avvolgimento), la potenza dissipata è: P R Si può immaginare una resistenza equivalente R che posta sul primario e percorsa dalla corrente assorbe la stessa potenza attiva P di quella assorbita da R posta sul secondario e attraversata da : P R R ' ' da cui: R ' R R ' k 3/55

33 Essendo X la reattanza del circuito secondario (avvolgimento), la potenza reattiva interessata è: Q X Si può immaginare una resistenza equivalente X che posta sul primario e percorsa dalla corrente assorbe la stessa potenza reattiva Q di quella assorbita da X posta sul secondario e attraversata da : Q ' ' X X da cui: X ' X X ' k 33/55

34 Si possono quindi riportare la resistenza R e la reattanza X dal circuito secondario al primario moltiplicandola per k. Con analogo ragionamento si può riportare al primario anche l impedenza di carico Z del secondario. Z ' Z ' Z k Si ottiene: 34/55

35 Riassumendo: La corrente determina la potenza attiva e la potenza reattiva dissipate sul primario rispettivamente su R e X ; si divide nel nodo A in due parti: la componente 0 determina sul parallelo le perdite nel ferro e la generazione del flusso Φ; la componente (corrente di reazione), attraversando gli elementi equivalenti del secondario, determina la potenza attiva e reattiva dissipate sul secondario, rispettivamente su R e X. 35/55

36 La potenza attiva utilizzata sul carico risulta: P u con R quindi è ottenuta dalla ' Pu R k corrente di reazione ' che attraversa la k resistenza equivalente R k. Analoga cosa risulta per la potenza reattiva assorbita dal carico: Q u con X k ' Q u X k ' 36/55

37 l circuito equivalente ottenuto si può semplificare se si considera che il valore della corrente 0 è piccolo rispetto alla corrente di reazione, per cui nella somma vettoriale: + ' 0 si può far coincidere il modulo di con quello di : ' Sfruttando questa approssimazione si può traslare a monte dei parametri longitudinali l insieme dei parametri trasversali: 37/55

38 Si possono quindi sommare gli elementi della stessa natura posti in serie, ottenendo la resistenza R e e la reattanza X e equivalenti del primario: R e R + R k X e X + X k Tutti gli elementi del trasformatore si riducono ad un unica maglia rappresentata dal primario, alimentata dalla tensione di linea : 38/55

39 Le potenze dissipate nel rame sia sul primario che sul secondario sono date dalla potenza assorbita dalla resistenza equivalente R e : P cu R e Le potenze reattive dovute al flusso disperso nel primario e nel secondario sono date dalla potenza assorbita dalla reattanza equivalente X e : Q d X e 39/55

40 Circuito equivalente semplificato riportato al secondario La corrente che attraversa la resistenze R e la reattanza X del primario, determina l assorbimento di potenza attiva sulla prima e di potenza reattiva sulla seconda. Si possono determinare le equivalenti resistenze e reattanze poste sul circuito secondario, tali che, percorse dalla corrente di reazione, assorbono le stesse potenze di quelle assorbite dall elemento resistivo e induttivo presente sul primario. 40/55

41 Si dimostra facilmente che la resistenza equivalente R posta sul secondario che assorbe la stessa potenza attiva di quella assorbita dal circuito in rame sul primario primario è pari a: ' R R k Analogamente si può determinare la reattanza posta sul secondario X che assorbe la stessa potenza reattiva di quella assorbita da X, dovuta al flusso disperso sul primario: ' X X k 4/55

42 Non essendoci cadute di tensione per l assenza di parametri longitudinali, si ha: + E 0 E Poiché: E E k E E k k k 4/55

43 Sommando gli elementi in serie, si ottiene il circuito semplificato: R R e R + ; X e X + k X k 43/55

44 Prova in corto circuito Si alimenti il trasformatore da un lato e si ponga l altro in corto circuito: il carico sul lato in corto circuito è rappresentato solamente dalla resistenza del rame dell avvolgimento e dalla reattanza di dispersione. Sul lato alimentato in corto circuito si aumenta gradatamente la tensione fino a raggiungere il valore cc, che faccia circolare la corrente nominale n. La tensione cc che in corto circuito fa circolare la corrente nominale n, è una piccola percentuale della tensione nominale n del trasformatore a pieno carico. 44/55

45 l trasformatore viene progettato per fornire una potenza nominale apparente S n, pari al prodotto della tensione nominale n per la corrente nominale n : S n n n da cui: n S n n Durante la prova in corto circuito, l unica potenza attiva assorbita dal trasformatore, corrisponde alla potenza totale dissipata nel rame costituente gli avvolgimenti primario e secondario. nfatti è nulla potenza assorbita dal carico (cortocircuito) ed è trascurabile la potenza dissipata nel ferro: la a è molto piccola essendo molto piccola la tensione di alimentazione cc. 45/55

46 Riferendosi al circuito equivalente semplificato (ridotto al primario per es.), si ha: P R R cc e n e P cc n Riferendosi al circuito equivalente semplificato (ridotto al primario per es.), si ha: 46/55

47 misurando la tensione cc che ha fornito la corrente nominale n, si ricava l impedenza equivalente Z e : Z e cc n Dalla impedenza equivalente si ricava la reattanza equivalente X e : X Z R e e e 47/55

48 Rendimento del trasformatore Nel processo di trasformazione della tensione dal primario al secondario il trasformatore disperde una parte dell energia sia nelle resistenze degli avvolgimenti che nel ferro. La potenza di ingresso P i, prelevata dal primario, non viene trasmessa tutta all uscita del secondario ma in questa si preleva una potenza utile P u inferiore alla P i. 48/55

49 Si definisce rendimento e del trasformatore il rapporto tra la potenza utile P u disponibile all uscita del secondario e la potenza di ingresso P i prelevata in ingresso dal primario: η P P u i Per il bilancio energetico si ha: P i Pu + Pcu + P fe Da cui: η P u + P P u cu + P fe 49/55

50 Trasformatori trifasi Strutturalmente il trasformatore è costituito da tre colonne, costituenti i nuclei degli avvolgimenti, collegate da due gioghi. 50/55

51 Collegamenti Le tre fasi del primario o del secondario possono essere collegate indipendentemente a stella o a triangolo. Si hanno quindi diversi casi di collegamento, che determinano un rapporto di trasformazione diverso rispetto a quello del numero di spire. l rapporto di trasformazione dei gruppi trifasi viene considerato come rapporto fra la tensione concatenata primaria U e la tensione concatenatau. 5/55

52 Collegamento stella stella (Y/y): l rapporto di trasformazione coincide con il rapporto del numero delle spire. K 3 ' ' t ' ' 3 k 5/55

53 Collegamento stella triangolo (Y/d): La tensione concatenata del primario è uguale a quella di fase per 3 ; mentre nel secondario la tensione concatenata coincide con quella di fase. K t 3 ' ' 3 k 53/55

54 Collegamento triangolo stella (D/y): La tensione concatenata del primario coincide con quella di fase; mentre nel secondario la tensione concatenata è pari a quella di fase per 3. K ' t ' 3 k 3 54/55

55 Collegamento triangolo triangolo (D/d): Le tensioni di fase del primario sono uguali a quelle concatenate e si trasformano in tensioni di fase del secondario anch esse pari a quelle concatenate. K ' t ' K 55/55

Il trasformatore Principio di funzionamento

Il trasformatore Principio di funzionamento Il trasformatore Principio di funzionamento Il trasformatore è una macchina elettrica statica reversibile, che funziona sul principio della mutua induzione. È formato da un nucleo in lamierino ferromagnetico

Dettagli

Appendice Il trasformatore monofase

Appendice Il trasformatore monofase Appendice l trasformatore monofase - Appendice l trasformatore monofase - Principio di funzionamento Schema generale l trasformatore è un dispositivo costituito da un nucleo in materiale ferromagnetico

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Diagrammi di Blondel e delle due reattanze. 2) Motore asincrono trifase: regolazione della velocità. 3) Motore a corrente

Dettagli

Trasformatore reale monofase

Trasformatore reale monofase Macchine elettriche parte Trasformatore reale monofase ei paragrafi precedenti si è ricavato il circuito equivalente del trasformatore ideale, si è anche visto che la corrente di primario (corrente di

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008 UNVERSTÀ D ROMA LA SAPENZA FACOLTÀ D NGEGNERA CORSO D LAUREA N NGEGNERA ENERGETCA DSCPLNA D MAHNE E CONVERTTOR D ENERGA ELETTRCA PROVA SCRTTA D ESAME DEL 9 GUGNO 8 Quesito 1 parametri del circuito equivalente

Dettagli

I.P.S.I.A. DI BOCCHIGLIERO Il trasformatore monofase ---- Materia: Tecnica professionale. prof. Ing. Zumpano Luigi

I.P.S.I.A. DI BOCCHIGLIERO Il trasformatore monofase ---- Materia: Tecnica professionale. prof. Ing. Zumpano Luigi I.P.S.I.A. DI BOCCHIGLIERO a.s. 2010/2011 -classe II- Materia: Tecnica professionale ---- Il trasformatore monofase ---- alunni Santoro Ida Flotta Saverio Pugliesi Bruno Filippelli Vincenzo prof. Ing.

Dettagli

Principi di ingegneria elettrica. Principi di elettromeccanica. Lezione 18 a. Trasformatore

Principi di ingegneria elettrica. Principi di elettromeccanica. Lezione 18 a. Trasformatore Principi di ingegneria elettrica Lezione 8 a Principi di elettromeccanica Trasformatore Il trasformatore Trasformatore ideale Trasformatore ideale Un trasformatore può considerarsi ideale quando sussistano

Dettagli

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare

Dettagli

Schemi del trasformatore - Riporti al secondario e al primario -

Schemi del trasformatore - Riporti al secondario e al primario - Schemi del trasformatore - Riporti al secondario e al primario - fig.7) Lo schema completo di fig.7) può semplificarsi, ai fini dello studio della macchina, con lo schema di fig. 9), spostando il ramo

Dettagli

Classe 3ael prof. Pollini Stefano

Classe 3ael prof. Pollini Stefano Classe 3ael prof. Pollini Stefano A vuoto V1 Fase 1 Il trasformatore è scollegato dal generatore V1 Im Fase 2 Viene chiuso l interruttore e comincia a circolare corrente Im (corrente magnetizzante). Essendo

Dettagli

PROVA STRUTTURATA. ELETTROTECNICA ELETTRONICA ed APPLICAZIONI. cl. 4^ T.I.EL. / a.s. TRASFORMATORE MONOFASE. 1^ fila

PROVA STRUTTURATA. ELETTROTECNICA ELETTRONICA ed APPLICAZIONI. cl. 4^ T.I.EL. / a.s. TRASFORMATORE MONOFASE. 1^ fila PROVA STRUTTURATA DI ELETTROTECNICA ELETTRONICA ed APPLICAZIONI cl. 4^ T.I.EL. / a.s. TRASFORMATORE MONOFASE 1^ fila NOTA: a) durata della prova: b) durante la prova NON è consentito parlare con il compagno

Dettagli

Trasformatore monofase Da un punto di vista di trasformazioni di energia, si tratta di una macchina elettrica in grado di trasformare energia elettrica in altra energia elettrica. Il suo funzionamento

Dettagli

Prova a vuoto e in corto circuito di un trasformatore trifase

Prova a vuoto e in corto circuito di un trasformatore trifase Prova a vuoto e in corto circuito di un trasformatore trifase Oggetto della prova Prova a vuoto e in corto circuito di un trasformatore trifase per la determinazione dei parametri del circuito equivalente

Dettagli

PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE. Galletti Riccardo Matr Docente del corso: prof.ssa Angela Russo

PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE. Galletti Riccardo Matr Docente del corso: prof.ssa Angela Russo Corso di sist. elettrici per telecomunicazioni - 1 prova di laboratorio PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE Docente del corso: prof.ssa Angela Russo Galletti Riccardo Matr. 165 Prove a vuoto

Dettagli

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica: SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque

Dettagli

1. Circuito equivalente di un trasformatore trifase

1. Circuito equivalente di un trasformatore trifase . Circuito equivalente di un trasformatore trifase Poiché la rete magnetica rappresentativa del nucleo dei trasformatori trifase a due avvolgimenti (per colonna) può essere rappresentata come indipendente

Dettagli

Trasformatore monofase

Trasformatore monofase Prova in corto circuito La prova in corto circuito permette di determinare il valore degli elementi circuitali connessi in serie al trasformatore ideale e cioè le reattanze di dispersione X 1d, X d e le

Dettagli

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO Conversione Elettromeanica A.A. 22/23 Esercizio 1. CALCOLO DEI AAMETI DEL CICUITO EQUIVALENTE DI UN TASFOMATOE MONOFASE E DEL SUO ENDIMENTO MASSIMO Si consideri un trasformatore monofase di cui sono noti

Dettagli

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona.

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona. ESERCITAZIONI DI AZIONAMENTI ELETTRICI Circuiti equivalenti della macchina asincrona. 1. Le prove a vuoto e a rotore bloccato di una macchina asincrona, eseguite in laboratorio, hanno dato i seguenti risultati:

Dettagli

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza MACCHINE ELETTRICHE TRASFORMATORE Inserzione in parallelo di due trasformatori Esercizio sul parallelo di due trasformatori Due o più trasformatori si dicono collegati in parallelo quando hanno i rispettivi

Dettagli

Principio di funzionamento del trasformatore ideale

Principio di funzionamento del trasformatore ideale IL TRASFORMATORE Gli impianti di generazione, trasporto e distribuzione dell'energia sono ampiamente dipendenti dall utilizzo dei trasformatoriin quanto:: i generatori installati nelle centrali generano

Dettagli

MACCHINE ELETTRICHE TRASFORMATORE MONOFASE

MACCHINE ELETTRICHE TRASFORMATORE MONOFASE MACCHINE ELETTRICHE TRASFORMATORE MONOFASE TRASFORMATORE Il trasformatore è una macchina elettrica statica reversibile, basata sul principio dell induzione elettromagnetica. È formato da un nucleo ferromagnetico,

Dettagli

Elettrotecnica Corso di Laurea in Ingegneria Gestionale, Ingegneria Civile Università degli Studi dell Aquila. Il trasformatore

Elettrotecnica Corso di Laurea in Ingegneria Gestionale, Ingegneria Civile Università degli Studi dell Aquila. Il trasformatore Elettrotecnica Corso di Laurea in Ingegneria Gestionale, Ingegneria Civile Università degli Studi dell Aquila Il trasformatore 9 maggio 2011, Università degli Studi dell Aquila Slide 1 di 61 Il trasformatore

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Trasformatore monofase E =

Trasformatore monofase E = Circuito equivalente esatto del trasformatore monofase E V t = = = E V t = Rapporto di trasformazione V V = R I = R I + jx d jx I d + I E I + + E = I + I0 = I + Im Ip E E = jωλ = jω Φ = = R 0 E = I p E

Dettagli

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo MOTORE ASINCRONO STATORE: pacco magnetico 1 laminato secondo piani ortogonali all asse Rotore ROTORE - avvolto - a gabbia di scoiattolo Statore Avvolgimento rotorico (avvolgimento trifase con uguale numero

Dettagli

PROVE SU UN ALTERNATORE TRIFASE

PROVE SU UN ALTERNATORE TRIFASE LABORATORIO DI MACCHINE ELETTRICHE PROVE SU UN ALTERNATORE TRIFASE INSERZIONE IN RETE PROVA A FATTORE DI POTENZA NULLO (IN SOVRAECCITAZIONE) PROVA A FATTORE DI POTENZA NULLO Scopo della prova Lo scopo

Dettagli

Trasformatore. Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 29-11-2010) Autotrasformatore (1)

Trasformatore. Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 29-11-2010) Autotrasformatore (1) Trasformatore Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 9--00) Autotrasformatore () L autotrasformatore è un trasformatore dotato di un solo avvolgimento

Dettagli

Macchine elettriche. Statiche. Rotanti. Trasformatori Convertitori Generatori. Motori. Raddrizzatori (AC DC) Invertitori (DC AC) D.C. A.C. D.C. A.C.

Macchine elettriche. Statiche. Rotanti. Trasformatori Convertitori Generatori. Motori. Raddrizzatori (AC DC) Invertitori (DC AC) D.C. A.C. D.C. A.C. Macchine elettriche Statiche Rotanti Trasformatori Convertitori Generatori Motori Raddrizzatori (AC DC) Invertitori (DC AC) A.C. D.C. A.C. D.C. 1 Trasformatore monofase Circuito magnetico Circuito elettrico

Dettagli

Se la tensione è sinusoidale, allora sarà sinusoidale anche il flusso, come mostra

Se la tensione è sinusoidale, allora sarà sinusoidale anche il flusso, come mostra MACCHINE ELETTRICHE TRASFORMATORE Deformazione e dissimmetria delle correnti a vuoto Rotazione di centro stella Effetti dello squilibrio del carico Collegamento stella zig zag Gruppo o indice orario Deformazione

Dettagli

Trasformatore trifase

Trasformatore trifase 3 Trasformatore trifase Il trasformatore trifase viene realizzato in generale disponendo su di un nucleo apposito tre coppie di bobine, destinate a realizzare gli avvolgimenti e secondario di ciascuna

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace

Dettagli

Esercitazione di Macchine Elettriche

Esercitazione di Macchine Elettriche di Macchine Elettriche Dimensionamento preliminare di un trasformatore monofase prof. Alfonso Damiano Universit degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica 13 Marzo 2017

Dettagli

MACCHINE ELETTRICHE - TEORIA 2 febbraio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _

MACCHINE ELETTRICHE - TEORIA 2 febbraio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _ MACCHINE ELETTRICHE - TEORIA 2 febbraio 2009 1) Materiali ferromagnetici, isolanti e conduttori usati nelle macchine elettriche: caratteristiche e perdite. Rendimento delle macchine elettriche. 2) Diagrammi

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

PROVE STRUTTURATE ASSEGNATE ALLE GARE NAZIONALI PER OPERATORI ELETTRICI

PROVE STRUTTURATE ASSEGNATE ALLE GARE NAZIONALI PER OPERATORI ELETTRICI PROVE STRUTTURATE ASSEGNATE ALLE GARE NAZIONALI PER OPERATORI ELETTRICI IPSIA GIOVANNI GIORGI - VERONA - anno scolastico 1998/99 Prova di Tecnica Professionale (prima parte): Criterio di valutazione: Esercizio

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica orso di Elettrotecnica - od. 9200 N Diploma Universitario eledidattico in Ingegneria Informatica ed Automatica Polo ecnologico di Alessandria A cura di uca FERRARIS Scheda N 4

Dettagli

EFFETTO MAGNETICO DELLA CORRENTE

EFFETTO MAGNETICO DELLA CORRENTE IL CAMPO MAGNETICO E GLI EFFETTI MAGNETICI DELLA CORRENTE 1 EFFETTO MAGNETICO DELLA CORRENTE Ogni conduttore percorso da corrente crea intorno a sé un campo magnetico (H), cioè una perturbazione di tipo

Dettagli

Esercizio 1: Determinare la misura del wattmetro W nella rete trifase simmetrica e equilibrata di Fig.1. I 2 I 1 P 1 Q 1. Fig.

Esercizio 1: Determinare la misura del wattmetro W nella rete trifase simmetrica e equilibrata di Fig.1. I 2 I 1 P 1 Q 1. Fig. Esercizio : Determinare la misura del wattmetro nella rete trifase simmetrica e equilibrata di Fig.. ( rit) ; 0Ω; 500 ; Q 000 ; 45 ; A 5; 0.7 ar E A Q Fig. l wattmetro legge la grandezza e con Nota la

Dettagli

POTENZA CON CARICO EQUILIBRATO COLLEGATO A STELLA CON E SENZA NEUTRO

POTENZA CON CARICO EQUILIBRATO COLLEGATO A STELLA CON E SENZA NEUTRO POTENZA CON CARICO EQUILIBRATO COLLEGATO A STELLA CON E SENZA NEUTRO Nel caso di alimentazione a quattro fili si assume come riferimento proprio il neutro cioè il centro stella del generatore. 1 I 1 I

Dettagli

ESERCITAZIONE DI MACCHINE ELETTRICHE I

ESERCITAZIONE DI MACCHINE ELETTRICHE I ESERCITAZIONE DI MACCHINE ELETTRICHE I PROF. ING. ALFONSO DAMIANO Sommario. Nella presente esercitazione, svolta durante il corso di Macchine Elettriche I dell A.A. 2007/2008, viene eseguito il dimensionamento

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

PERDITE NEI NUCLEI MAGNETICI

PERDITE NEI NUCLEI MAGNETICI PERDITE NEI NUCLEI MAGNETICI Nei nuclei magnetici delle macchine elettriche si hanno perdite di potenza attiva dovute a: 1) Isteresi magnetica 2) Correnti parassite PERDITE NEL FERRO Entrambi i fenomeni

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico Esercitazione Misure su circuiti magnetici - 1 Esercitazione Misure su circuiti magnetici 1 - Oggetto Caratterizzazione di materiali magnetici. Strumento virtuale per il rilievo del ciclo di isteresi dinamico.

Dettagli

Trasformatore monofase

Trasformatore monofase La caduta di tensione industriale è positiva per carichi induttivi, puramente resistivi e debolmente capacitivi, è invece negativa (innalzamento di tensione nel passaggio da vuoto a carico) per carichi

Dettagli

LEGGE DI OHM. Inizieremo a trattare il caso in cui il circuito elettrico risulta schematizzabile con soli parametri in serie :

LEGGE DI OHM. Inizieremo a trattare il caso in cui il circuito elettrico risulta schematizzabile con soli parametri in serie : EGGE D OHM nizieremo a trattare il caso in cui il circuito elettrico risulta schematizzabile con soli parametri in serie : Supponiamo nota la corrente e quindi incognita la tensione da applicare al circuito.

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTROICA IDUSTRIALE Trasformatori ad alta frequenza Trasformatori ad alta frequenza Motivazioni per l uso di trasformatori ad AF Richiami sul trasformatore ideale Relazioni tra le tensioni Relazioni

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Cause e conseguenze di un basso fattore di potenza

Cause e conseguenze di un basso fattore di potenza Cause e conseguenze di un basso fattore di potenza 1.1 Il fattore di potenza Nei circuiti a corrente alternata la corrente assorbita dalla maggior parte degli utilizzatori si può considerare come costituita

Dettagli

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE MACCHNE ELETTRCHE TRASFORMATORE TRFASE Trasformatore Trifase Un trasformatore trifase può essere realizzato tramite tre trasformatori monofase gemelli, collegando opportunamente gli avvolgimenti primari

Dettagli

MACCHINE ELETTRICHE MACCHINA SINCRONA

MACCHINE ELETTRICHE MACCHINA SINCRONA MACCHINE ELETTRICHE MACCHINA SINCRONA AUTOECCITAZIONE DELL ALTERNATORE TRIFASE Si consideri un generatore sincrono che alimenta una linea trifase. Tra ciascun conduttore di linea e la terra, così come

Dettagli

MACCHINE SINCRONE TRIFASE

MACCHINE SINCRONE TRIFASE MACCHINE SINCRONE TRIFASE Lo statore è costituito come quello della macchina asincrona trifase: è di materiale ferromagnetico laminato e nelle cave ricavate alla periferia del traferro è alloggiato un

Dettagli

MACCHINE ELETTRICHE MACCHINA SINCRONA

MACCHINE ELETTRICHE MACCHINA SINCRONA MACCHINE ELETTRICHE MACCHINA SINCRONA ediamo quali siano le condizioni da rispettare all atto dell inserzione in rete dell alternatore e ciò che potrebbe accadere qualora tali condizioni non venissero

Dettagli

PROVE SU UNA MACCHINA ASINCRONA TRIFASE

PROVE SU UNA MACCHINA ASINCRONA TRIFASE LABORATORIO DI MACCHINE ELETTRICHE PROVE SU UNA MACCHINA ASINCRONA TRIFASE MISURA DI RESISTENZA PROVA A VUOTO MECCANICO PROVE SULLA MACCHINA ASINCRONA Contenuti Le prove di laboratorio che verranno prese

Dettagli

Capitolo Sistemi polifasi - sistemi polifasi simmetrici

Capitolo Sistemi polifasi - sistemi polifasi simmetrici Capitolo 2 2.1 Sistemi polifasi - sistemi polifasi simmetrici Si definisce sistema polifase simmetrico ad m fasi, un sistema del tipo: a 1 t A M sin t a 2 t A M sin t 1 m 2... am t A M sin t m 1 m 2 2.

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Indice del Volume I. Introduzione Generalità sugli impianti elettrici

Indice del Volume I. Introduzione Generalità sugli impianti elettrici Indice del Volume I Introduzione Generalità sugli impianti elettrici I.1 Produzione, trasporto, distribuzione, utilizzazione dell energia elettrica... 1 I.1.1 Impianti di produzione..... 2 I.1.2 Impianti

Dettagli

Macchina asincrona. Primo motore elettrico (1885) Galileo Ferraris ( )

Macchina asincrona. Primo motore elettrico (1885) Galileo Ferraris ( ) Macchina asincrona Primo motore elettrico (1885) Galileo Ferraris (1847-1897) Ho visto a Francoforte che tutti attribuiscono a me la prima idea, il che mi basta. Gli altri facciano pure i denari, a me

Dettagli

Parallelo dei Trasformatori

Parallelo dei Trasformatori Parallelo dei Trasformatori Introduzione Il funzionamento in parallelo di due trasformatori, di uguale o differente potenza nominale, si verifica quando sono in parallelo sia i circuiti primari sia quelli

Dettagli

Esempio numerico: R XL XCTR V IT ,

Esempio numerico: R XL XCTR V IT , Esercizio 1 Nella rete trifase simmetrica ed equilibrata di fig. 1 è nota l'indicazione V del voltmetro V. Conoscendo i valori della resistenza R e delle reattanze XL e XCTR, calcolare l'indicazione dell

Dettagli

CIRCUITI MAGNETICI nucleo in materiale ferromagnetico traferri traferro riluttanza corrente flusso magnetico

CIRCUITI MAGNETICI nucleo in materiale ferromagnetico traferri traferro riluttanza corrente flusso magnetico CICUITI MAGNETICI I circuiti magnetici sono costituiti prevalentemente da un nucleo in materiale ferromagnetico e possono eventualmente presentare delle parti in aria denominate traferri. Nella presente

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Capitolo M2 - TRASFORMATORE.

Capitolo M2 - TRASFORMATORE. M2-1. Introduzione. Capitolo M2 - TRASFORMATORE. Il trasformatore è una macchina elettrica statica che consente di trasferire per mutua induzione energia elettrica in corrente alternata da una rete ad

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

PROGRAMMA PREVENTIVO

PROGRAMMA PREVENTIVO ISTITUTO PROFESSIONALE INDUSTRIA, ARTIGIANATO " L.B. ALBERTI " Via Tambroni, n. 24 47923 RIMINI Tel 0541/393827 Fax 0541/394367 E-mail segreteria@albertirimini.it PROGRAMMA PREVENTIVO TECNOLOGIE ELETTRICHE,

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Trasformatore. Parte 3 Caratteristiche costruttive (versione del 25-11-2012)

Trasformatore. Parte 3 Caratteristiche costruttive  (versione del 25-11-2012) Trasformatore Parte 3 Caratteristiche costruttive www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 25-11-2012) Trasformatore monofase a colonne Giogo Colonne Giogo L avvolgimento di alta tensione

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto). Il motore in c.c. è stato il motore elettrico maggiormente impiegato negli azionamenti a velocità variabile; ciò è dovuto sia alla maggiore semplicità costruttiva dei convertitori con uscita in corrente

Dettagli

2.1. Un trasformatore ideale soddisfa quattro ipotesi fondamentali che di seguito riportiamo:

2.1. Un trasformatore ideale soddisfa quattro ipotesi fondamentali che di seguito riportiamo: IL TRASFORMATORE... Modello ideale... Equazioni fondamentali del Trasformatore Ideale... Equazione sulle tensioni... Equazione sulle correnti... 3 Funzionamento a vuoto... 3 Funzionamento in corto circuito...

Dettagli

CAP. VIII CRITERI DI PROGETTAZIONE E VERIFICA DI COMPONENTI REALI

CAP. VIII CRITERI DI PROGETTAZIONE E VERIFICA DI COMPONENTI REALI CAP. III CRITERI DI PROGETTAZIONE E ERIFICA DI COMPONENTI REALI III. Circuiti equivalenti di resistori, condensatori ed induttori reali (vedi nota a parte) III. Progetto di resistori a) progetto di una

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime AC, frequenza 50 Hz, valore efficace

Dettagli

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella)

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 5 Giugno 2013 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B, C, D da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

MACCHINE ELETTRICHE TRASFORMATORE TRANSITORI TERMICI TRANSITORIO DI CORTO CIRCUITO TRANSITORIO DI INSERZIONE IN RETE TRASFORMATORI DI MISURA

MACCHINE ELETTRICHE TRASFORMATORE TRANSITORI TERMICI TRANSITORIO DI CORTO CIRCUITO TRANSITORIO DI INSERZIONE IN RETE TRASFORMATORI DI MISURA MACCHINE ELETTRICHE TRASFORMATORE TRANSITORI TERMICI TRANSITORIO DI CORTO CIRCUITO TRANSITORIO DI INSERZIONE IN RETE TRASFORMATORI DI MISURA COMPORTAMENTO TERMICO DEL TRASFORMATORE Il passaggio di calore

Dettagli

MANUALE di. Accesso rapido a calcoli, dimensionamenti, perdite e rendimenti di macchine elettriche in corrente alternata. A cura di Marco Dal Prà

MANUALE di. Accesso rapido a calcoli, dimensionamenti, perdite e rendimenti di macchine elettriche in corrente alternata. A cura di Marco Dal Prà APPUNTI DI ELETTROTECNICA MANUALE di Macchine Elettriche Accesso rapido a calcoli, dimensionamenti, perdite e rendimenti di macchine elettriche in corrente alternata A cura di Marco Dal Prà Versione n.

Dettagli

ELETTRIK FLASH Prof S. Seccia

ELETTRIK FLASH Prof S. Seccia ELETTRIK FLASH Prof S. Seccia ELETTROTECNICA IMPIANTI ELETTRICI CONTINUA ALTERNATA SISTEMI TRIFASE LABORATORIO LINEE ELETTRICHE BIPOLI IN SERIE DATA LA TENSIONE Pag 2 BIPOLI IN SERIE DATA LA CORRENTE Pag

Dettagli

Soluzione commentata. L'installazione proposta dal tema d'esame può essere rappresentata dallo schema seguente: 1 a Parte

Soluzione commentata. L'installazione proposta dal tema d'esame può essere rappresentata dallo schema seguente: 1 a Parte Esame di Stato anno 008 - Istituto Tecnico Industriale Elettrotecnica e Automazione - prova: Elettrotecnica Soluzione commentata L'installazione proposta dal tema d'esame può essere rappresentata dallo

Dettagli

PARALLELO DI DUE TRASFORMATORI

PARALLELO DI DUE TRASFORMATORI l trasformatore PARALLELO D DUE TRASFORMATOR l funzionamento in parallelo di due trasformatori, di uguale o differente potenza nominale, si verifica quando sono in parallelo sia i circuiti primari sia

Dettagli

LEZIONE DI ELETTRONICA

LEZIONE DI ELETTRONICA LEZIONE DI ELETTRONICA Analisi dei circuiti lineari in regime sinusoidale 2 MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale,

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

Sistemi di trasmissione e distribuzione in AT, MT e BT. Impianti elettrici utilizzatori con sistema TT.

Sistemi di trasmissione e distribuzione in AT, MT e BT. Impianti elettrici utilizzatori con sistema TT. A Dispacciamento economico con esercizio: tre gruppi con potenze minime (MW) =[150, 300, 400], potenze massime (MW) = [300, 600, 800], offerte ( /MWh) = [80, 40, 30], potenza domandata = 1200 MW. Calcolare

Dettagli

Progetto di piccoli trasformatori monofasi

Progetto di piccoli trasformatori monofasi Progetto di piccoli trasformatori monofasi Si riporta un criterio di progetto valido per trasformatori monofasi fino a potenze dell'ordine di kva. Nell'esempio che segue si usano, per il nucleo, lamierini

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE E. FERMI GARA NAZIONALE DI ELETTROTECNICA PRIMA PROVA

ISTITUTO TECNICO INDUSTRIALE STATALE E. FERMI GARA NAZIONALE DI ELETTROTECNICA PRIMA PROVA ISTITTO TECNICO INDSTRILE STTLE E. FERMI GR NZIONLE DI ELETTROTECNIC PRIM PROV BSSNO DEL GRPP, 8 9 MGGIO 2014 Prima Prova 8 maggio 2014 TEM DELL PRIM PROV Descrizione generale rete BT LEGEND M S : quadro

Dettagli

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica.

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica. TN DUCA DEGL ABRUZZ di Catania Compito di elettrotecnica ed elettronica. Cognome.. Nome... Classe. Data / / Quesiti Dalla 1 alla 15 16 17 18 19 0 tot Punteggio totale previsto 45 3 10 4 6 70 Esatte. x3

Dettagli

MACCHINE ELETTRICHE DETERMINAZIONE DELLE GRANDEZZE E DELLE CURVE CARATTERISTICHE DI UN TRASFORMATORE TRIFASE

MACCHINE ELETTRICHE DETERMINAZIONE DELLE GRANDEZZE E DELLE CURVE CARATTERISTICHE DI UN TRASFORMATORE TRIFASE MACCHINE ELETTRICHE DETERMINAZIONE DELLE GRANDEZZE E DELLE CURE CARATTERISTICHE DI UN TRASFORMATORE TRIFASE MISURA DELLA RESISTENZA DEGLI AOLGIMENTI La misura deve essere effettuata in corrente continua

Dettagli

POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT

POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT In una rete complessa possono essere presenti contemporaneamente più resistori, induttori e condensatori. Il calcolo delle

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli