Argomento 1 Soluzioni degli esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Argomento 1 Soluzioni degli esercizi"

Transcript

1 Argomento Soluzioni degli esercizi SUGGERIMENTI ESERCIZIO.8 L esercizio si risolve più facilmente tracciando il grafico della funzione, che coincide nell intervallo (, ] con un arco di parabola, nell intervallo (, ] conunsegmentodi retta, nell intervallo (, + ) con un arco di iperbole equilatera. ESERCIZIO. I denominatori devono essere 6= ; le espressioni sotto radice quadrata devono essere ; se nella funzione ci sono due frazioni, entrambe devono essere definite e quindi i due denominatori devono essere contemporaneamente 6=. ESERCIZIO. Tracciare i grafici. Per provare che f (x) nonè iniettiva si può anche cercare un numero reale k tale che l equazione f (x) =k abbia più di una soluzione. Ad esempio si ha x + x =perx =eperx = : quindi... SOLUZIONI Sol. Ex = = = = = 5 5. Sol. Ex.. Posto a = + 6 e b = + 7,risultaa<b poiché a<b + 6 < < < < 7.

2 Sol. Ex.. Confrontando via via le cifre delle rappresentazioni decimali, a partire da quelle più a sinistra.7 <.6 <.6 < π =.59...< <.95 <.95 <.998 <. <. < =.... Sol. Ex.. A = {x R tali che <x 5} =(, 5] B = {x R tali che x< oppure <x<} =[, ) (, ) C = ½x R tali che 7 ¾ x< oppure x> = 7, (, + ) D = ½ x R tali che x oppure x< 8 ¾ =(, ], 8. Sol. Ex..5 A =(, 5] è superiormente e inferiormente limitato (e quindi limitato); inf A =, sup A = max A =5;inveceA non ha minimo, poiché infa = nonstaina. B =[, ) (, ) è superiormente e inferiormente limitato (e quindi limitato); inf B = min B =, sup B = ; invece B non ha massimo, poiché supb =nonstainb. C = 7, (, + )è inferiormente limitato, ma non superiormente limitato (e quindi non è limitato); inf C =minc = 7 ; C non può avere massimo, essendo superiormente illimitato (sup C =+ ). D =(, ], 8 è superiormente limitato, ma non inferiormente limitato (e quindi non èlimitato);supd = 8 ; D non ha massimo, poiché supd = 8 avere minimo, essendo inferiormente illimitato (inf D = ). non sta in D e non può Sol. Ex..6 A = µ, (, + ) = ½x R tali che ¾ <x oppure x> B =, (, 5] = ½x R tali che ¾ x< oppure <x 5 C = {} (, 5] = {x R tali che <x 5 oppure x =}.

3 Sol. Ex..7 A = µ, (, + ) è inferiormente limitato, ma non superiormente limitato (e quindi non è limitato); inf A = ; A non ha minimo, poiché infa = non sta in A non può avere massimo, essendo superiormente illimitato (sup A = + ). B =, (, 5] è superiormente e inferiormente limitato (e quindi limitato); inf B = min B =,supb =maxb =5. C = {} (, 5] è superiormente e inferiormente limitato (e quindi limitato); inf C =minc =, sup C =maxc =5. Sol. Ex..8 I primi cinque elementi di A = ½ n n ¾ : n =,,,... sono: =, =, =, = 5, 5 = 7. IngeneraleunelementodiA si può riscrivere come 5 e quindi, al crescere di n, diventasempre più grande pur restando <. Dunque: A n è superiormente e inferiormente limitato (e quindi limitato) e inf A =mina = ; sup A = poiché nessun numero più piccolo di è maggiore di tutti gli elementi di A,manonappartiene ad A equindia non ha massimo. ½ ¾ I primi cinque elementi di B = n : n =,,,... sono: =, n =, = 8, = 5, 5 5= 5. Al crescere di n l elemento n n èsemprepiù vicino a n equindib non è inferiormente limitato (inf B = ); invece B è superiormente limitato e sup B =maxb =. ½ µ n + I primi cinque elementi di C = ( ) n n, ( ) µ + =,( ) µ + = 5,( ) ¾ : n =,,,... µ + In generale un elemento di C si può riscriverecome( ) n sono: ( ) µ =,( )5 µ + n µ = = 7 5. equindi:pervalori dispari di n si hanno numeri negativi ma sempre che si avvicinano sempre più a ; per valori pari di n si hanno numeri positivi ma sempre che si avvicinano sempre più a. Dunque C è superiormente e inferiormente limitat o (e quindi limitato) e inf C =minc = ; sup C =maxc =.

4 Sol. Ex..9 Il generico elemento + n di A, alcresceredin, diventa sempre più piccolo pur restando >. Dunque: A è superiormente e inferiormente limitato e sup A =maxa = ;infa = poiché nessun numero più grandedi èminoredituttiglielementidia, ma non appartiene ad A equindia non ha minimo. Il generico elemento n n + = di B, alcresceredin, diventa sempre più grande n + pur restando <. Dunque: B è superiormente e inferiormente limitato e inf B =minb = ;supb = poiché nessun numero più piccolo di è maggiore di tutti gli elementi di B, ma non appartiene a B equindib non ha massimo. I primi elementi di C = ½n + n ¾ : n =,,,... sono: c =+=,c =+ = 7, c =+ =>c, c =+ >c, c 5 =5+ 5 >c ecc. e quindi non c è nessun elemento di C minore di c.alcresceredinil generico elemento n + èsemprepiù vicino a n e n quindi C non è superiormente limitato (sup C =+ ); invece C è inferiormente limitato e inf C =minc = 7. Sol. Ex.. sup A = =;infa =. Infatti il generico elemento n = di A, alcrescere n di n, diventa sempre più piccolo ma resta >. Sol. Ex.. a) f () = +=. b). c) 9. Sol. Ex.. a) f ( ) = ( ) + ( ) = : quindi (, ) non appartiene al grafico. Anche il punto in b) non appartiene al grafico, mentre quelli in c), d) appartengono al grafico.

5 Sol. Ex.. I disegni (A) e (C) possono rappresentare il grafico di una funzione poiché comunque si prenda a in [, ] c è (uno e) un solo punto del grafico che ha ascissa a. Invece: neldisegno(b)ognirettadiequazionex = a con a (, ] interseca il grafico in due punti distinti; nel disegno (D) ogni retta di equazione x = a con a (, ) interseca il grafico in due punti distinti; nel disegno (E) le rette di equazione x =, x =,x = hanno in comune con il grafico infiniti punti. Quindi (B), (D) ed (E) non rappresentano grafici di funzioni. Sol. Ex.. a) f () =. b) Contando le intersezioni del grafico con y =, si vede che i punti in cui f (x) =f () sono. Sol. Ex..5 a) Sì: risolvendo l equazione di o grado x x = sitrovanoinumerirealix =ex =. b) Sì: x =. c) No: l equazione di o grado x x = non ha soluzioni reali. Sol. Ex..6 a) x =, x =, x =. b) No. Sol. Ex..7 Notare che la funzione èdefinita per x 6=. a) Sì: risolvendo l equazione x x + = si trovano i due numeri reali x =ex =,cioèilvalore viene assunto due volte. b) No: dove la funzione èdefinita, l equazione x x + =equivaleax +x +=chenonha soluzioni reali. c) Sì: risolvendo l equazione x x + = 8 9, si trovano i due numeri reali x =ex = 9,cioèil valore viene assunto due volte. d) Sì: risolvendo l equazione x =, si trovano i due numeri reali x =ex =, cioè ilvalore x + viene assunto due volte. e) No: dove la funzione èdefinita, l equazione x x + = 5 equivale a x +x +=chenon ha soluzioni reali. 5

6 Sol. Ex..8 La funzione ha il seguente grafico: - - Visto che le rette y =, y =, y =,y = 9, y =hannoconilgrafico rispettivamente,,, nessuna e intersezione, 9 il valore: viene assunto: volta volte volte mai volta Si sconsiglia di risolvere l esercizio attraverso le equazioni (come fatto nel esercizio precedente), poiché sivaincontroaunacasisticadelicataenoiosa,cheriportiamoinnota,soloperpermettere a chi avesse seguito questa via di verificare la correttezza dei passaggi fatti (). ) Innanzitutto osservare che nell intervallo (, ] si ha f (x) nell intervallo (, ] si ha <f(x) nell intervallo (, + ) sihaf (x) > 5. Quindi a) il valore negativo può essere assunto solo nell intervallo (, ]. Risolvendo l equazione x x = si trova una sola soluzione appartenente all intervallo: x = ; quindi il valore viene assunto una volta; b) il valore può essere assunto nell intervallo (, ], ma anche nell intervallo (, ]. Risolvendo l equazione x x = si trovano due soluzioni appartenenti all intervallo (, ]: x = e x = + ;risolvendo l equazione x = si trova una soluzione appartenente all intervallo (, ]: x = ; quindi il valore viene assunto volte; c) il valore può essere assunto nell intervallo (, ], ma anche nell intervallo (, ]. Risolvendo l equazione x x = si trovano una soluzione appartenenti all intervallo (, ]: x = ; risolvendo l equazione x =si trova una soluzione appartenente all intervallo (, ]: x = ; quindi il valore viene assunto volte; d) il valore 9 non è assunto in alcun intervallo; e) il valore può essere assunto solo nell intervallo (, + ). Risolvendo l equazione 5 + x =,sitrovauna sola soluzione appartenente all intervallo: x = ; quindi il valore viene assunto una volta. 6

7 Sol. Ex..9 s ( ) + a) Sostituendo si trova : radicando negativo, quindi f (x) nonèdefinita in x =. ( ) b) f (x) èdefinita in x =evale 8. s c) Sostituendo si trova d) f (x) èdefinita in x = evale. () + : denominatore nullo, quindi f (x) nonèdefinita in x =. () Sol. Ex.. C): ildenominatoreè equindièsempre6=. Sol. Ex.. a) R b) (, ) (, ) (, + ) c) R d) (, ) (, + ) e) (, ) (, ) (, + ) f) R g) (, ) (, + ) h) (, ) (, ) (, ) (, ) (, + ). Sol. Ex.. b, d, f sono grafici di funzioni iniettive. a, c, e sono grafici di funzioni non iniettive. Sol. Ex.. a, c, d, f sono funzioni iniettive. Sol. Ex.. B) Sol. Ex..5 C) Sol. Ex..6 µ x (g f)(x) = x + = x (x ) (x ). Definita in:,, +. Sol. Ex..7 q (g f)(x) = ( p x) = x. Insieme di definizione: {}. ³ (f g)(x) = r x = x Insieme di definizione: [, + ). (f f)(x) = p ( x). Insieme di definizione: {}. (g g)(x) =r ³ x = x 9. Insieme di definizione: [, + ). 7

8 Sol. Ex..8 (g f)(x) = (x ) + =. Insieme di definizione: (, ) (, + ). x µ (f g)(x) = = x +x +x 7 x + (x +). Definita in: (, ) (, + ). (f f)(x) =(x ) =x 9 x 6 +x. Definita in: R. (g g)(x) = x+ : questa funzione èdefinita in (, ) (, ) (, + ), poiché il + suo denominatore deve essere definito, oltre ad essere 6=. La funzione, x +, che si ottiene x + semplificando è invece definita in x = : quindi non coincide con (g g)(x). Sol. Ex..9 (g f) (x) = 5+ = e (f g)(x) =5. Piùingenerale,sef (x) è una funzione costante e g : R R una qualunque altra funzione, le funzioni g f e f g sono costanti. Sol. Ex.. a) (g f)()=g ( 5 + )=g() = = 99. b) (f g)()=f ( )=f( ) = =. ( ) 5 (x 5 x + x ) se x µ c) (g f)(x) = se x< x = d) (f g)(x) = = x +x 8 x 7 x 6 +x 5 x se x x x + (x ) se x<. ( x ) 5 ( x ) +( x ) se x ( x ) se x < x ( x ) ( x + x ) se x +x se x< ox>. Sol. Ex.. f (x) =f ( x) se e solo se x x =( x) ( x), cioè ( x) x [( x) x] =, cioè per x =eperx =. Sol. Ex.. f (x) =f ( x) + se e solo se x x =( x) ( x) + cioè x x = x + x, cioè per nessun valore di x. 8

9 Sol. Ex.. f ( x) =f ( + x) se e solo se ( x) 6( x) =(+x) 6(+x), cioè perogni x reale. Sol. Ex.. a) f (x) =x siscomponecosì: x () x () x b) f (x) = x si scompone così: x () x () x c) f (x) = d) f (x) = / () x (x ) si scompone così: x () x () (x ) / () x +x si scompone così: (x ) x () +() x +x () x +x / () x +x e) f (x) = x si scompone così: f) f (x) = x si scompone così: x () x +() x p () x g) f (x) = x () x +() x x x + x () () x x r h) f (x) = x x + si scompone così: p () x () x p () x x ()+ x x + si scompone così: x () () x x ()+ x x + / () x x + / () () / () x x + x x + x () p () x x + r x x + Sol. Ex (a) (b) (c) (d) 9

10 Sol. Ex..6 Gli insiemi di definizione richiesti si leggono sui grafici (a) (b) (c) (d) (e) (f) (g) Sol. Ex f (x) =x x f ( x) =x +x f (x) =x x

11 f ( x) = x x f ( x ) =x x f (x) = x x Sol. Ex..8 C): infatti risolvendo y = x come equazione in x si trova (y ) x =, e quindi f (y) = x x = ; ora basta cambiare in x il nome della variabile indipendente. y Sol. Ex..9 Risolvendo y = + x come equazione in x si trova x (y ) =, e quindi f (y) = x = (y ) ;cambiandoinx il nome della variabile indipendente: f (x) = (x ).Ilsuoinsieme di definizione è(, ) (, + ). Sol. Ex.. Risolvendo y = x come equazione in x si trova x (y ) =, e quindi f (y) =x = y ; cambiando in x il nome della variabile indipendente: f (x) = x.ilsuoinsiemedidefinizione è(, ) (, + ). Sol. Ex.. B) Sol. Ex.. La funzione data, f, definita in [, 7],hainversa,poichéè monotona strettamente decrescente. Il grafico di f è rappresentato con il tratto più spesso. 6 6

12 Sol. Ex.. a) f èdefinita in [, ] [, ]; b) f è crescente in [, ]; c) f è decrescente in ciascuno dei due intervalli [, ] e [, ]; d) f èconcavain(, ); e) f è convessa in (, ); f) f ha massimo M nel suo insieme di definizione: M =. Il punto di massimo è x = ; g) f ha minimo m nel suo insieme di definizione: m = /. Il punto di minimo è x =. Sol. Ex.. a) f èdefinita in [, ] (, ] = [, ]; b) f è crescente in [, ]; c) f è decrescente in ciascuno dei due intervalli [, ] e (, ]. Notare che non è decrescente su [, ]. d) f èconcavain(, ); e) f è convessa in (, ); f) f non ha massimo M nel suo insieme di definizione, poiché supf =+ ; g) f ha minimo m nel suo insieme di definizione: m = /. Il punto di minimo è x =. Sol. Ex..5 Corrette: (A) e (D). False: (B) e (C): entrambi gli intervalli contengono l intervallo (, ) in cui si verifica un cambio di concavità. Sol. Ex..6 A) vera; B) falsa: f è decrescente in ciascuno dei due intervalli (, ) e (, ) ma non sulla loro unione (ad esempio: f ( 5/) < <f()); C) vera: (, ) è contenuto in (, ), insieme su cui abbiamo già detto che la funzione è crescente; D) falsa: f assume lo stesso valore in corrispondenza a valori diversi della variabile indipendente (ad esempio: f ( ) = f ( )) e quindi non èiniettiva; E) vera: in (, ) la funzione è monotona strettamente crescente; F) falsa: f è limitata, ma il suo valore massimo è; G) vera.

13 Sol. Ex..7 Le soluzioni sono riportate, sulle tre figure, con il tratto (o il punto) più spesso x tali che f (x) = x tali che f (x) > x tali che f (x) <

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni Matematica per le Applicazioni Economiche I A.A. 017/018 Esercizi con soluzioni Numeri reali, topologia e funzioni 1 Numeri reali Esercizio 1. Risolvere la disequazione x 6 4x 3 + 3 0. Soluzione. Poniamo

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Argomento 1 - Esercizi

Argomento 1 - Esercizi - Esercizi Avvertenza: alcuni esercizi, denotati con *, possono presentare qualche difficoltà per i principianti. ESERCIZIO. Eseguire il seguente prodotto di numeri reali: 7 5 5+ 7 ESERCIZIO. Confrontare

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Matematica per le Applicazioni Economiche I, 15 Settembre 2017 Testo d esame A

Matematica per le Applicazioni Economiche I, 15 Settembre 2017 Testo d esame A Testo d esame A La prova a la durata di due ore. Le risposte non giustificate valgono 0 punti ed i passaggi delicati ce non vengono giustificati fanno valere 0 i risultati ottenuti. Esercizio [3 punti]

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli

Soluzioni degli esercizi proposti venerdi 7-10

Soluzioni degli esercizi proposti venerdi 7-10 Soluzioni degli esercizi proposti venerdi 7-10 Si consideri la funzione f(x) il cui grafico e' dato dal disegno sotto. 1. determinare il dominio e l'immagine 2.determinare gli x tali che f(x) 0 3. determinare

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

03 - Le funzioni reali di variabile reale

03 - Le funzioni reali di variabile reale Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale ppunti del corso di Matematica 03 - Le funzioni reali di variabile reale nno ccademico 2013/2014

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Analisi e Geometria 1, Secondo appello 06 luglio 2016 (Compito A)

Analisi e Geometria 1, Secondo appello 06 luglio 2016 (Compito A) Analisi e Geometria, Secondo appello 06 luglio 206 Compito A) Terza parte. Calcolare, al variare di α R, il valore del seguente limite di funzione sin x lim x 0 + x α x x ). sin x Soluzione: Utilizzando

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Pagina 1 Generalità sulle funzioni Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla definizione

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. Sia f una funzione continua su IR, e F una primitiva di f tale che F () = 5. Allora: (a) esiste k IR tale che F (x) f(x) =k, x IR (b) F (x) = x f(t) dt (c) F non è derivabile

Dettagli

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}? Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

3 LA RETTA REALE ESTESA

3 LA RETTA REALE ESTESA 3 LA RETTA REALE ESTESA Abbiamo visto che i concetti di sup e inf sono utili per descrivere proprietà di insiemi superiormente/inferiormente limitati. Per coprire con questi concetti tutti gli insiemi

Dettagli

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi.

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. APPUNTI PER IL CORSO DI MATEMATICA APPLICATA ERNESTO DE VITO - UNIVERSITÀ DI GENOVA, ITALY 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. insieme vuoto N insieme dei numeri

Dettagli

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali.

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali. PROF GIOVANNI IANNE L INSIEME DEI NUMERI REALI DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali DEFINIZIONE DI INTERVALLO L intervallo è un particolare insieme

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici.

Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici. Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici. 1) Esplicitare la forma della funzione in dipendenza x (vale a dire eliminando la presenza del modulo) e disegnare il grafico

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova Facoltà di Agraria - Anno Accademico 2009-2010 24 febbraio 2010 1) L equazione 2x 3 3x 2 12x + 7 = 0 ha a)1 radice reale e 2 complesse b)nessuna radice reale c)2 radici reali ed 1 complessa d)3 radici

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi

1 - Estremo superiore ed estremo inferiore di insiemi - Estremo superiore ed estremo inferiore di insiemi Prima di affrontare gli esercizi su estremo superiore ed inferiore, ricordiamo alcune definizioni ed alcuni teoremi che ci verranno utili. Definizione.

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

Compito di matematica Classe III ASA 12 febbraio 2015

Compito di matematica Classe III ASA 12 febbraio 2015 Compito di matematica Classe III ASA 1 febbraio 015 1. Scrivere l equazione delle funzioni il cui grafico è rappresentato nella seguente figura: [Un quadretto = 1] Prima funzione Per x 4 l arco di parabola

Dettagli

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1 Lezioni -4 8 Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = A è composto dai numeri { 1 n : n N,n>0 }. 1, 1 2, 1, 1 4,... Vediamo subito che 1 A e 1 n 1 per ogni n N, n > 0. Questa

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano:

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 7-8 Dott. Simone Zuccher 6 Novembre 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Argomento2 Iparte Funzioni elementari e disequazioni

Argomento2 Iparte Funzioni elementari e disequazioni Argomento Iparte Funzioni elementari e disequazioni In questa lezione richiameremo alcune fra le più comuni funzioni di variabile reale, mettendone in evidenza le principali proprietà. Esamineremo in particolare

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Esercizio 8: Siano dati l equazione della parabola e i due punti e.

Esercizio 8: Siano dati l equazione della parabola e i due punti e. Esercizio 8: Siano dati l equazione della parabola e i due punti e. tracciare dal punto A le tangenti r ed s alla parabola ottenendo i punti di contatto P e Q; tracciare dal punto B le tangenti t ed u

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 3 GRAFICO DI UNA FUNZIONE DI PIÙ VARIABILI ,,,,

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 3 GRAFICO DI UNA FUNZIONE DI PIÙ VARIABILI ,,,, GRFICO DI UN FUNZIONE DI PIÙ VRIBILI n Sia f : una funzione data. Si definisce grafico della funzione f l insieme 1, n Gf f x x x. Il grafico è un sottoinsieme di In particolare per una funzione di due

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 14 novembre 2008 L. Battaia - http://www.batmath.it Matematica 1 - I mod. Lezione del 14/11/2008 1 / 22 Cr-decr-max-min Esempio 1 Esempio 2 Esempio 3

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom 2 Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Secondo appello 06 luglio 206 Compito B Docente: Numero Alfabetico: Cognome: Nome: Matricola: Prima parte. L insieme (, 0] ammette minimo. F 2.

Dettagli

Corso Estivo Matematica/Mathematics

Corso Estivo Matematica/Mathematics Università Ca Foscari di Venezia - Dipartimenti di Economia e Management - A.A.05-06 Corso Estivo Matematica/Mathematics Luciano Battaia 8 giugno 06 Esercitazione del 3/06/06 Osservazioni sulle disequazioni

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Notazioni Appartiene. Non appartiene. Per ogni. Esiste. Insieme vuoto. N Numeri naturali {0,

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli