si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per"

Transcript

1 Esecizi Poblemi di igonomeia con discussione Poblemi sui iangoli eangoli 1 Considea una semiciconfeenza di diameo e aggio uniaio. Deemina su di essa un uno P in modo che, dea M la sua oiezione oogonale sulla eendicolae in ad, isuli P þ PM ¼ k. Poso P b ¼ x, si oiene l equazione cos x cos x þ k ¼ 0, con 0 x ; due soluzioni e k 5 Deemina la misua dell angolo al veice di un iangolo isoscele ousangolo (non degenee), conoscendo il aggio del cechio cicoscio e la diffeenza k a il doio della base e il ilo dell alezza. Sia C il iangolo inscio, isoscele sulla base C; oso b C ¼ x si oiene l equazione 8 sin x cos x 6 cos x ¼ k con < x < ; una soluzione e 0 < k 1 e due soluzioni e 1 < k In un iangolo eangolo C (non degenee) l ioenusa C misua a e il caeo C è minoe o uguale al caeo. Deo il uno medio di C ed M il uno in cui la eendicolae in a C incona la ea, deemina l angolo C b in modo che l aea del eangolo avene i lai congueni ad C e M sia uguale a ka. Poso C b ¼ x, si oiene l equazione cos x þ k cos x 1 ¼ 0 con 0 < x ; 1 soluzione e 0 < k In un iangolo eangolo C (non degenee) si ha C ¼ a e C b ¼ x. Deemina x in modo che la somma a la misua della mediana elaiva al caeo e la misua della meà del caeo sesso valga ka. ffi Si oiene l equazione cos x ¼ k cos x, con 0 < x < ; due soluzioni e < k 5 Considea una semiciconfeenza di diameo ¼. Deemina una coda C ale che, dea D la coda che biseca C, b si abbia C þ D ¼ k. Poso C b ¼ x, con 0 x, si oiene l equazione cos x þ cos x 1 ¼ k; una soluzione e k 6 Dao un seoe cicolae, b di ceno, aggio e amiezza, deemina l angolo C b ¼ x, dove C è un uno dell aco _, in modo che il aoo a i eimei dei iangoli C e C sia k. Si oiene l equazione cos x ð1 þ kþ sin x þ k ¼ 0 con 0 x ; una soluzione e ð þ Þk 7 Dao un cechio di aggio, accia una coda la cui disanza dal ceno è. Deemina, sul minoe dei due achi _, un uno C in modo che sia soddisfaa la elazione: C þ C ¼ k. Ponendo C b ¼ x, si oiene l equazione sin x þ cos x ¼ k con 0 x ; una soluzione e k < e due soluzioni e k 7 8 Dao un cechio di ceno e aggio, deemina un angolo al ceno convesso b ¼ x in modo che, cosuio il iangolo equilaeo C sulla coda da ae oosa del ceno, sia k l aea del quadilaeo C. Si oiene l equazione sin x cos x ¼ k con 0 x ; una soluzione e 0 k < þ e due soluzioni e k La maemaica a coloi Peini f 01 De gosini Scuola S Novaa 1/5

2 Poblemi di igonomeia con discussione Le semiee a, b e c di oigine comune sono comlanai. La semiea a foma con la semiea b un angolo di, è inena all angolo convesso limiao dalle ale due ed è ale che la oiezione oogonale di ogni suo uno sulla ea cui aaiene c cade sulla semiea c. Fissao sulla semiea a il segmeno uniaio, siano e C iseivamene, le oiezioni oogonali di su b e c. Deemina l angolo x fomao dalle semiee a e c, saendo che il iangolo C è equivalene a un iangolo di base e alezza elaiva di misua k. Si oiene l equazione sin x cos x þ cos x ¼ k con 0 x ; una soluzione e 0 k < 1 ; due soluzioni e 1 þ k 8 10 Un caeo di un iangolo eangolo misua a e l angolo acuo adiacene a esso ha coseno uguale a 5. Condoa e il veice dell angolo eo una ea che non aavesa il iangolo e indicaa con x la misua dell angolo che quesa ea foma con il caeo maggioe, deemina x in modo che il volume del solido geneao dal iangolo quando comie una oazione comlea inono alla ea sia ka. Si oiene l equazione sin x þ cos x ¼ k con 0 x ; una soluzione e k < ; due soluzioni e k 5 11 Indicao con VV 0 un diameo di una sfea di ceno e aggio, considea i segueni quao coni: a. un cono di veice, asse V 0 e base angene alla sfea; b. il cono ooso al veice del ecedene, avene la ciconfeenza di base sulla sueficie sfeica; c. il cono di veice V, asse VV 0, aeua meà di quella dei due coni ecedeni, e inscio nella sfea; d. il cono di veice V 0, inscio nella sfea, e avene la sessa base di quella del ezo cono. Indicai con V 1, V, V, V, iseivamene i volumi dei quao coni, deemina l angolo x di aeua del imo cono in modo che sia soddisfaa la elazione: V 1 V ðk Þ V 1 þ V ¼ k V V Si oiene l equazione ð kþcos x þðk Þ cos x þ k ¼ 0 con 0 < x < ; una soluzione e < k ; due soluzioni e < k 0 þ Poblemi sui iangoli qualunque 1 SVLT Consideae una semiciconfeenza di diameo ¼ e, indicao con M il uno medio dell aco _, acciae la angene alla semiciconfeenza in M. Sull aco _ M deeminae un uno P in modo che la semiea P inesechi la ea in un uno Q, disino da M, e cui: PM þ PQ ¼ kmq. Discuee il oblema iseo al aa- meo k. Figua e scela dell incognia Cosuiamo una figua (fig. 1) e osseviamo che la osizione del uno P sull aco _ M esa univocamene individuaa una vola che si conosce l angolo P. b Possiamo oe eciò P b ¼ x. È imoane fae alcune ossevazioni cica le misue degli angoli che abbiamo annoao in figua: l angolo al ceno M b è eo, quindi l angolo alla ciconfeenza PM, b insisendo sullo sesso aco di M, b èconguene alla sua meà e misua ; P b ffi PQM b eché angoli aleni ineni iseo alle due ee aallele e MQ, agliae dalla asvesale Q; oiché MPQ b ¼ ¼, segue che P MQ b ¼ x ¼ x. Figua 1 x M x x P Q La maemaica a coloi Peini f 01 De gosini Scuola S Novaa /5

3 Poblemi di igonomeia con discussione Limii geomeici dell incognia l vaiae di P su _ M, x vaia evidenemene a 0 e. nalizziamo i casi limie. Se P, èx ¼ 0(fig. ) e la ea P è aallela alla angene alla semiciconfeenza in M, quindi non esise Q. Se P M, èx ¼ (fig. ) e la ea P ineseca la angene in P sesso, quindi Q P M. M P M Q P x = 0 x = Figua Figua Il eso del oblema ichiede che la ea P inesechi la ea e che il uno di inesezione sia disino da M, condizioni che evidenemene non sono soddisfae in coisondenza dei casi limie. Escludiamo eciò i casi limie e assumiamo come domino e l incognia x l inevallo: 0 < x < Esessione dell equazione fonia dal oblema Nelle ioesi assune si ha MQ 6¼ 0, quindi ossiamo dividee enambi i membi della elazione PM þ PQ ¼ kmq e MQ, oenendo l equazione equivalene: PM PQ þ MQ MQ ¼ k [1] Quesa ossevazione ci consene di scivee facilmene l equazione esessa dal oblema in funzione di x. Infai i aoi che comaiono nella [1] sono aoi a coie di lai del iangolo PMQ e sono quindi uguali ai aoi a i seni degli angoli a essi oosi. Facendo ifeimeno alla fig. 1, oeniamo così che la [1] equivale a: sin x sin sin þ x sin ¼ k ossia, svolgendo i calcoli: sin x þ cos x ¼ k. Quesa equazione va discussa iseo alle limiazioni 0 < x <. Discussione dell equazione Ponendo sin x ¼ Y e cos x ¼ X ed effeuando la discussione, oeniamo la fig., da cui deduciamo che il oblema ammee una soluzione e 1 < k <. Figua La ea assane e è angene alla ciconfeenza goniomeica. k = X + Y = 1 Y, 1 Considea una semiciconfeenza di diameo di misua ¼ ; accia nel semiiano, avene come oigine la ea, che la coniene la semiea angene in alla semiciconfeenza e considea su ale semiea il uno M ale che M ¼. Deemina sulla semiciconfeenza un uno P in modo che sia veificaa la elazione MP ¼ P þ kp. Ponendo P b ¼ x si ha l equazione sin x cos x ¼ k sin x, con 0 < x ; due soluzioni e k, una soluzione e k > k = 1 X La maemaica a coloi Peini f 01 De gosini Scuola S Novaa /5

4 Poblemi di igonomeia con discussione 1 In un iangolo C le misue dei lai C e C sono iseivamene e e l angolo C misua. Deemina sul lao C un uno P e sul lao C un uno Q, in modo che: P ¼ Q e þ Q þ QP þ P ¼ k Ponendo P ¼ Q ¼ x, si oiene l equazione x 5x þ 1 ¼ k con 0 x ; due soluzioni e 1 k 1 e una soluzione e 1 < k Due semiciconfeenze di diamei ¼ C ¼ sono angeni esenamene nel uno e giacciono dalla sessa ae iseo ad C. Da si conducono due semiee fomani fa loo un angolo di che inconano le due semiciconfeenze, ole che in, iseivamene nei uni D ed E. Deemina l angolo D b ¼ x in modo che sia DE þ EC ¼ kd. Si oiene l equazione ð kþ cos x sin x cos x þ 1 ¼ 0, con < x < ; una soluzione e k > 16 In una ciconfeenza di ceno e aggio 1, la coda è il lao del quadao inscio. Condoa nel uno la semiea angene alla ciconfeenza che giace, iseo alla ea, nel semiiano che coniene il ceno, deemina sulla semiea un uno P ale che sia veificaa la elazione: M þ MP ¼ k P dove M è l uleioe uno di inesezione del segmeno P con la ciconfeenza. Poso P b ¼ x, si oiene l equazione sin x þ cos x k ¼ 0 con 0 < x < ; una soluzione e 1 < k < 17 Nel iangolo C, eangolo in, è ¼ 1eC b ¼. Consideaa la semiciconfeenza di diameo, esena al iangolo, deemina su di essa un uno P in modo che, condoa e P la eendicolae ad fino a inconae l ioenusa C nel uno Q, isuli: Q þ QP ¼ k Poso P b ¼ x si ha l equazione ð1 þ Þ cos x þ sin x cos x ¼ k con 0 x ; una soluzione e 0 k < 1 þ 1, due soluzioni e 1 þ k 1 þ q þ þ 18 Il iangolo C ha i lai e C che misuano iseivamene 5 e e l angolo fa essi comeso misua. Dea S la biseice inena dell angolo di veice, calcola: a. la misua del lao C e delle due ai in cui è diviso dal uno S; b. il coseno dell angolo in e la misua della biseice S. Deemina quindi un uno P, sul segmeno S, in modo che si abbia: P þ P þ PC ¼ k. a. C ¼ 1 5, S ¼ 1, CS ¼ 1 ;b. cos C b 1 ¼ 7, S ¼ 0 ; oso P ¼ x si oiene l equazione x 0 x þ 1 k ¼ 0, con 0 x ; due soluzioni e 8 k e una soluzione e < k 1 1 Il uno è l ooceno di un iangolo acuangolo C del quale è noo che C b ¼ e ¼ 1. Poso C b ¼ x, esimi in funzione di x e le misue dei e lai del iangolo e quelle dei segmeni e C. Suoso oi che cos ¼ 1, deemina x in modo che si abbia: þ C ¼ kc Si oiene l equazione 7 sin x þ 1 cos x k ¼ 0 con 0 < x < accos ; una soluzione e < k e due soluzioni e < k La maemaica a coloi Peini f 01 De gosini Scuola S Novaa /5

5 Poblemi di igonomeia con discussione 0 Daa una semiciconfeenza di diameo e aggio, considea sul diameo il uno D ale che D ¼. Deemina sulla semiciconfeenza un uno C in modo che, condoa da C la angene alla semiciconfeenza, essa inesechi la aallela ad C condoa da D in un uno E e si abbia DE ¼ k. Ponendo b C ¼ x, si oiene l equazione cos x k cos x þ 1 ¼ 0 con 0 x < ; due soluzioni e k 5, una soluzione e k > 5 1 Sia CD una coda di una semiciconfeenza di ceno e diameo e sia E il uno in comune ai olungameni delle code C, D. Saendo che il aoo fa CD e è 7 5, deemina la misua x dell angolo E b in modo che sia veificaa la elazione: E þ 1 E 5 ¼ k Poso E b ¼ x si oiene l equazione 5 sin x þ 6 cos x 6k ¼ 0, con acsin 7 5 x ; una soluzione e 5 6 k < e due soluzioni e k 61 6 La maemaica a coloi Peini f 01 De gosini Scuola S Novaa 5/5

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto Maemaica Liceo \ Unià Didaica N 8 La ciconfeenza Unià Didaica N 8 : La ciconfeenza Equazione della ciconfeenza di ceno C e aggio Equazione geneale della ciconfeenza Ciconfeenza avene equazione paicolae

Dettagli

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1 Esecizi svoli di geomeia delle aee Alibandi U., Fuschi P., Pisano A., Sofi A. ESERCZO n.3 Daa la sezione a doppio T ipoaa in Figua, deeminae: a) gli assi pincipali cenali di inezia; b) l ellisse pincipale

Dettagli

, controllando che risulta: () 1

, controllando che risulta: () 1 Sessione suppleiva di odinameno 008 009 ESAME DI STATO DI LICEO SCIENTIFICO Indiizzo M: odinameno liceo della comunicazione CORSO DI ORDINAMENTO Sessione suppleiva 009 Tema di MATEMATICA Il candidao isolva

Dettagli

Origami: Geometria con la carta (II)

Origami: Geometria con la carta (II) igami: Geomeia con a caa (II) E' possibie mosae (cf. Geeschage, 1995) che ognuna dee pocedue E1-E5 dea geomeia eucidea, può essee sosiuia da combinazioni dee pocedue 1-8 dea geomeia oigami. Infai abbiamo:

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti Rea di minima disana sfee e ciconfeena nello spaio Alcuni esecii svoli. Sabilie se le ee ed s sono complanai o sghembe. Nel pimo caso pecisae se esse sono paallele oppue incideni e ovae l equaione di un

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

ESERCIZIARIO DI TRIGONOMETRIA

ESERCIZIARIO DI TRIGONOMETRIA ESERIZIRIO DI TRIGONOMETRI L'istuzione è l'ama più potente che puoi utilizzae pe cambiae il mondo. NELSON MNDEL he cosa hai chiesto a scuola oggi? RIHRD PHILLIPS FEYNMN «La pima cosa da compendee è che

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello spazio e quindi occoe fissae un sisema di ifeimeno. x Z z k i θ ϕ j P (x,y,z) y Y i, j, k eoe unià (esoe)

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Uniesià Poliecnica delle Mache, Facolà di Agaia C.d.L. Scienze Foesali e Ambienali, A.A. 009/010, Fisica 1 Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello

Dettagli

La descrizione del moto di un punto materiale e la legge oraria

La descrizione del moto di un punto materiale e la legge oraria Lezione II 1 La descizione del moo di un puno maeiale e la legge oaia Nella descizione del moo di un copo cinemaica paiamo dal caso più semplice: il puno maeiale, che non ha dimensioni popie. Fissiamo

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

CAPITOLO 12 GONIOMETRIA

CAPITOLO 12 GONIOMETRIA CAPITOLO 1 GONIOMETRIA 1.01 - Misua degli Angoli e degli Achi 1.01.a) Unità di Misua degli Angoli o degli Achi Dato un angolo, è possibile scegliee come unità di misua un ulteioe (ovviamente) angolo definito

Dettagli

Creare una visualizzazionegrafica. Individuare il macrosettore dell argomento. Entrare nel dettaglio del problema

Creare una visualizzazionegrafica. Individuare il macrosettore dell argomento. Entrare nel dettaglio del problema Schemaizzae il eso Ceae una isualizzazionegafica ipoducee il caso (pe quano è possibile) su foglio Discussione ciica in base alla eoia geneale Indiiduae il macoseoe dell agomeno Enae nel deaglio del poblema

Dettagli

Esercizio n 16 pag. Q 157 Il triangolo ABC ha AB=4, AC=3 e BAC= /3. Detta AQ la bisettrice dell'angolo a. la misura di BC; BAC determina:

Esercizio n 16 pag. Q 157 Il triangolo ABC ha AB=4, AC=3 e BAC= /3. Detta AQ la bisettrice dell'angolo a. la misura di BC; BAC determina: Esecizio n 16 pag Q 15 Il tiangolo ABC ha AB=4, AC=3 e BAC= /3 Detta AQ la bisettice dell'angolo a la misua di BC; BAC detemina: b le misue delle due pati CQ e QB in cui il lato è diviso dalla bisettice;

Dettagli

2. Cinematica. - Legge oraria: x(t) (cioè la funzione che associa ad ogni istante t (secondi) una certa posizione x (metri))

2. Cinematica. - Legge oraria: x(t) (cioè la funzione che associa ad ogni istante t (secondi) una certa posizione x (metri)) 2. Cinemaica Moo eilineo - Definizioni elemenai Definio un asse di ifeimeno x pe la descizione del moo di un puno (pe il momeno non si considea la sua massa), si definiscono: - Legge oaia: x() (cioè la

Dettagli

Moti relativi. dt dt dt. r r

Moti relativi. dt dt dt. r r P Moi elaivi Se i due sisemi aslano solo fa di loo, i vesoi non vaiano nel empo. = + ' d d d' v = = + = v + d d d Leggi di asfomazione di velocià e acceleazione P P pe due sisemi che aslano l uno ispeo

Dettagli

Applicazioni della trigonometria alla geometria

Applicazioni della trigonometria alla geometria unti di matematica licazioni della tigonometia alla geometia. ea di un tiangolo, note le misue di due lati e quella dell'angolo da essi comeso. TEOREM L'aea di un qualsiasi tiangolo è eguale al semiodotto

Dettagli

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1 Demodulazione I & Q Telecomunicazioni pe l Aeospazio P. Lombado DIET, Univ. di oma La Sapienza DEMODULAZIONE I&Q - 1 Fase di aivo e popagazione I Si considei il segnale eale g Il suddeo segnale è asmesso

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

TRIGONOMETRIA PRECORSO DI MATEMATICA

TRIGONOMETRIA PRECORSO DI MATEMATICA PRECORSO DI MATEMATICA Angoli Trigonomeria Disosizione degli angoli rinciali riseo alla circonferenza rigonomerica 3i/4 i/3 PI/ Pi/3 Pi/4 Relazione er assare dalla misura in gradi alla misura in radiani

Dettagli

RISOLUZIONE PROVA SCRITTA Classe 4 A - aprile 2011

RISOLUZIONE PROVA SCRITTA Classe 4 A - aprile 2011 RISOLUZIONE PROVA SCRITTA Classe A - apile 011 PROVA A 1. Dato il tiangolo isoscele ABC avente AC = CB = l e cos  = cos B = 1, calcolae: a) il peimeto p; b) le misue delle te altezze; c) la distanza CM,

Dettagli

Comunicazioni Elettriche

Comunicazioni Elettriche Pocessi casuali I pocessi casuali anche dei pocessi socasici sono un meodo maemaico pe appesenae delle funzioni del empo che abbiano caaeisiche socasiche. I pocessi casuali sono uili a appesenae fenomeni

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

SOLUZIONE ESERCIZI: DIFFERENZIAZIONE. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: DIFFERENZIAZIONE. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESEIZI: IFFEENZIAZIONE EONOMIA INUSTIALE Univesià egli Sui i Milano-Bioa hisian aavaglia Soluzione 8 a Pe eeminae la funzione i omana ei ue negozi, ooe ovae la osizione el onsumaoe maginale iniffeene,

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 5-6 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2 EAME DI TATO DI LICEO CIENTIFICO essione Odinaia 009 CORO DI ORDINAMENTO Poblema È assegnato il settoe cicolae AOB di aggio e ampiezza x ( e x sono misuati, ispettivamente, in meti e adianti) i povi che

Dettagli

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è Esecizi. Veiicae che la somma dei cubi di due numei natuali eali di assegnato odotto > è y smin y s minima quando i due numei sono uguali. y s min 6 6 Studio il segno della deivata ima: 6 Poiché il denominatoe

Dettagli

Alcune curve e superfici

Alcune curve e superfici Coso di Lauea in Disegno Indusiale Coso di Meodi Numeici pe il Design Leione 6 apile Cuve e Supefici nello Spaio F. Caliò Alcune cuve e supefici Leione 6 Apile Linee e Supefici nello spaio Pagina Ciconfeena

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria incipali Definizioni e Teoemi di Geometia oncetti pimitivi Un concetto pimitivo è un temine che non viene definito, come: - unto - Retta - iano - Spazio - Insieme - Elemento - ppatenenza - Movimento igido

Dettagli

1. Qualche elemento di geometria dello spazio

1. Qualche elemento di geometria dello spazio Scuola Inteateneo di Specializzazione pe la Fomazione degli Insegnanti della Scuola Secondaia del Veneto ANNO ACCADEMICO 2005-2006 INDIRIZZO SCIENTIFICO TECNOLOGICO DIDATTICA DELLA MATEMATICA - LUCIDI

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

Dinamica in presenza di forze centrali

Dinamica in presenza di forze centrali Dinamica in pesenza di foze cenali Leggi di gaviazione (icavae speimenalmene da Kepleo, 1600) Pima legge: le obie descie dai pianei aono al Sole sono ellissi di cui il Sole occupa uno dei due fuochi Seconda

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II 1. Un oeo i muoe u una aieoia cicolae. Deeminae di quano aia la elocià quando l oeo paa da un puno della ciconfeenza al puno,

Dettagli

Funzioni trigonometriche

Funzioni trigonometriche Funzioni tigonometiche Coso di accompagnamento in matematica Lezione 5 Sommaio 1 Angoli Funzioni tigonometiche simmetie fomule 3 Equazioni tigonometiche 4 Popietà dei tiangoli Coso di accompagnamento Funzioni

Dettagli

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione Corso di Geomeria e Algebra Lineare: Geomeria Lineare 6^ Lezione Luoghi geomerici del piano. Rea. Equazione caresiana. Equazione esplicia. Forme paricolari dell equazione della rea. Equazione segmenaria

Dettagli

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma Pincipi di Ingegneia Cimica Anno Accademico 06-07 Cognome Nome Maicola Fima E-mail: Poblema. Una sfeea cosiuia da un maeiale polimeico (composo B) e una ecola aiva (composo A), cade alla sua velocià eminale,

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Momento Angolare Fisica Mattia Natali. Momento Angolare. = r ' O. ( r a ) a = r a

Momento Angolare Fisica Mattia Natali. Momento Angolare. = r ' O. ( r a ) a = r a Momento di un vettoe: Momento Angolae Il momento di un vettoe è seme dato isetto a un dato unto geometico detto olo M a con vettoe osizione del nosto vettoe isetto ad M sinα e definizione del modulo di

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 7 Luglio 2008

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 7 Luglio 2008 ORSO DI LURE IN SIENZE IOLOGIE Poa cia di FISI 7 Luglio 8 Meccanica: Un oieile di aa P g, che ha elocià P, è aao cono un blocco di aa M g, feo u un iano oizzonale. Doo l uo efeaene anelaico, in cui il

Dettagli

ESERCITAZIONE N 3 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA STRADA EXTRAURBANA A DUE CORSIE

ESERCITAZIONE N 3 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA STRADA EXTRAURBANA A DUE CORSIE ESERCITAZIONE N 3 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA STRADA EXTRAURBANA A DUE CORSIE. Inoduzione Il livello di sevizio, indicao comunemene con la sigla L.O.S. (dall inglese Level of Sevice), fonisce

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Forze dipendenti dalla velocità. Attrito Viscoso Corpo in caduta libera in un fluido -> resistenza f R

Forze dipendenti dalla velocità. Attrito Viscoso Corpo in caduta libera in un fluido -> resistenza f R Foze dipendeni dalla velocià Aio Viscoso Copo in cadua libea in un fluido -> esisenza f R del mezzo In casi semplici (geomeia semplice, bassa velocià, assenza di ubolenze nel fluido) vale f R = -k v (Legge

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica Anno Scolasico 15-16 5 maggio 16 - Eserciazione Prova Scria di Maemaica Il candidao svolga, a sua scela, uno dei problemi e quaro dei quesii proposi. ➊ L inflazione, cioè l aumeno generalizzao e prolungao

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

INDICE. Unità 12 MISURA DELLA CIRCONFERENZA. Unità 13 LO SPAZIO TRIDIMENSIONALE, 51 E AREA DEL CERCHIO, 1 MISURA DELLA CIRCONFERENZA, 2

INDICE. Unità 12 MISURA DELLA CIRCONFERENZA. Unità 13 LO SPAZIO TRIDIMENSIONALE, 51 E AREA DEL CERCHIO, 1 MISURA DELLA CIRCONFERENZA, 2 INDIE Unità 1 MISUR DELL IRNFERENZ E RE DEL ERHI, 1 Il libo posegue nel D 1.1 MISUR DELL IRNFERENZ, Misua di p, Misua della ciconfeenza, ESERIZI da p. 15 1. MISUR DELL R DI IRNFERENZ, 4 ESERIZI da p. 1

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Sistemi a Radiofrequenza II

Sistemi a Radiofrequenza II Esecizio 5.1 Due anenne sono pose ad una disanza di 100 m e sono accodo di polaizzazione. Calcolae la poenza icevua dalla seconda anenna se la pima è alimenaa con 100 W e: 10 d, 30 d e f 100 MHz Soluzione

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

PREMESSA ALLA SOLUZIONE DEL QUESITO E ESAME STATO 2010

PREMESSA ALLA SOLUZIONE DEL QUESITO E ESAME STATO 2010 PREMESSA ALLA SOLUZIONE DEL QUESITO E ESAME STATO 00 Relazione ta un aco di paallelo e l aco di equatoe compesi ta due meidiani Siano PAP e PBP due meidiani; essi deteminano sull equatoe l aco LM e su

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

L attrito. coefficiente d attrito statico. f s s N = f smax. forza normale. f d = d N. coefficiente d attrito dinamico

L attrito. coefficiente d attrito statico. f s s N = f smax. forza normale. f d = d N. coefficiente d attrito dinamico L aio coefficiene d aio aico f N = f ma foza nomale f d = d N coefficiene d aio dinamico e d dipendono dalla upeficie ma poco dall aea di conao in geneale > d e d = d () 0.05 1.5 Foze iadani b b dipende

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Parallelismo fra rette nello spazio

Parallelismo fra rette nello spazio Coso di Lauea in Disegno Indusiale Coso di Meodi Numeici pe il Design Lezione mazo Posizioni ecipoche fa ee F. Caliò Paallelismo fa ee nello spazio Lezione de Mazo Paallelismo fa ee (/) Dae due ee ( ()

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

d r da informazione r r y x Cinematica seconda parte

d r da informazione r r y x Cinematica seconda parte Cinemic econd pe Moo nello pzio e nel pino L elocià nel pino L ccelezione nel pino Moo cicole Moo cicole nifome Moo cicole nifomemene cceleo ozione eoile del moo cicole Moo pbolico Moo pbolico Moo pbolico

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

x AÔP; A(x) = 1 2 r 2 sen x r 2 sen 120 x = r 2 ( 3sen x + 3cos x); A ʹ (x) = 0 3cos x 3sen x = 0 tg x = 3 x = 60 D C

x AÔP; A(x) = 1 2 r 2 sen x r 2 sen 120 x = r 2 ( 3sen x + 3cos x); A ʹ (x) = 0 3cos x 3sen x = 0 tg x = 3 x = 60 D C 1 Fa i tiangoli isosceli inscitti in un cecio di aggio, si detemini quello di aea 1 massima. Sull aco di un settoe cicolae di aggio, cento e ampiezza π/, si penda un punto in modo ce l aea del quadilateo

Dettagli

OPERAZIONE FINANZIARIA EQUA. Per la proprietà di scindibilità della legge di capitalizzazione composta si ha:

OPERAZIONE FINANZIARIA EQUA. Per la proprietà di scindibilità della legge di capitalizzazione composta si ha: OPERAZIONE FINANZIARIA EQUA Con riferimeno ad una operazione finanziaria si dice che { x, x, K, x }/{,,, } x / = 1 2 m 1 2 K m con 1 < 2 < K< m x / è equa nell isane se x) = 0 Per la proprieà di scindibilià

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Indice. UNITÀ 12 Misura della circonferenza e area del cerchio, 1

Indice. UNITÀ 12 Misura della circonferenza e area del cerchio, 1 Indice IDEO UNITÀ 1 Misua della ciconfeenza e aea del cechio, 1 1.1 MAPPA 1. 1.3 1.4 1.5 MISURA DELLA IRONERENZA, MISURA DELL ARO DI IRONERENZA, 4 AREA DEI POLIGONI IROSRITTI A UNA IRONERENZA, 5 AREA DEL

Dettagli

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica Simulazione miniseriale dell Esame di Sao 09_ Maemaica e Fisica Problema n. q a e segue Daa la funzione b b q ' ae b Il cui segno è dao da se b 0 b b q ' ae b 0 b 0 se b 0 se b 0 b a Perano il puno di

Dettagli

2. Risolvi la seguente equazione e verifica che la sua radice è uguale alla misura del raggio di base del cilindro. + 5

2. Risolvi la seguente equazione e verifica che la sua radice è uguale alla misura del raggio di base del cilindro. + 5 Pova d esame n.. Lo sviluppo della supeficie lateale di un cono è un settoe cicolae con angolo al cento di 6 e aea di 40 π cm. alcola: (a) il aggio del cechio al quale appatiene il settoe cicolae; (b)

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

O -q -q. 4πε. 3πε C 7. p d. 2 4πε. 3 qd. Facoltà di Ingegneria Prova Scritta di Fisica II 19 settembre 2007 Compito A. Esercizio n.

O -q -q. 4πε. 3πε C 7. p d. 2 4πε. 3 qd. Facoltà di Ingegneria Prova Scritta di Fisica II 19 settembre 2007 Compito A. Esercizio n. Facoltà di Ingegneia Pova Scitta di Fisica II 9 settembe 7 Compito A C 7 ε 8.85, µ 4 N m T m A Esecizio n. Te caiche puntifomi sono disposte ai vetici di un tiangolo equilateo di lato d cm. Le caiche ()

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli