Corso di Fisica Generale 1

Documenti analoghi
Lezione 2 - Lo studio del moto

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica

Corso di Fisica Generale 1

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Cinematica. A.Solano - Fisica - CTF

Cinematica nello Spazio

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Riassunto. Moto di caduta libera 2D: moto di un proiettile Moto relativo 1 / 68

Corso di Fisica Generale 1

Analisi del moto dei proietti

1 di 5 12/02/ :23

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Note a cura di M. Martellini e M. Zeni

VETTORE POSIZIONE E VETTORE SPOSTAMENTO

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano.

Corso di Fisica Generale 1

Corso di Fisica Generale 1

Fisica Dinamica del punto

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

Cinematica in due o più dimensioni

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile

Meccanica del punto materiale

MOTO RETTILINEO UNIFORMEMETE ACCELERATO

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Problemi di dinamica

Corso di Fisica Generale 1

Corso di Fisica Generale 1

Corso di Fisica Generale 1

Corso di Fisica Generale 1

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Moto rettilineo uniformemente accelerato

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

Nozioni di meccanica classica

4. I principi della meccanica

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

LE FORZE E IL MOTO. Il moto lungo un piano inclinato

Principio di inerzia

Dinamica: Forze e Moto, Leggi di Newton

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Moto uniforme. Moto dei proiettili

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

MOTO CIRCOLARE UNIFORME

Meccanica (3) Le leggi del moto di Newton Lezione 4, 9/10/2018, JW

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Cinematica del punto materiale

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI

Moto piano: componenti polari dell accelerazione Scriviamo l accelerazione nelle sue componenti polari (cosa utile per i moti circolari) ds dt = v R

Lezione 3 Dinamica del punto

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Esercizio 5. Risoluzione

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Cinematica dei moti relativi

Dinamica. Giovanni Torrero maggio 2006

Lezione 2 Legge di Newton e sue applicazioni

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Esercizi di dinamica

SOLUZIONI a) Tracciamo il diagramma delle forze in un generico punto sulla traiettoria:

Unità 8 I princìpi della dinamica

Corso di Fisica Generale 1

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i

P = r. o + r. O + ω r (1)

Dinamica. A.Solano - Fisica - CTF

ds dt = v R per cui si ottiene RûN = a T + a N RûN accelerazione centripeta e a c =

Esperimento ideale di Galileo

1 Fisica 1 ( )

Monaco Alfonso. Cinematica 2d

Simulazione Prova Parziale Fisica

Cinematica del punto. Moto nel piano. Dott.ssa Elisabetta Bissaldi

O + ω r (1) Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due:

Introduzione alla Meccanica: Cinematica

GRANDEZZA FISICA. EQUAZIONI DIMENSIONALI controllo omogeneità relazioni COSTANTI FONDAMENTALI

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

CINEMATICA. Prof Giovanni Ianne

Lezione 7: Prima e seconda legge del moto

Corso di Fisica Esercizi

Moto del Punto - Cinematica del Punto

LE CAUSE DEL MOTO 1. I PRINCIPI DELLA DINAMICA. La dinamica. Il primo principio della dinamica (o principio di inerzia)

Moti relativi. Cenni. Dott.ssa Elisabetta Bissaldi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. MECCANICA: La Cinematica bidimensionale. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto Oggetto: corso chimica-fisica. Esercizi: Dinamica

La lezione di oggi. Urti. Quantità di moto. Cinematica rotazionale

Esercizio 2 Un ascensore sale con accelerazione a=1.22m/s 2. Nell istante in cui la sua velocità è v 0 = 2.44m/s, un bullone mal fissato cade dal soff

parametri della cinematica

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

CORNELIUS ESHER

Fisica per Farmacia A.A. 2018/2019

1 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2018/2019, 11 febbraio 2019

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Corso di Fisica generale

Transcript:

Corso di Fisica Generale 1 a.a. 2018/2019 corso di laurea in Ingegneria dell'automazione, Informatica, Biomedica, Telecomunicazioni ed Elettronica canali CIS-FER e RON-Z 5 lezione (15 e 17/ 10 / 2017) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it Pagina web : www.docenti.unina.it/laura.valore Ricevimento : appuntamento per email studio presso il Dipartimento di Fisica (Complesso Universitario di Monte Sant'Angelo, Edificio 6) stanza 1H09 Oppure Laboratorio (Hangar) 1H11c0

Moto dei proiettili Una particella si dice che segue il moto del proiettile quando si muove su un piano bidimensionale, sottoposta all'accelerazione di gravità e con velocità iniziale v 0 = v 0x i + v 0y j Ad esempio, il moto di una palla da tennis lanciata con una certa velocità iniziale ed in caduta libera segue il moto di un proiettile. grafico della traiettoria nel piano xy del moto del proiettile

Il moto dei proiettili Nel moto del proiettile il moto orizzontale ed il moto verticale sono indipendenti l'uno dall'altro Li trattiamo separatamente, nessuno dei due influenza l'altro θ a = -g il moto dei proiettili è la combinazione di un moto verticale ad accelerazione costante ed un moto orizzontale a velocità costante

Moto orizzontale L'accelerazione in direzione orizzontale è nulla, la velocità è costante e quindi valgono le leggi del moto rettilineo uniforme : v x = costante = v 0x = v 0 cosθ 0 v x = v 0 cosθ 0 x(t) = x 0 + v x t x(t) x0 = (v 0 cosθ 0 )t θ 0

Moto verticale L'accelerazione in direzione verticale è a = -g : quindi lungo l'asse y valgono le leggi del moto rettilineo uniformemente accelerato, in particolare quelle del moto in caduta libera : a y = costante = -g v y (t) = v 0y - gt = (v 0 senθ 0 ) - gt è lo stesso moto che segue una palla lanciata verso l'alto : la sua v è inizialmente diretta verso l'alto, si annulla nel punto piu' alto della traiettoria y(t) = y 0 + v 0y t ½ gt 2 y(t) y 0 = (v 0 senθ 0 )t 1/2gt 2 θ 0

è un'equazione di secondo grado: y = ax 2 + bx + c descrive, come atteso, il moto lungo una parabola (traiettoria parabolica) Equazione della traiettoria L'equazione che descrive nel piano xy il percorso (traiettoria) del proiettile si ottiene eliminando il tempo tra le equazioni che descrivono lo spostamento in x ed y 1. x(t) x 0 = (v 0 cosθ 0 )t 2. y(t) y 0 = (v 0 senθ 0 )t 1/2gt 2 posto x 0 =0 ed y 0 =0 dalla 1. t = x/(v 0 cosθ 0 ) y = x (v 0 senθ 0 )/(v 0 cosθ 0 ) ½ g (x/(v 0 cosθ 0 )) 2 y = tanθ 0 x ½ g x 2 / (v 0 cosθ 0 ) 2

Gittata La gittata R del proiettile è la distanza orizzontale percorsa misurata nel momento in cui il proiettile ripassa per la quota di partenza x(t) x 0 = (v 0 cosθ 0 )t = R gittata y(t) y 0 = (v 0 senθ 0 )t 1/2gt 2 = 0 partenza ed arrivo alla stessa quota eliminiamo il tempo tra queste due equazioni : dalla 2. t = 2v 0 senθ 0 /g R = v 0 cosθ 0 2v 0 senθ 0 /g = (2v 0 2senθ 0 cosθ 0 )/g siccome 2senθ 0 cosθ 0 = sen2θ 0 R = (v 02 /g) sen2 sen2θ 0 R R ha valore massimo per sen2θ =1, 0 ovvero per 2θ 2 =90 θ =45 0 0

Moto circolare uniforme Una particella si muove di moto circolare uniforme se si muove su una circonferenza o su un arco di circonferenza e la sua velocità ha modulo costante vettore accelerazione rivolto verso il centro a > a a v vettore velocità tangente alla traiettoria Anche se la velocità scalare non varia, la particella è sottoposta ad un'accelerazione Questo è vero perché la velocità è un VETTORE, basta che cambi la sua direzione perché ci sia una variazione di velocità

Moto circolare uniforme Al procedere della particella lungo la circonferenza, il modulo dei vettori v ed a resta costante, ma la direzione di entrambi varia continuamente l'accelerazione è detta centripeta a > a a v vettore velocità tangente alla traiettoria leggi del moto circolare uniforme : a = v 2 /r (accelerazione centripeta) T = 2πr/v (periodo = tempo che impiega la particella a compiere una circonferenza di raggio r)

Verifica Un corpo percorre con velocità scalare costante una traiettoria circolare sul piano xy, con centro nell'origine. Quando il corpo si trova ad x = -2 m, la sua velocità è v = (-4 m/s)j quali sono (a) la velocità (b) l'accelerazione centripeta quando si trova a y = 2 m?

Verifica Un corpo percorre con velocità scalare costante una traiettoria circolare sul piano xy, con centro nell'origine. Quando il corpo si trova ad x = -2 m, la sua velocità è v = (-4 m/s)j quali sono (a) la velocità (- 4 m/s)i l'accelerazione centripeta (- 8 m/s 2 )j quando si trova a y = 2 m?

Dimostrazione che a = v 2 /r y P r θ xp yp x consideriamo il punto P sulla traiettoria circolare. Rispetto al sistema di coordinate scelto, la posizione di P è individuata dal vettore r r = xp i + yp j il vettore r forma un angolo θ con il semiasse positivo delle x.

Dimostrazione che a = v 2 /r y v θ r θ xp yp P x consideriamo il punto P sulla traiettoria circolare. Rispetto al sistema di coordinate scelto, la posizione di P è individuata dal vettore r r = xp i + yp j il vettore r forma un angolo θ con il semiasse positivo delle x. Consideriamo il vettore v : v ha modulo costante e direzione tangente alla traiettoria nel punto P. L'angolo che il vettore v forma con la direzione dell'asse y è di nuovo θ

Dimostrazione che a = v 2 /r y r θ xp v θ yp P x v v x θ v y v = v x i + v y j = (-vsenθ)i + (vcosθ)j considerando la relazione tra r, senθ e cosθ, possiamo scrivere : senθ = y p /r e cosθ = x p /r sostituendo : v = (-v y p /r) i + (v x p /r) j a = dv/dt = (-v/r) (dy p /dt) i + (v/r) (dx p /dt) j componenti v x e v y della velocità

Dimostrazione che a = v 2 /r y a x v θ φ r θ xp yp P x a a y Componenti scalari della velocità : v x = -vsenθ v y = vcosθ a = dv/dt = (-v/r) (v y ) i + (v/r) (v x ) j = (-v 2 /r)(cosθ)i + (-v 2 /r)(senθ)j il modulo di a è : a = a 2 2 x + a = v2 y /r (cosθ) 2 + (senθ) 2 = v 2 /r la direzione di a è data dall'angolo φ : tanφ = a y /a x = (-v 2 /r)(senθ)/(-v 2 /r)(cosθ) = tanθ a ha la stessa direzione del raggio r, verso il centro della circonferenza =1

Esercizi moto circolare uniforme e moto del proiettile 4.34 La ruota panoramica di un luna park ha un raggio di 15 m e compie ogni minuto 5 giri intorno al proprio asse orizzontale. Qual è : 4.38 Il modulo e la direzione dell accelerazione centripeta nel punto piu alto? E nel punto piu basso? Un ragazzino fa ruotare un sasso legato ad una cordicella lunga 1,5 m su una circonferenza orizzontale a 2,0 m da terra. La cordicella si rompe ed il sasso fila via orizzontalmente andando a cadere a 10 m di distanza orizzontale. Qual era l accelerazione centripeta del sasso in moto circolare?

Moto relativo unidimensionale Il sistema di riferimento A è fermo. Il sistema di riferimento B si muove rispetto ad A (moto lungo l asse x) A e B osservano l'oggetto P che si muove rispetto ad entrambi y A y B P x PB x B x PA x x A PA = x PB + x BA quindi la posizione di P misurata nel sistema di riferimento A è uguale alla posizione di P misurata nel sistema di riferiemento B piu' la posizione del sistema B rispetto al sistema A

Moto relativo unidimensionale velocità Il sistema di riferimento A è fermo. Il sistema di riferimento B si muove rispetto ad A (moto lungo l asse x) A e B osservano l'oggetto P che si muove rispetto ad entrambi y A y B P v BA x PB x BA x PA = x PB + x BA d/dt (x PA ) = d/dt (x PB ) + d/dt ( x BA ) v PA = v PB + v BA v BA indica la velocità con cui il sistema B si muove rispetto ad A

Moto relativo unidimensionale accelerazione consideriamo il caso in cui il sistema B si muove rispetto ad A a velocità costante (v BA = costante) L'oggetto P invece ha velocità variabile. y A y B P x PB x B x BA d/dt (v PA ) = d/dt (v PB ) + d/dt ( v BA ) x PA x A a PA = a PB v BA è costante, quindi a BA = 0

Moto relativo unidimensionale Osservatori posti in diversi sistemi di riferimento (aventi velocità relative costanti) misureranno la stessa accelerazione per una particella in movimento La velocità di un oggetto dipende dal sistema di riferimento della persona che la sta misurando y A y B P v BA x PB x BA x PA = x PB + x BA v PA = v PB + v BA a PA = a PB

Moto relativo bidimensionale il sistema di rif. B si muove rispetto ad A con velocità v BA = costante assumiamo che gli assi x ed y restino paralleli tra loro nello spostamento P r PB r PA r BA sist. di rif. B sist. di rif. A r PA = r PB + r BA v PA = v PB + v BA v BA = cost a PA = a PB

Dinamica Finora abbiamo studiato la cinematica, ovvero la branca della meccanica che classifica e studia i vari tipi di moto senza pero' investigarne le cause Ora passiamo alla dinamica, che ne studia le cause la grandezza fisica capace di provocare un'accelerazione, quindi di variare la velocità di un corpo, è detta FORZA meccanica newtoniana : insieme delle relazioni tra forze ed accelerazione introdotte da Newton a fine 1600 e valide nei sistemi di riferimento inerziali

Forza è una grandezza vettoriale F modulo, direzione e verso quando due o piu' forze agiscono su un corpo, possiamo comporle per trovare la risultante delle forze una sola forza con modulo, direzione e verso della risultante delle forze produce sul corpo lo stesso effetto che verrebbe prodotto dalle forze componenti agenti tutte insieme su di esso l'unità di misura si definisce in base all'accelerazione che è in grado di imprimere su un campione di riferimento : il Newton (N) = 1 kg m/s 2 principio di sovrapposizione delle forze stiamo esercitando su un corpo di 1 kg una forza il cui modulo è pari ad 1 N se questo subisce un'accelerazione di 1 m/s 2

Prima legge di Newton principio d'inerzia Se date una spinta ad un oggetto (ad esempio un disco metallico) per fargli prendere velocità, cosa succede? Si ferma o continua a muoversi?

Prima legge di Newton principio d'inerzia Se date una spinta ad un oggetto per fargli prendere velocità, cosa succede? Si ferma o continua a muoversi? Dipende dalla superficie! 1. sull'asfalto 2. su una superficie ghiacciata 3. su un piano provvisto di fori che creano un cuscino d'aria tra il disco metallico e la superficie

Prima legge di Newton principio d'inerzia Se su una superficie senza attrito date una spinta ad un oggetto per fargli prendere velocità, cosa succede? Si ferma o continua a muoversi? in una situazione ideale, in cui non c'è attrito, se su un corpo la risultante delle forze agenti è zero : se è fermo resterà fermo ; se si sta muovendo, continuerà a muoversi con la stessa velocità (modulo, direzione e verso) ovvero, il corpo non puo accelerare, si muove di moto rettilineo uniforme

Prima legge di Newton principio d'inerzia In un sistema di riferimento inerziale, un corpo permane nel suo stato di quiete o di moto rettilineo uniforme se la risultante delle forze agenti su di esso è nulla 1. possono agire anche piu' forze contemporaneamente su un corpo, purché la risultante sia nulla 2. il corpo non accelera, quindi la sua velocità non varia : se è fermo resta fermo, se è in moto rettilineo uniforme continua con la sua velocità (vettoriale) costante. 3. cos'è un sistema di riferimento inerziale? un sistema di riferimento è detto INERZIALE se in esso vale il principio d'inerzia, ovvero se vale la prima legge di Newton

Sistemi di riferimento inerziali La Terra è un sistema di riferimento inerziale? Possiamo dire che la Terra approssima un sistema di riferimento inerziale. Per piccoli spostamenti, possiamo trascurare gli effetti del moto astronomico della Terra (rotazione e rivoluzione). Per grandi spostamenti, la rotazione terrestre provoca deviazioni apparenti sembra che forze apparenti entrino in gioco causando queste deviazioni dal moto rettilineo. In realtà accade perché siamo in un s. di r. NON INERZIALE

Verifica : risultante delle forze

La massa La massa è una caratteristica intrinseca di un corpo, e mette in relazione la forza applicata al corpo con l'accelerazione che ne risulta Se proviamo ad imprimere la stessa accelerazione ad un pallone da calcio o ad una pallina da tennis dosiamo diversamente la forza! Questo perché i due corpi hanno masse diverse l'accelerazione subita da un corpo, a parità di forza applicata, è inversamente proporzionale alla sua massa : tanto piu' piccola è la massa (pallina da tennis) tanto maggiore sarà l'accelerazione...

Seconda legge di Newton La risultante delle forze agenti su un corpo è uguale a prodotto della sua massa per l'accelerazione assunta dal corpo La risultante delle forze agenti su un corpo è uguale a prodotto della sua F = mam Attenzione! Parliamo della risultante delle forze che agiscono sul corpo : quelle che non agiscono sul corpo in oggetto non hanno alcuna influenza sul suo moto!! F = ma F x = m a x F y = m a y F z = m a z La risultante delle forze agenti lungo l'asse x genera la componente x dell'accelerazione. E' indipendente da quello che accade lungo gli altri assi!

Seconda legge di Newton La risultante delle forze agenti su un corpo è uguale a prodotto della sua massa per l'accelerazione assunta dal corpo La risultante delle forze agenti su un corpo è uguale a prodotto della sua F = mam Se F è nulla, a è nulla F nulla vuol dire che eventuali piu' forze agenti su un corpo devono compensarsi, e quindi le forze sono in EQUILIBRIO tra loro (o che si elidono) Un insieme di due o piu' corpi è detto sistema di corpi. Tutte le forze che oggetti al di fuori del sistema esercitano sul sistema sono dette FORZE ESTERNE : non prendiamo in considerazione per ora le FORZE INTERNE al sistema, ovvero quelle che agiscono tra i corpi che costituiscono il nostro sistema.

Verifica 2 Due forze F1 ed F2 agiscono su un blocco posto su un piano senza attrito come in figura : quali sono l'intensità ed il verso di una terza forza F3 se a) il blocco resta fermo b) il blocco si muove verso sinistra con velocità costante v = 5 m/s? F1 = 3 N F2 = 5 N

Verifica 2 Due forze F1 ed F2 agiscono su un blocco posto su un piano senza attrito come in figura : quali sono l'intensità ed il verso di una terza forza F3 se a) il blocco resta fermo F3 = - 2N b) il blocco si muove verso sinistra con v = 5 m/s? F3 = - 2N la velocità è costante e quindi l'accelerazione è nulla! La risultante delle forze è sempre 0. F1 = - 3 N F2 = + 5 N x

Problema svolto 5.1 Un disco da hockey si muove su una superficie senza attrito in moto unidimensionale lungo l'asse x. massa m = 0.20 kg F1 = 4,0 N, F2 = 2,0 N, F3 = 1 N (direzione e verso nel grafico) trovare a nei tre casi in figura a) F1 b) F2 F1 c) F2 F3 Θ = 30

Esercizio 5.4 m = 120 kg F1 = 32 N y F2 = 55 N F3 = 41 N θ 1 = 30, θ 3 = 60 F1 θ 1 F2 determinare a θ 3 F3 x