Laboratorio di Ottica e Spettroscopia

Documenti analoghi
Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

Laboratorio di Ottica, Spettroscopia, Astrofisica

Esperimento di Ottica

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW

Lucegrafo. IV a Esperienza del Laboratorio di Fisica Generale II. Teoria. Principio di Huygens

INTERFERENZA - DIFFRAZIONE

Ottica fisica - Interferenza

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

La diffrazione - guida

Principio di Huygens principio di Huygens

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

INTERFERENZA E DIFFRAZIONE

Ottica fisica - Diffrazione

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

FAM. 2. Calcola l intensità media Ī nel caso di un onda piana (longitudinale) e nel caso di un onda sferica ad una distanza di 100m dalla sorgente.

specchio concavo Immagine diffusa da una sorgente S

Diffrazione della luce

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON "Competenze per lo sviluppo" Bando 2373

nasce la spettroscopia come tecnica di analisi chimica

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo.

specchio concavo Immagine diffusa da una sorgente S

Laboratorio di onde II anno CdL in Fisica

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Cosa si intende per onda?

caratteristiche della onde:, T, y = f(x,t) onda unidimensionale

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Onde elettromagnetiche

ΔΦ = 0, 2π, Interferenza totalmente costruttiva: totalmente distruttiva: ΔΦ = π, 3π,

Animazioni e Simulazioni in rete su: Interferenza e Diffrazione della luce tramite l esperimento di Young

Un percorso di ottica parte III. Ottica ondulatoria

DIFFRAZIONE. deviazione rispetto alla traiettoria rettilinea dell ottica geometrica

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

SPETTROSCOPIO A RETICOLO

Principio di Huygens

suono alcuni suoni balenottera capodoglio delfino orca nave passeggeri megattera terremoto

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

Interferenza da doppia fenditura

INTERFERENZA DELLA LUCE. Giuseppe Molesini

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Principio di Huygens

Le derivate seconde compaiono alla prima potenza per cui è un'equazione lineare! Se y 1. sono soluzioni anche una qualsiasi loro combinazione lineare

La diffrazione della luce CNR-INOA

Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia

DIMOSTRAZIONE DELLA NATURA ONDULATORIA DELLA LUCE E DETERMINAZIONE DELLA LUNGHEZZA D ONDA.

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A

La diffrazione della luce

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

Profili di trasmissione dei filtri interferenziali del telescopio PSPT

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

4.4 Reticoli Capitolo 4 Ottica

- hanno bisogno di un mezzo elastico per propagarsi

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria

Liceo Scientifico Severi Salerno

LE ONDE. Il moto armonico 15/02/2016

a.s. 2018/2019 PROGRAMMA SVOLTO

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

4.5 Polarizzazione Capitolo 4 Ottica

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

INTERFERENZA 1. Allora la luce totale emessa, data dalla somma delle onde luminose emesse dai singoli atomi, NON SARA' POLARIZZATA

Intensità figura di diffrazione da una fenditura

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in

Interferenza e diffrazione

sia fa(a la luce, e la luce fu. Genesi, 1,3

PRINCIPIO DI HUYGENS E PROPAGAZIONE DELLE ONDE

Unità 17. Le onde luminose

La diffrazione. Lezioni d'autore

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

FIGURE DI DIFFRAZIONE. SCOPO DELL ESPERIMENTO: Analisi della figura di diffrazione della radiazione luminosa prodotta da una fenditura.

Laboratorio di Ottica, Spettroscopia, Astrofisica

SPETTROSCOPIA CON IL RETICOLO DI DIFFRAZIONE ( 14.7) (*)

Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016

DIFFRAZIONE ED INTERFERENZA

Lezioni LINCEI per la Scuola La Spettroscopia

Master Class di Ottica. Interferenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Prerequisiti Lezione 1. Ripasso

Interferenza da doppia fenditura

Laboratorio di analisi dati: esperienza di OTTICA

Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010

Interferenza della luce

Unità 2. La teoria quantistica

Laboratorio di Ottica, Spettroscopia, Astrofisica

Problemi di Fisica. ONDE Le onde luminose

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens)

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013

Interferenza Interferenza.

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali:

ISTITUTO SUPERIORE VIA SILVESTRI

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2016

Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione

Transcript:

Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo

Sommario 4 a lezione Prima parte Riassunto dei principi di diffrazione e interferenza Descrizione delle esperienze da svolgere (Laboratorio II) Cenni di teoria della misura (incertezze su grandezze derivate) Seconda parte Svolgimento delle esperienze

Il principio di Huygens La luce si propaga come un onda: ogni punto raggiunto da un fronte d onda, generata da una sorgente primaria, si comporta come una sorgente (secondaria) puntiforme di luce con le stesse caratteristiche (lunghezza d onda, velocità di propagazione e fase). La composizione di tutte le onde secondarie genera il fronte d onda successivo.

Principio di sovrapposizione e interferenza Il segnale generato da due onde che si incontrano in un punto dello spazio ad un certo tempo è data dalla somma algebrica delle ampiezze dei segnali delle due onde Un onda che mantiene nel tempo la stessa fase si dice coerente Un onda caratterizzata da una singola lunghezza d onda (o frequenza) si dice monocromatica La sovrapposizione di onde monocromatiche e coerenti genera una figura d interferenza

Esperienza di Young Sommando la luce proveniente da due sorgenti (fenditure) vicine tra loro si ottiene una figura composta da frange d interferenza

Interpretazione dell esperienza di Young La distanza del punto P dall asse è y = L tg Si verifica interferenza costruttiva nei punti P dove sen = /d = m /d con (m = 0, 1, 2, ) Si verifica interferenza distruttiva nei punti P dove sen = /d = (m+½) /d

Esperienze di diffrazione Se si usa una sorgente monocromatica (laser) e la fenditura è abbastanza stretta, si crea una figura di diffrazione

Diffrazione da singola fenditura

Diffrazione: alcune formule Condizione per il primo minimo (frangia scura) in una figura di diffrazione da una fenditura di ampiezza a: a sin θ = λ (θ è l angolo rispetto all orizzontale) Se θ (in radianti) è piccolo sin θ θ quindi θ λ / a Ampiezza angolare della frangia centrale generata dalla fenditura: 2 θ 2 λ / a Distanza tra i due minimi d intensità su uno schermo a distanza L dalla fenditura D = 2 L tg θ 2 L θ

Principio di Babinet La figura di diffrazione generata da un qualunque ostacolo opaco (di dimensione confrontabile con la lunghezza d onda della radiazione incidente) è la stessa della figura di diffrazione generata da una barriera con un apertura della stessa forma e dimensione dell ostacolo Spiegazione qualitativa: Una fenditura genera diffrazione Se copro la fenditura ottengo zero segnale trasmesso Se tolgo tutto tranne il rettangolo della fenditura ottengo di nuovo diffrazione Per ottenere zero nel secondo caso, i segnali nel primo e terzo caso devono essere uguali e opposti E fenditura = -E barriera Siccome l intensità è proporzionale al quadrato del segnale, sarà identica nel primo e nel terzo caso

Caso generale: due fenditure di ampiezza non trascurabile Primo minimo a sen = Massimo centrale (ordine zero) Massimo del primo ordine d sen = Profilo dovuto alla diffrazione Distanza dei minimi legata all ampiezza a delle fenditure Struttura fine dovuta a interferenza Distanza dei minimi legata alla separazione d delle fenditure

Diffrazione da un sistema di fenditure Una serie di numerose fenditure (o solchi) finemente spaziate costituisce un reticolo di diffrazione Ciascuna delle fenditure (o solchi), quando viene illuminato da radiazione monocromatica coerente, diventa a sua volta una sorgente (principio di Huygens); tutti i segnali si sommano (con il segno stabilito dalla fase) quando raggiungono lo schermo (rivelatore) Condizione per l interferenza costruttiva lungo la direzione di dispersione : d sen θ = m λ con m = 0, 1, 2, (ordini spettrali) Conoscendo la lunghezza d onda λ della radiazione del laser, dalla misura degli angoli θ per i quali si verifica interferenza costruttiva è possibile ricavare la separazione d delle fenditure (o dei solchi) Effettuare l esperienza prima con un CD-ROM e poi con un DVD. Quanto diversa è la spaziatura dei solchi?

Laboratorio II Conoscendo la lunghezza d onda λ, dalle misure della distanza dell oggetto dallo schermo, L, e delle posizioni delle frange di diffrazione, y m, possiamo ricavare la dimensione dell oggetto (spessore del capello o spaziatura dei solchi del CD- ROM

Laboratorio II Primo passo: spellare un CD-ROM e ritagliarne un frammento vicino al bordo (1 2 cm di larghezza); posizionarlo davanti al laser Secondo passo: misurare la distanza L del campione dallo schermo e la distanza y m degli ordini m = 1, 2 dall asse (ordine zero); ripetere le misure utilizzando i laser verde e rosso; ripetere l esperienza con un frammento di DVD Terzo passo: Derivare la spaziatura dei solchi utilizzando le formule della diffrazione da un reticolo e stimare l incertezza sulla misura

Relazione sull esperienza Titolo: Misura di oggetti microscopici tramite tecniche di diffrazione Autori: Nome, cognome e classe dei membri del gruppo Descrivete in breve la motivazione scientifica (diffrazione della luce) Descrivete in una frase lo scopo dell esperienza Ponete un eventuale domanda a cui rispondere Svolgimento: Descrizione dell'attrezzatura Descrizione degli oggetti da misurare (cosa, quanti esemplari, scelti come, ecc.) Descrizione delle modalità di misura Metodo di valutazione delle incertezze sulle misure e sulle quantità derivate Risultati: Tabella delle misure Calcolo delle grandezze e quantità derivate Confronto dei risultati per i vari esemplari Conclusione: sintesi dei risultati e risposta sintetica alla domanda. Progetto Lauree Scientifiche - Laboratorio di Ottica e Spettroscopia 2011

Tabella dei risultati Oggetto (CD-ROM o DVD) Osservatore 1, 2, 3,, N Marco Distanza oggettoschermo (L) Distanze dei vari ordini dall asse (y m ) Valori medi e incertezze Giovanni Enrico <y m > ± Δy m ecc.