Dispense di IDRAULICA (2007)



Documenti analoghi
Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI

Macchine. 5 Esercitazione 5

Studio grafico-analitico di una funzioni reale in una variabile reale

4.2 IL PRINCIPIO DEI LAVORI VIRTUALI 4.1 INTRODUZIONE

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 13: 24 aprile 2013

Dinamica del corpo rigido

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

LA COMPATIBILITA tra due misure:

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Dinamica dei sistemi particellari

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

MODELLISTICA DI SISTEMI DINAMICI

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Università di Napoli Parthenope Facoltà di Ingegneria

La retroazione negli amplificatori

Sensori meccanici. Caratterizzazione dei sensori meccanici: principio di funzionamento e grandezza misurata

Antonio Boezio Alessandro Lanave Meep. Teoria, sintassi ed esercizi progettuali

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

Dispense di Meccanica dei Fluidi (2006)

Strutture deformabili torsionalmente: analisi in FaTA-E

Progetto Lauree Scientifiche. La corrente elettrica

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

FLUIDODINAMICA. (Giovanni Paolo Romano)

Elasticità nei mezzi continui

Elettricità e circuiti

Statistica e calcolo delle Probabilità. Allievi INF

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Rotazione di un corpo rigido intorno ad un asse fisso

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Dai circuiti ai grafi

Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa Esercitazione: 4 aprile 2013

Condensatori e resistenze

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Algebra Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Corrente elettrica e circuiti

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.6. Le macchine termiche semplici e l analisi di disponibilità

Risoluzione numerica di problemi differenziali alle derivate parziali

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

6.1- Sistemi punti, forze interne ed esterne

Dispense di IDRAULICA per gli studenti del nuovo ordinamento

Trigger di Schmitt. e +V t

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi

Circuiti di ingresso differenziali

Induzione elettromagnetica

6 Prodotti scalari e prodotti Hermitiani

Elementi di strutturistica cristallina I

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Elementi di Algebra e Analisi Tensoriale

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

Soluzione esercizio Mountbatten

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc /2007

Cinematica ed altre nozioni introduttive

Prova di verifica n.0 Elettronica I (26/2/2015)

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Statistica di Bose-Einstein

Intorduzione alla teoria delle Catene di Markov

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

Sistemi punti, forze interne ed esterne

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

Problemi variazionali invarianti 1

links utili:

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

Aritmetica e architetture

Il diagramma PSICROMETRICO

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

Relazioni tra variabili: Correlazione e regressione lineare

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

9.6 Struttura quaternaria

Complementi 4 - Materiali non isotropi

MACROECONOMIA A.A. 2014/2015

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

3. Esercitazioni di Teoria delle code

Calibrazione. Lo strumento idealizzato

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

E. Il campo magnetico

UNIVERSITÀ DEGLI STUDI DI TERAMO

Università degli Studi di Urbino Facoltà di Economia

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Propagazione delle incertezze

Calcolo della caduta di tensione con il metodo vettoriale

Lez. 10 Forze d attrito e lavoro

Economie di scala, concorrenza imperfetta e commercio internazionale

Transcript:

Gorgo Qerzol Dspense d IDRAULICA (7) Unverstà degl Std d Caglar Facoltà d Ingegnera Dpartmento d Ingegnera del Terrtoro

... Infne c'è n problema fsco comne a molt camp, molto antco e non ancora rsolto. Non è l problema d trovare nove partcelle fondamental, ma qalcosa d lascato n sospeso molto tempo fa, pù d cento ann. Nessno è ma rscto ad analzzarlo matematcamente n modo soddsfacente, nonostante la sa mportanza nelle scenze affn alla fsca: è l'anals de flss vortcos o flss trbolent. Osservando l'evolzone d na stella s arrva n pnto n c s capsce che sta per nzare la convezone, e po non s resce a prevedere pù nente. Qalche mlone d ann pù tard la stella esplode, ma non s resce a darne na ragone. Non rscamo ad analzzare fenomen meteorologc. Non conoscamo meccansm de mot che avvengono all'nterno della Terra. La forma pù semplce del problema è: s prende n tbo lngo e s pompa dentro d esso ad alta veloctà. C chedamo: per spngere na data qanttà d'acqa lngo l tbo qanta pressone c vole? È mpossble stablrlo a partre da prncp elementar e dalle propretà dell'acqa. Se l'acqa scorre lentamente oppre se s sa n lqdo vscoso come l mele, allora s resce a fare benno, lo troverete s qalsas lbro d testo. Qello che propro non s resce a fare è analzzare l'acqa vera, qella bagnata, che scorre n n tbo. Ecco l problema centrale che n gorno o l'altro dovremo rscre a rsolvere.... Rchard P. Feynman (Nobel per la fsca nel 965) da: Se pezz facl, Ed. Adelph, Nella stesra d qeste dspense, che voglono solo essere n aslo ed n rfermento per ch prepara l esame e non n testo completo sll argomento, sono stat tratt spnt dalle lezon d Meccanca de Fld tente dal professor Antono Cenedese presso la Facoltà d Ingegnera dell Unverstà degl Std d Roma La Sapenza, e da qelle d Idralca tente dal professor Bernardo de Bernardns presso la Facoltà d Ingegnera dell Unverstà degl Std d Roma Tor Vergata. - -

G. Qerzol Dspense d Idralca. RICHIAMI DI ANALISI TENSORIALE.. Introdzone I fenomen fsc sono rappresentabl n no spazo vettorale trdmensonale nel qale s sppone valda la geometra ecldea. Le qanttà fsche che caratterzzano fenomen sono dnqe fnzone delle coordnate d n generco pnto (,, ) e del tempo, t. In qesto spazo le grandezze fsche sono rappresentate attraverso enttà matematche dverse a seconda delle propretà geometrche attraverso le qal sono defnte: gl scalar sono assocat ad n pnto dello spazo e s defnscono attraverso n nmero reale; vettor sono assocat ad n pnto e ad na drezone orentata, e s defnscono attraverso nmer real, le component del vettore, organzzat n na matrce ; v v v ; v tensor sono assocat ad n pnto dello spazo e a drezon orentate, e sono defnt per mezzo d 9 nmer real, le component del tensore, organzzat n na matrce : a a a a a a a. a a a In modo pù generale s pò dre che la descrzone de fenomen è effettata attraverso tensor d dfferente ordne, d, che, nello spazo a tre dmenson, sono defnt medante d nmer real (le component). Pertanto no scalare pò essere consderato n tensore d ordne zero; n vettore, n tensore d ordne, mentre tensor d ordne sono spesso chamat semplcemente tensor. Per poter tlzzare qeste enttà è necessaro defnre le operazon che possono essere effettate e le legg secondo le qal s trasformano le loro component n n cambamento d sstema d rfermento... Operazon tra tensor Rchamamo brevemente le prncpal operazon che possono essere effettate con tensor. - -

G. Qerzol Dspense d Idralca... Somma La somma pò essere effettata solo tra tensor dello stesso ordne e fornsce ancora n tensore dello stesso ordne degl addend e che ha per component la somma delle component omologhe degl addend: c a b c a b (vettor) oppre c a b c a b (tensor)... Moltplcazone per no scalare Moltplcare n tensore per no scalare corrsponde a moltplcare cascna componente del tensore per lo scalare: c a b c a b (vettor) oppre c a b c a b (tensor)... Prodotto Il prodotto tra tensor s effetta effettando l conseto prodotto rghe per colonne tra le matrc delle component. Se ndchamo con A, B e C, rspettvamente, le matrc delle component del tensore a, b e c, s ha: o, segendo la notazone d Ensten: c a b C A B c a k b k c a k k, secondo la qale s sottntende la sommatora sgl ndc rpett allo stesso membro d na eqazone, se tale ndce non compare anche nell altro membro dell eqazone. Secondo le stesse regole s moltplca n vettore per n tensore: b k c a b c a b, a b...4. Prodotto scalare Il prodotto scalare tra de tensor è dato dalla somma de prodott delle component omologhe: c a b c, a b a b (vettor) c a : b c a b a,, b (tensor) - 4 -

G. Qerzol Dspense d Idralca..5. Prodotto esterno Permette d ottenere n tensore a partre da de vettor: c a b c a b.. Operator d Kronecker e d Rcc Il delta d Kronecker, δ, che s pò rconoscere essere n tensore del secondo ordne, è defnto n modo che, n qalsas sstema d rfermento, rslt: δ se ; () δ se. La matrce delle se component non è altro che la matrce denttà: I. Pertanto, se s moltplca δ per n tensore caratterzzato dall'avere no de pedc concdente con no de pedc del delta d Kronecker, s prodce na varazone del pedce del tensore stesso: a k δ a k () L operatore d Rcc, ε k, è defnto n modo che, n qalsas sstema d rfermento, rslt: ε k ε k - ε k se ; ; k se ; ; k se ; ; k se ; ; kse no de pedc è rpetto () se ; ; k se ; ; k.4. Sstem d rfermento ortonormal In no spazo trdmensonale ttt vettor possono essere espress come combnazone lneare d na terna d vettor, lnearmente ndpendent tra loro, che costtscono na base. Qnd, se c, c e c sono tal che l determnante: det(c C C ) (avendo ndcato con C la matrce colonna delle coordnate del vettore c ), allora, per ogn ogn vettore, v: v v c (4) ed coeffcent v costtscono le component del vettore v nel sstema d rfermento {c }. Se vettor della base sono ortogonal tra loro: - 5 -

G. Qerzol Dspense d Idralca c c per (5) c c per l sstema s dce ortogonale. Se noltre vettor della base hanno modlo ntaro (sono qnd de versor): c c δ (6) allora la base vene detta ortonormale, ed l sstema d rfermento cartesano. Ne captol sccessv, tranne dversa ndcazone, tlzzeremo sstem d rfermento cartesan..5. Cambamento d sstema d rfermento Consderamo de sstem d rfermento {c } e {d } e cerchamo la trasformazone che lega le component d n generco vettore, v, nella base d partenza {c } a qelle nella nova base {d }: Stamo cercando dnqe la trasformazone: ovvero: v v c (7) v v d. v T v (8) v R v (9) essendo R la trasformazone nversa d T. Per ndvdare la forma che assme T è sffcente applcare la trasformazone ad n vettore della base c. Innanzttto notamo che la matrce delle se component nel sstema d rfermento d c fa parte sono ttte nlle, tranne la -esma che è ntara. Qnd, se ndchamo con c la -esma componente dell -esmo vettore della base, avremo che c δ. Se trasformamo dnqe le component dell -esmo vettore d base ottenamo: c T k δ k T. () Qnd la matrce T ha per colonne le component de vettor c rspetto alla base {d }. Con n ragonamento analogo è possble concldere che la matrce d trasformazone nversa, R, ha come colonne le component de vettor, d, del novo sstema d rfermento, espresse rspetto al veccho sstema d rfermento {c }. Se c lmtamo a cambament tra sstem d rfermento ortonormal è possble dmostrare che le matrc d trasformazone devono essere ortogonal: T t T - () coè la matrce trasposta deve concdere con la matrce della trasformazone nversa. Inoltre l determnante, det(t), deve essere ntaro con l segno postvo per trasformazon che passano da sstem d rfermento destrors ad altr sstem d rfermento destrors e da sstem d rfermento snstrors ad altr sstem d rfermento snstrors, mentre l segno negatvo è propro delle trasformazon che passano da sstem destrors a sstem snstrors e vceversa. - 6 -

G. Qerzol Dspense d Idralca Per determnare come s trasformano le component d n tensore è sffcente mporre che so effett sll applcazone ad n vettore non dpendano dal sstema d rfermento: v a b () Se, come d conseto, ndchamo con lettere mascole le matrc delle component nel sstema d rfermento {c }, e con n apce qelle nel sstema {d }, l eqazone precedente dventa: nel sstema d rfermento {c }, e nel sstema d rfermento {d }. Sosttendo l eqazone (9) nella (): e moltplcando a snstra per R - s ottene: V A B () V A B (4) R V A R B V (R - A R) B, (5) poché R R - I. Confrontando, nfne, la (5) con la (4) è facle verfcare che l termne tra parentes rappresenta propro l espressone cercata delle component d a: A R - A R. (6) Se la trasformazone è ortogonale s ha R - R t e la relazone precedente dventa, scrtta per component: a R - k a km R m R k a km R m. (7).6. Propretà d smmetra d n tensore Ogn tensore pò essere decomposto n tensor che godono d partcolar propretà d smmetra. Come vedremo nel segto, alle propretà d smmetra de tensor corrspondono propretà delle grandezze fsche che ess rappresentano. Innanzttto consderamo la decomposzone d n tensore nella sa parte smmetrca ed antsmmetrca. Se a è n generco tensore d component a, possamo sempre scrvere: a ½(a a ) ½(a - a ) (8) nella qale: ½(a a ) sym(a) è la parte smmetrca d a: sym(a) sym(a), mentre ½(a - a ) skew(a) è la parte antsmmetrca: skew(a) - skew(a). Analogamente è possble scomporre n tensore n na parte sferca ed na devatora: a / tr(a) δ (a / tr(a) δ ) (9) - 7 -

G. Qerzol Dspense d Idralca avendo ndcato con tr(a) a la tracca d a. Il prmo termne a secondo membro ndca la parte sferca d a, ed ha la propretà che le se component non varano al varare del sstema d rfermento, mentre l secondo termne, racchso tra parentes, rappresenta la sa parte devatora..7. Prodotto vettorale Slla base delle precedent defnzon è possble ntrodrre altr de tp d prodotto: l prodotto tensorale: ed l prodotto vettorale: tra de sssste la relazone: c a b skew(a b) () d (a b) ε k a b k ε k (a b) k. () c (a b) ε k (a b) k () In pratca, poché n tensore antsmmetrco ha solo component ndpendent, è possble rappresentarle n n vettore. Con rfermento a smbol delle eqazon precedent abbamo qnd: c d d d d d d. () Bsogna però osservare che, non essendo l operatore d Rcc n tensore, l rsltato d n prodotto vettorale non è n vettore ma no psedo-vettore n qanto non è nvarante per ttt cambament d sstema d rfermento. In partcolare, l prodotto vettorale camba verso passando da n sstema d rfermento destrorso ad no snstrorso e vceversa..8. Atovalor ed atovettor Dato n tensore del secondo ordne a, s vole trovare l vettore b per c rslt: a b λ b (4) b è detto atovettore, λ è detto atovalore. La relazone precedente pò anche essere scrtta per component: a b λ b (5) Per determnare le component d b, s deve rsolvere n sstema lneare omogeneo: ( a λ) b ab a ab ( a λ) b a a b a b ( a λ) b b b Il sstema ha na solzone non banale se l determnante ad esso assocato è gale a zero: (6) det(a - λ δ ) (7) - 8 -

G. Qerzol Dspense d Idralca I valor d λ per c è verfcata la precedente relazone, s ottengono rsolvendo la eqazone caratterstca: essendo: λ - I λ I λ - I (8) I tr(a) a a a a (9) I a a a a det det det a a a a a a a a I det(a) I, I e I sono qanttà scalar che non cambano al varare del sstema d rfermento: gl nvarant del tensore. Gl atovalor λ che s ottengono dalla solzone dell'eqazone caratterstca, possono essere, n generale, nmer real o compless; nel caso d tensor smmetrc s pò dmostrare che: gl atovalor sono real; gl atovettor sono fra d loro ortogonal; poché gl atovettor sono defnt a meno d na costante moltplcatva, ess defnscono n sstema d rfermento cartesano detto sstema d rfermento prncpale per qel tensore; nel sstema d rfermento prncpale, le nche component dfferent da zero, sono qelle della dagonale prncpale e concdono con gl atovalor: a λ λ λ ().9. Camp tensoral S parlerà d campo tensorale se n ogn pnto d n domno D è defnto l tensore; qando coè sono assegnate ttte le component del tensore n fnzone della poszone D. S defnsce l'operatore vettorale dfferenzale (legg: nabla): pò operare: s n campo scalare ϕ, ottenendo l vettore gradente: ϕ ϕ, ϕ ϕ ϕ, ϕ ϕ, - 9 - () ; () avendo tlzzato la notazone compatta per le dervate parzal, secondo la qale a / a,.

G. Qerzol Dspense d Idralca s n vettore a medante prodotto scalare, ottenendo no scalare che è la dvergenza d a: dv(a) a a / a, () se n campo ha dvergenza nlla, è detto solenodale; n vettore a medante prodotto vettore, ottenendo l vettore rotore d a: rot(a) a (4) se n campo vettorale ha rotore nllo, è detto rrotazonale; s n vettore a medante prodotto esterno, ottenendo n tensore del secondo ordne o gradente del vettore: a a (5) o, per component: ( a) a / a, Il vettore gradente ottento da na fnzone potenzale è dretto lngo la normale, dentfcata dal versore n, delle sperfc eqpotenzal; nfatt, ndcato con s l versore che dentfca na generca drezone, la componente d a ϕ lngo s è data da: ϕ ϕ a s s d ds d a ds a cosα s a s (6) se s è contenta nel pano tangente, rslta: ϕ a s (7) s qnd l vettore a è dretto secondo la normale n. Dmostramo che n campo potenzale è rrotazonale: ϕ (8) nfatt: scambando pedc e k s ha: ε k ϕ ε k k ϕ k ε k ϕ k (9) ε k ϕ k ε k ϕ k ε k ϕ k (4) ottenendo de qanttà gal ma d segno opposto, qnd nlle. Segendo a rtroso la dmostrazone, s dmostra anche che n campo rrotazonale è potenzale. Per n campo rrotazonale e solenodale l laplacano, del potenzale: è gale a zero. ϕ ϕ (4) - -

.. Teorem d Green e Stokes G. Qerzol Dspense d Idralca Se F è na fnzone defnta n ttt pnt d n domno lmtato V racchso dalla sperfce chsa S, rslta (teorema d Green): F dv V S Fn ds (4) essendo, così come nel segto, n la normale esterna alla sperfce. Se sono defnte n ttto l domno le component d n vettore a, applcando l teorema d Green per le tre component d a s ottene l teorema della dvergenza: V adv V a dv S a n ds S a nds l'ntegrale d sperfce è l flsso d a attraverso la sperfce S. In defntva, n na sa forma pù generale, l teorema d Green pò essere applcato consderando F n tensore d ordne arbtraro, le c component rsltano comnqe defnte n V. Assegnata na lnea chsa L, con versore tangente s, n n campo D n ttt pnt del qale rslt defnto l vettore a ed na sperfce aperta S n D avente come contorno L, rslta (teorema d Stokes): ( a) s L S (4) a dl nds (44) la crctazone d a (l prmo membro della precedente espressone) è gale al flsso del rotore d a attraverso na qalsas sperfce delmtata da L... Coordnate crvlnee Sano le coordnate d n generco pnto n na terna cartesana ortogonale, ndvdata da versor c, ed y le coordnate del medesmo pnto n na terna crvlnea ortogonale ndvdata da versor b. S sppone che l determnante Jacobano della trasformazone J det(, ) non s annll e che sano d classe C n le fnzon che stablscono la corrspondenza bnvoca tra le de terne: (y ) ; y y ( ). (45) Le sperfc ove y cost. sono dette sperfc coordnate, l ntersezone d cascna coppa d sperfc coordnate defnsce na crva coordnata. Nel caso d sstem ortogonal, che sono gl nc che n segto consdereremo, le ntersezon delle crve coordnate formano tra loro n angolo retto. Il vettore è tangente alla crva coordnata e qnd : y b (46) y y (s rcorda che, comparendo l ndce anche a prmo membro, n qesto caso non s sottntende la sommatora sll ndce rpetto, secondo la notazone d Ensten). Posto: - -

G. Qerzol Dspense d Idralca h y (47) rslta: h b y (48) Le qanttà h sono dett fattor d scala ed l verso d b è qello n c rslta crescente y. Poché anche l gradente d y è ortogonale alle sperfc n c y è costante, rslta (nel caso d coordnate crvlnee ortogonal): b y y (49) L'arco d crva d è dato da: pertanto la lnghezza dell'arco s ottene dalla relazone: d dy h b dy (5) y d d h dy (5) L'elemento d volme dv (essendo b b b ) è dato da: dv d d d h b dy h b dy h b dy h h h dy dy dy (5) S voglono ora valtare le component f del gradente d no scalare ψ nel sstema d coordnate crvlnee: poché: l dfferenzale d ψ è dato anche da: egaglando rslta: qnd: ψ f b (5) dψ ψ d f h dy (54) ψ dψ dy (55) y f ψ (56) h y h y - - b. (57)

G. Qerzol Dspense d Idralca - - Applcando la relazone precedente prendendo come fnzone potenzale y, s ha: h y b (58) Poché: b b b h h y y (59) y y (6) la dvergenza del vettore a b rslta: ( ) ( ) ( ) [ ] ( ) [ ] ( ) [ ] ( ) y h h a h h h h h h h a y y h h a h h h h a y y h h a a b b b b (6) Qnd la dvergenza d n vettore è data da: ( ) ( ) ( ) h h a y h h a y h h a y h h h a (6) In modo analogo s dmostra che l rotore ed l laplacano sono dat da: a h a h a h y y y h h h h h h b b b a (6) ψ ψ ψ ψ y h h h y y h h h y y h h h y h h h (64)... Coordnate clndrche Sano ρ, φ e z le coordnate clndrche (fg. ); rslta: z ρ φ ρ φ cos ; sen ; (65) con: < < π φ < ρ z ; ; (66)

G. Qerzol Dspense d Idralca c b z bφ P( ρ, φ, z) z b ρ φ ρ c c FIGURA Pertanto: h cos φ sen φ ρ ρ ρ (67) h ρ cos φ ρ sen φ ρ (68) φ φ φ h (69) z z z Qnd: ψ ψ ψ ψ bρ bφ bz (7) ρ ρ φ z a φ a ( ρaρ ) ( ρa z ) ρ (7) ρ φ z a z a ρ φ z a φ ρ a z ρ ( ρa ) b ρ ρ b ( ρa ) b φ ρ a z ρ φ ρ φ z (7) ψ ρ ρ ψ ρ ρ ρ ψ ψ φ z... Coordnate sferche Sano ρ,θ e φ le coordnate sferche defnte come rportato n Fgra. Rslta: ρ senθ cosφ; ρ senθ senφ; ρ cosθ (7) con: ρ, θ π, φ π. Pertanto: h ;h ρsen θ; h ρ (74) ρ φ θ - 4 -

G. Qerzol Dspense d Idralca qnd: ψ ψ ρ b ρ ρ ψ θ b φ ρsen θ ψ φ b θ (75) a ρ sen θ θ ρ ( ρsen θa ) ( ρa ) e ( ρsen θa ) ρ φ ( ρa ) θ φ a ρ θ θ ρ ρ sen θe a φ φ ρ φ ρ e θ (76) ψ ρ ρ ρ ψ ρ ρ sen θ θ ψ sen θ θ ρ sen ψ θ ϕ (77) c b ρ θ ρ P( ρ, θ, φ) b θ b φ O φ c c FIGURA - 5 -

G. Qerzol Dspense d Idralca. CINEMATICA DEI FLUIDI.. Defnzone d fldo Per mettere n evdenza qal sano le caratterstche peclar de fld mmagnamo d fare n espermento: consderamo na sferetta rgda ed n sempano elastco (ovvero l modlo E d Yong della sferetta è molto maggore d qello del sempano). Sa, po, z l asse vertcale. Immagnamo d lascar cadere la sfera sotto l azone della forza peso W. Dopo n certo ntervallo d tempo Δt fnto, qando la sferetta sarà ferma, potremo valtare la deformazone ε z da essa prodotta sl sempano. Sappamo che qesta è drettamente proporzonale alla forza peso ed nversamente proporzonale al modlo d Yong del sempano; noltre, dopo n certo tempo, essa rmane costante. Spponamo ora d avere a dsposzone non n sempano elastco, ma no fldo. Se rpetamo l esperenza precedente osserveremo che ad n stante t la sferetta rslterà tangente al sempano, ad n stante sccessvo t msreremo na certa deformazone ε, ad n stante t msreremo na deformazone ε > ε e così va. La sferetta contnerà a scendere ndefntamente: ε z per t. S osserva nvece che, dopo n tempo sffcentemente lngo, la veloctà della sferetta, e qnd la veloctà d deformazone del fldo, s mantene costante. Da cò s dedce come la deformazone non sa n bon parametro per caratterzzare l fldo, a dfferenza della veloctà d deformazone. Possamo pertanto defnre fldo qel mezzo contno per c, n consegenza d na sollectazone costante, ad n tempo nfnto corrsponde na veloctà d deformazone fnta e qnd msrable. z sferetta z sferetta t o t o sempano elastco sempano fldo ε z t ε FIGURA t v ε - 6 -

.. Mezzo contno G. Qerzol Dspense d Idralca La matera che, come è noto è costtta da partcelle elementar, sarà trattata n segto come n mezzo contno; s spporrà coè che la massa sa dstrbta con contntà nello spazo. In effett le caratterstche del fldo, nteso come mezzo contno saranno ottente attraverso delle mede effettate s d n volmetto, detto partcella flda. Qesto volmetto, che corrsponde anche alla mnma scala alla qale possamo descrvere l comportamento d n fldo come mezzo contno, deve essere sffcentemente pccolo rspetto alle scale de fenomen, affnché le grandezze mede s d esso possano essere approssmate con no svlppo d Taylor al prmo ordne, ma grande abbastanza da contenere n nmero d partcelle elementar così elevato che le mede sano statstcamente sgnfcatve. L'potes del contno porta dnqe ad gnorare la strttra ntma della matera a lvello atomco e la descrzone del moto a tale lvello. Per tenere conto d qest mot vengono ntrodotte nvece varabl termodnamche qal la temperatra che è legata all energa meda de mot a lvello atomco e sbatomco. S consder n pnto P, ndvdato dalla sa poszone, all'nterno del mezzo n esame, ed n volme ΔV che lo racchde, ndcato con ΔM la massa contenta n ΔV, l lmte: lm ΔV ΔM ΔV (78) non è na fnzone contna delle varabl spazal e dpende dal modo con c s fa tendere l volme a zero (possono essere consderate sfere, cb con centro n P o altre fgre geometrche), essendo fnzone del nmero d partcelle elementar che sono present nel volme nell stante consderato. In effett esste ed è nco solo l lmte per ΔV ΔV p, con ΔV p volme della partcella flda. In qesto caso nfatt l nmero d partcelle elementar contente nel volme è così grande da fare sì che la massa medamente contenta n esso sa ndpendente dal comportamento delle sngole partcelle elementar e dal modo n c l volme vene fatto tendere a ΔV p. L'potes del contno permette d consderare concdent de lmt, spponendo noltre che sano na fnzone contna d classe C n. Tale fnzone, la denstà, verrà ndcata con ρ(): ΔM ΔM ρ( ) lm lm. (79) ΔV ΔVp ΔV ΔV ΔV C P P' Δt G G Δt G' C C FIGURA 4-7 -

G. Qerzol Dspense d Idralca - 8 -.. Tensore gradente d veloctà Per la descrzone del comportamento cnematco nell ntorno d n pnto consderamo n volmetto nfntesmo, tale che la veloctà al so nterno possa essere approssmata con no svlppo d Taylor al prm ordne. Segendo la consetdne chameremo tale volmetto partcella flda, anche se essa non è da confonders con la defnzone data n precedenza che, nella schematzzazone d mezzo contno, concde con n pnto geometrco. Sceglamo na terna d ass d rfermento che, ad n certo stante, ha orgne nel barcentro della partcella stessa. Il barcentro G, drante l'ntervallo d tempo Δt, s sposta nel pnto G' con veloctà () G : GG () G Δt (8) Un generco pnto P della partcella flda, ndvdato dalla sa poszone, s sposta nello stesso ntervallo d tempo n P' con veloctà (Fgra 4): PP Δt (8) La veloctà, generalmente dversa da () G, s ottene come svlppo n sere nell'ntorno dell'orgne (che concde con l barcentro della partcella): ( )...! G G G (8) Tenendo conto della defnzone d partcella, termn d ordne sperore al prmo vengono trascrat, pertanto: ( ) ( ) t G G G (8) Lo spostamento d n generco pnto d na partcella flda è dnqe descrtto dal tensore gradente d veloctà valtato nel barcentro (sarà n segto omesso l pedce G): e r t (84) Il tensore gradente d veloctà pò essere decomposto nella somma d de tensor, no antsmmetrco r skew( t ) ed no smmetrco e sym( t ): e r (85) Qnd la veloctà del generco pnto d na partcella è data da: ( ) G e r (86) Il moto pò essere consderato, come sarà vsto n segto, come la somma d: na traslazone con la veloctà del barcentro della partcella;

G. Qerzol Dspense d Idralca na rotazone rgda descrtta dal tensore r ; na veloctà d deformazone descrtta dal tensore e. Sl prmo addendo non c sono lteror comment da fare, mentre l sgnfcato del secondo e del terzo saranno dscss nel segto.... Rotazone rgda S consder n moto d rotazone rgda nfntesma attorno a G, l teorema d Elero mostra che la rotazone rgda, oltre al pnto G, mantene fss ttt pnt d na retta passante per G: l'asse d rotazone. C G C P C Ωt P' d FIGURA 5 Senza perdere d generaltà, s pò assmere come asse l'asse d na rotazone che avvene con veloctà angolare Ω (Fgra 5). Indcato con d la dstanza dall'asse d rotazone d n generco pnto P nzalmente posto sll'asse c, le relazon che descrvono l so moto, sono: qnd: d cos Ωt; d sen Ωt; cost; (87) -Ω ; Ω ; ; (88) Il tensore smmetrco e ha ttte le component nlle. Il tensore antsmmetrco, r, rslta: Ω r Ω (89) È qnd stablto che qesta forma del tensore gradente d veloctà comporta na rotazone rgda; d altra parte, s pò dmostrare che n qalsas tensore antsmmetrco conserva tale propretà nel cambamento d n sstema d rfermento e pò essere rcondotto nella forma precedentemente rportata: se ne dedce che l moto descrtto da n tensore antsmmetrco è qello d na rotazone rgda. Le propretà d rotazone locale d n fldo sono descrtte spesso attraverso la vortctà del campo, che è data da: - 9 -

G. Qerzol Dspense d Idralca ω rot ( ) c c c (9) Essa è n stretta relazone con l tensore r, nfatt: skew( ) r t - r (9) e la corrspondenza bnvoca tra prodotto tensore e prodotto vettorale () dà: r ω ω ω ω ω ω. (9) Nell'esempo fatto n precedenza, d rotazone rgda ntorno all'asse, solo la componente ω sarebbe dversa da zero: ω c c Ωc Ω Ω c... Veloctà d deformazone Nel caso n c l moto sa descrtto dal solo tensore smmetrco, t e, r, s ha: e e e e e e e e e (9) l moto rslta rrotazonale. Essendo e smmetrca, esste n sstema d rfermento, detto prncpale, n c rsltano non nlle solo le component della dagonale prncpale. Indcate con l soprassegno ^ le grandezze relatve a tale terna possamo scrvere: û ˆ û ˆ (94) qnd la û rslta solo fnzone della ˆ e, pù n generale, û è fnzone solo d ˆ. Se l sstema d rfermento prncpale trasla con la veloctà del barcentro della partcella rslta: ( ˆ ) êˆ û f. (95) Pertanto pnt che s trovano sgl ass coordnat s movono rmanendo sgl ass. In n sstema d rfermento non prncpale, pnt che nzalmente s trovano lngo gl ass coordnat s movono non mantenendos sgl ass stess. Con rfermento alla Fgra 6, rslta che la veloctà d n pnto P che s trova all'stante nzale sll'asse c è data da: (P) e ; (P) e ; (P) e (96) - -

G. Qerzol Dspense d Idralca analogamente per l pnto Q che s trova sll'asse c : (Q) e ; (Q) e ; (Q) e (97) Se faccamo rfermento agl spostament che avvengono n n ntervallo d tempo Δt, avremo: (Δ ) P e Δt; (Δ ) Q e Δt; pertanto termn della dagonale prncpale: e Δ Δ ; e t (98) Δ Δt rsltano essere le veloctà d allngamento relatvo lngo gl ass coordnat. Per termn che non s trovano slla dagonale prncpale s ha: P Q Δ tgδθ Δθ Δ tgδθ Δθ e ; e t t t Δ Δ Δ Δt Δt Δt P Q (99) avendo confso la tangente con l angolo. L angolo, α, formato da de segment materal che, all stante nzale, concdono con c e c, è nzalmente retto. Dopo n tempo Δt, de segment formeranno n angolo α π/ - Δθ - Δθ π/ - e Δt, poché e e e qnd Δθ Δθ. La veloctà d varazone dell angolo tra de segment è dnqe: Δα Δt ( α α) Δt e. () Pù n generale s pò concldere che le component del tensore e, con, rappresentano ½ della varazone nell'ntà d tempo dell'angolo, nzalmente retto, formato da pnt che s trovano lngo gl ass c e c. C Q' C απ/ ( Δ ) Q ( Δ ) Q D ( Δ E Q ) Q Δθ Δθ Δθ P' α' ( Δ ) P Δθ B P ( Δ) ( Δ ) P P A FIGURA 6 C - -

G. Qerzol Dspense d Idralca S consder nfne na partcella flda d forma paralleleppeda con lat parallel agl ass della terna prncpale, e d volme V d d d (Fgra 7). In qesto rfermento, con le potes fatte all nzo d qesto paragrafo, l tensore gradente della veloctà assme la forma: ( t ) e, δ b δ. Dopo la deformazone, avventa nel tempo Δ t, lat rmangono parallel n qanto ttt pnt che s trovano lngo gl ass coordnat restano sgl ass coordnat stess. Il lato nzalmente d lnghezza d, dopo la deformazone sarà: qnd l volme al tempo Δt è dato da: d d b Δt d d ( b Δt) () V V ( b Δt) ( b Δt) ( b Δt) () A meno d termn d ordne sperore la varazone relatva d volme nell'ntà d tempo è data da: dv V dt ( ) b b b dv () La dvergenza, che è la tracca del tensore gradente della veloctà, è nvarante rspetto n cambamento d sstema d rfermento, pertanto l so sgnfcato d veloctà d varazone volmetrca relatva rmane valdo n qalsas sstema d rfermento. Nel caso d fld omogene ncomprmbl, per qal ogn porzone d fldo mantene costante l so volme, la veloctà d varazone è nlla per c deve essere nlla anche la dvergenza, come sarà n segto dmostrato anche per mezzo dell eqazone d blanco della massa. C d C d d FIGURA 7 C Osservando che la dvergenza d, oltre ad essere la tracca del gradente d veloctà è anche la tracca del tensore veloctà d deformazone, l rsltato testé ottento consente na lterore scomposzone del tensore gradente d veloctà trasposto. Possamo scomporre, nfatt, e n parte sferca e parte devatora * : t tr() e I e tr() e I r ; (4) * Ogn tensore A pò essere scomposto come: A / tr(a) I [A / tr(a) I]. Il prmo termne rappresenta la parte sferca ed secondo la parte devatora. - -

G. Qerzol Dspense d Idralca ottenendo così la descrzone locale del moto come somma d tre termn: l prmo rappresenta la veloctà d varazone volmetrca; l secondo, che per defnzone ha tracca nlla, descrve na veloctà d deformazone a volme costante; mentre l terzo, al solto, rappresenta la veloctà d rotazone rgda..4. Descrzone lagrangana ed elerana d n campo Nella meccanca de fld fenomen fsc sono descrtt attraverso camp scalar o vettoral che rappresentano le grandezze fsche che caratterzzano l fenomeno. Se per esempo s ntende stdare l moto convettvo d n fldo, le grandezze che lo descrveranno saranno n campo scalare, la temperatra, ed no vettorale, la veloctà. La descrzone d qest camp pò avvenre n de mod fondamental: lagrangano o materale, secondo l qale s descrve la varazone temporale delle grandezze segendo l moto d cascna partcella; elerano o locale, secondo l qale, fssata na poszone, s descrve cò che accade n qel pnto al passare del tempo. Qesto corrsponde anche a de mod dvers ne qal è possble msrare le grandezze fsche: spponamo, ad esempo, d voler msrare la temperatra n n flsso determnato dalla convezone. Potremmo dsperdere nel fldo pccole partcelle costtte da crstall lqd; qeste sostanze hanno la caratterstca d cambare colore n fnzone della temperatra; se, noltre, le partcelle sono sffcentemente pccole ed hanno na denstà vcna a qella del fldo nel qale sono mmerse, possamo senz altro spporre che esse segano fedelmente l moto del fldo. Qnd, segendo cascna delle partcelle nel so moto ed osservando le se varazon d colore potremo rsalre alle varazon delle temperatra s d na partcella flda: avremo ottento, n qesto caso, na descrzone lagrangana del campo. Se, al contraro, tlzzamo na sonda fssa n n pnto del campo, per esempo na termocoppa, ed osservamo come vara la temperatra n qel pnto, ottenamo na descrzone elerana..4.. Descrzone Elerana Fssata na poszone, s osserva cò che accade n qel pnto al passare del tempo ad na grandezza A che caratterzza l comportamento del fldo: temperatra, veloctà, pressone, ecc.. Le varabl ndpendent sono dnqe la poszone ed l tempo: A A(, t). La sa evolzone temporale è descrtta per mezzo della cosddetta dervata elerana, che s ottene dervando rspetto al tempo l campo della grandezza A, mantenendo fssa la poszone dello spazo:.4.. Descrzone Lagrangana (, t) A t cos t. Per poter effettare qesto tpo d descrzone è necessaro nnanzttto dentfcare nvocamente ogn partcella flda con na etchetta. Poché n n fldo, che è n mezzo contno, le partcelle non sono n nseme nmerable, ma ha le dmenson d R (le stesse dello spazo ecldeo n c s movono), le partcelle non potranno essere contraddstnte attraverso n nmero ntero, sarà nvece necessara na terna d nmer real. La scelta che vene convenzonalmente fatta. - -