DISTRIBUZIONI DI PROBABILITA

Documenti analoghi
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

FENOMENI CASUALI. fenomeni casuali

Variabili aleatorie gaussiane

DISTRIBUZIONE NORMALE (1)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

Variabile casuale Normale

Statistica. Lezione 4

Capitolo 6. La distribuzione normale

Ulteriori Conoscenze di Informatica e Statistica

Variabile Casuale Normale

Capitolo 6 La distribuzione normale

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 4

Esercitazione: La distribuzione NORMALE

1/55. Statistica descrittiva

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

DISTRIBUZIONI DI PROBABILITA

Strumenti di indagine per la valutazione psicologica

Distribuzioni di probabilità

Variabili aleatorie continue

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Teoria e tecniche dei test. Concetti di base

Il campionamento e l inferenza. Il campionamento e l inferenza

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Distribuzioni e inferenza statistica

Distribuzione Normale

Corso di. Dott.ssa Donatella Cocca

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Vedi: Probabilità e cenni di statistica

La distribuzione delle frequenze. T 10 (s)

Esercitazioni di Statistica

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

SIMULAZIONE - 29 APRILE QUESITI

Approssimazione normale alla distribuzione binomiale

Statistica Inferenziale

Statistica. Alfonso Iodice D Enza

Variabili aleatorie Parte I

Statistica Un Esempio

Statistica. V Scuola Estiva AISV La statistica come strumento di analisi nelle scienze umanistiche e comportamentali

C.I. di Metodologia clinica

Calcolo delle Probabilità 2

Note sulla probabilità

ISTOGRAMMI E DISTRIBUZIONI:

La SCALA di Probabilità varia tra 0.00 e 1.00.

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

LA DISTRIBUZIONE NORMALE o DI GAUSS

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.

Introduzione alla probabilità

Distribuzione di Probabilità

LA DISTRIBUZIONE NORMALE

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

LEZIONI DI STATISTICA MEDICA

Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6)

RETI DI TELECOMUNICAZIONE

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

STATISTICA DESCRITTIVA (variabili quantitative)

Teoremi limite. Enrico Ferrero. 27 febbraio 2007

Statistica. Matematica con Elementi di Statistica a.a. 2015/16

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Statistica ARGOMENTI. Calcolo combinatorio

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

A1. La curva normale (o di Gauss)

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

Elementi di base su modello binomiale e modello normale

Lezione 3 Calcolo delle probabilità

Esempi di distribuzioni teoriche

LE DISTRIBUZIONI CAMPIONARIE

Il Corso di Fisica per Scienze Biologiche

LEZIONI DI STATISTICA MEDICA

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

4.1 Variabili casuali discrete e continue, e loro distribuzioni

Corso di Laurea in Farmacia, cognomi M-Z Modulo di Matematica, 1 dicembre 2011, TEMA 1. Giustificare adeguatamente le soluzioni dei seguenti esercizi:

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Lezione n. 1 _Complementi di matematica

Intervalli di confidenza

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

MISURE DI SINTESI 54

Statistica descrittiva II

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi

STATISTICA ESERCITAZIONE

Variabili aleatorie. Variabili aleatorie e variabili statistiche

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

Distribuzioni di Probabilità

GLI EVENTI. Probabilità di un evento P(A)

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

Vedremo i concetti di:

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

Distribuzioni statistiche

UNIVERSITÀ di ROMA TOR VERGATA

Istituzioni di Statistica e Statistica Economica

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Distribuzione di frequenza e rappresentazioni grafiche

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa

Transcript:

DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente distribuzione di probabilità. In caso di variabile discreta la distribuzione di probabilità specifica tutti i possibili risultati della variabile insieme alla probabilità che ciascuno di essi si verifichi. In caso di variabile continua la distribuzione di probabilità consente di determinare la probabilità associata ad intervalli di valori.

Si è analizzato il numero dei farmaci consumati dalle donne gravide ricoverate in un ospedale : evento A = numero di farmaci P(A) = probabilità di assumere quel numero di farmaci N. farmaci Frequenza Probabilità P(A) 0 1425.3405 1 1351.3228 2 793.1895 3 348.0832 4 156.0373 5 58.0067 6 28.0036 7 15.0014 8 6.0014 9 3.0007 10 1.0002 12 1.0002 Totale 4185 1

I risultati di una distribuzione di probabilità possono essere riassunti oltre che in tabella anche in grafico. 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 0 1 2 3 4 5 6 7 8 9 10 12

Si osservi che la probabilità che una donna assuma per esempio 5 farmaci è data dalla frequenza relativa del verificarsi di quel risultato dopo aver eseguito un grande numero di prove (nell esempio 4185). Se X è la variabile casuale che rappresenta tutti i risultati di un possibile esperimento ed x è un valore che la variabile X può assumere la P(X=x) si definisce attraverso la funzione di probabilità f(x). Si osservi che è possibile associare ad ogni valore x della variabile X la P(X=x)=f(x) 0 e che la Σf(x)=1.

Se X è una variabile casuale con funzione di distribuzione di probabilità f(x) la funzione F(X)=Σf(x) è detta funzione di distribuzione di probabilità cumulata. La funzione di distribuzione di probabilità cumulativa si ottiene sommando in successione le probabilità P(X=x 1 )+P(X=x 2 )+ +P(X=x n ) Se X è una variabile continua esiste una funzione f(x) detta funzione di densità di probabilità tale che: f(x) 0 + f ( x) d( x) = 1 Per ogni x 1 e x 2 tali che - x 1 <x 2 + allora. P(x 1 X x 2 ) = x 2 f ( x) d ( x) x 1

DISTRIBUZIONE BINOMIALE La distribuzione binomiale è derivata da un processo o esperimento che può assumere solo due risultati mutuamente esclusivi, detto prova di Bernoulli. Una sequenza di prove di Bernoulli forma un processo di Bernoulli sotto le seguenti condizioni: ogni prova può assumere uno dei due possibili risultati, mutuamente esclusivi, uno dei quali è definito arbitrariamente successo e l altro fallimento; la probabilità di un successo è denotata con p e rimane costante in ogni prova; la probabilità di fallimento è denotata come q=1-p; le prove sono indipendenti, cioè il risultato di una prova non influenza il risultato della successiva.

Si consideri l esperimento nascita i cui possibili risultati sono Nascita di sesso F; p=p(f) Nascita di sesso M; q=p(m)=1-p. Si consideri la variabile casuale X=numero di nati di sesso F su n nascite. Si vuole calcolare la probabilità di osservare 5 nascite F su 8 nascite P(X=5). Si considera pertanto una sequenza generica di nascite: F e F e F e M e M e F e F e M. La probabilità che tale sequenza si verifichi è: P(F F F M M F F M). Essendo eventi indipendenti si può scrivere: P(F)*P(F)*P(F)*P(M)*P(M)*P(F)*P(F)*P(M)= p*p*p*q*q*p*p*q=p 5 q 3

La sequenza che si può osservare è però una delle tante possibili combinazioni di nascite di 5 femmine e 3 maschi: FFFFMMMF FFMFFMFM Per determinare tutte le possibili sequenze si ricorre al calcolo combinatorio: n x = n! x!(n-x)! 8 8! = 5 = 5!(8-5)! = 56 8 in classe 5. n!=n*(n-1)* *1 nell esempio 8!=8*7*6*5*4*3*2*1 Essendo le sequenze mutuamente esclusive la probabilità di avere la 1 o la 2 sequenza o la. 56 sequenza è data dalla somma delle probabilità delle singole sequenze: 56* p 5 q 3

Generalizzando, indicando con n il numero di prove e con x il numero dei successi, si ha: f(x)=p(x=x) f(x) = n x * p x q n-x Per x=0,1,2,3,.,n f(x) = 0 altrove Si dimostra che la distribuzione binomiale, spesso indicata con il simbolo B(n, p), ha: Media = E(X) = µ = np Varianza = σ 2 = npq = np(1-p)

DISTRIBUZIONE DI POISSON La distribuzione di Poisson viene utilizzata per variabili discrete per eventi distribuiti casualmente nel tempo e nello spazio E una distribuzione molto usata in campo biologico e medico: conta dei batteri sulle piastre analisi di elementi in campioni di acqua conta dei globuli su un vetrino numero di interventi di urgenza in un mese presso un pronto soccorso

Affinché un processo possa essere descritto con una distribuzione di Poisson devono verificarsi le seguenti condizioni: in un determinato intervallo gli eventi accadono in modo indipendente - il verificarsi di un evento in un intervallo di tempo o di spazio non influenza la probabilità di verificarsi di un secondo evento nello stesso intervallo di tempo o spazio; la probabilità di un evento in un intervallo di tempo t infinitamente piccolo è direttamente proporzionale alla lunghezza dell intervallo; in una parte infinitamente piccola dell intervallo la probabilità che più di un evento si verifichi è trascurabile

Se X è la variabile casuale che segue una distribuzione di Poisson la sua funzione di distribuzione di probabilità è per x=0,1,2,.., f( x) = e λ λ x! x f(x) = 0 altrove e è la costante 2,7183 λ è il parametro della distribuzione di Poisson e corrisponde alla media. Una proprietà importante della distribuzione di Poisson è che media e varianza coincidono: λ = µ = σ 2

E possibile approssimare la distribuzione binomiale alla distribuzione di Poisson quando n, il numero delle prove, è molto grande e p, la probabilità di successo, tende a zero: n p 0 B(n, p) Poisson(λ) n*p = λ = costante

DISTRIBUZIONE NORMALE (GAUSS) Quando si esegue un esperimento e si descrivono i risultati si costruisce spesso un grafico (istogramma) per mostrare l andamento del fenomeno in esame. In un istogramma: sull asse delle ascisse (x) poniamo i valori della variabile sull asse delle ordinate (y) poniamo le frequenze con le quali un determinato valore, un intervallo di valori in caso di variabili continue, si presenta. L area delle colonnine di un istogramma rappresenta la frequenza con cui i valori x 1 e x 2 che delimitano la base della colonnina si presentano nel nostro esperimento

Unendo i punti medi delle classi con una spezzata si costruisce un poligono di frequenza. Se scegliamo l intervallo tra i valori sempre più piccolo e con una quantità di prove molto grandi la forma del poligono di frequenza si avvicinerà sempre più ad una linea continua. Questa è la rappresentazione grafica della distribuzione di una variabile continua e la funzione che ne è l espressione matematica è la funzione densità di probabilità

Supponiamo di valutare la distribuzione dei soggetti di una popolazione per età Classe di età Frequenza assoluta Frequenza relativa Frequenza cumulativa Frequenza cumulativa relativa 20-30 331 8,08% 331 8,08% 31-40 1163 28,38% 1494 36,46% 41-50 1561 38,09% 3055 74,55% 51-60 875 21,35% 3930 95,90% 61-70 166 4,05% 4096 99,95% 71-80 2 0,05% 4098 100,00% 4098 100,00%

0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 0,25 0,2 0,15 0,1 20-30 31-40 41-50 51-60 61-70 71-80 Possiamo riprodurre la distribuzione di frequenza utilizzando un istogramma. Possiamo inoltre unire i punti medi di ciascuna classe con una linea spezzata per rappresentare il fenomeno con un poligono di frequenza. Se rendiamo l intervallo di classe progressivamente più piccolo.. 0,05 0 20-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75

l ampiezza può ridursi al punto che il poligono di frequenza possa essere approssimato ad una curva continua 0,05 0,045 0,04 0,035 Media=43,99 Deviazione standard=9,27 0,03 Probabilià 0,025 0,02 0,015 0,01 0,005 0 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 Età Fre oss Prob Gauss

La curva di distribuzione di probabilità di una variabile continua che presenta un andamento a campana prende il nome di curva normale o gaussiana. La sua espressione matematica è 1 f( x) = exp σ 2π 1 2 x µ σ 2 - x + con exp = funzione esponenziale π = 3,14 e i due parametri della distribuzione: µ = media σ = deviazione standard

la distribuzione di Gauss è completamente definita dai valori di µ e σ: differenti valori di µ spostano la posizione della curva lungo l asse delle ascisse differenti valori di σ modificano l altezza della curva. 0,09 0,09 0,08 0,08 0,07 0,07 0,06 0,06 0,05 0,05 0,04 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0 0 10 20 30 40 50 60 70 80 90 0 0 10 20 30 40 50 60 70 80 90

La distribuzione di Gauss ha alcune caratteristiche tipiche: è simmetrica intorno alla sua media la media, la mediana e la moda coincidono l area sotto la curva è uguale ad 1 (100%) l area sotto la curva compresa nell intervallo µ-σ ed µ+ σ è pari al 68% dell area totale µ-2 σ e µ+2 σ è pari al 95% del totale µ-3 σ ed µ+3 σ è pari al 99,7% del totale

Esistono degli indici per misurare la normalità della curva di Gauss: asimmetria: asimmetria = 0 curva normale asimmetria < 0 coda sinistra pi lunga asimmetria >0 coda destra più lunga curtosi: curtosi = 3 curva normale curtosi < 3 code leggere, distribuzione appuntita (ipernormale o leptocurtica) curtosi > 3 code pesanti, distribuzione piatta (iponormale o platicurtica).

Distribuzione di Gauss cumulativa teorica e distribuzione cumulativa osservata 1,2 1 Probabilità 0,8 0,6 0,4 0,2 0 23 27 31 35 39 43 47 51 55 59 63 67 71 Età Freq cum oss Prob cum Gauss

L ultima caratteristica enunciata ci dice che esiste una famiglia di distribuzioni di gaussiane ed ogni membro è distinto in base ai valori di µ e σ. Tra le varie curve di Gauss la più importante è la distribuzione di Gauss standard che ha media = 0 deviazione standard = 1 L espressione matematica della distribuzione di Gauss Standard è: f ( z) 1 z = exp 2π 2 2

Distribuzione di gauss standard: media=0 e deviazione standard=1 0,45 0,4 0,35 0,3 Probabilità 0,25 0,2 0,15 0,1 0,05 0-3 -2-1 0 1 2 3 4 µ z

0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0-4 -3-2 -1 0 1 2 3 4 Area in rosso = 68%

0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0-4 -3-2 -1 0 1 2 3 4 Area in rosso = 95%

E importante sottolineare che ogni variabile X può essere standardizzata mediante la trasformazione z = x µ σ

Indicando la distribuzione di Gauss con il simbolo N(µ, σ) è possibile fare le seguenti approssimazioni: B (n, p) N(µ, σ) se n p = 0,5 P (λ) N(µ, σ) se n