UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele ed un numero rele qulunque, si definisce potenz con esponente rele del numero il numero rele. Osservzione: Quest potenz risult essere sempre un numero rele positivo! PROPRIETÀ DELLE POTENZE CON ESPONENTE REALE. Se e, llor.. Se e, llor.. 4. 5. 6. 7.. 5 5 5 5 5.. 4. 8 8 5: 7 5 : 7 5 5 Teorem: Se è un numero positivo diverso d, llor l potenz ssume un sol volt tutti i vlori positivi. Cioè: qulunque si 0,, e qulunque si b 0, esiste un (unico) numero tle che b.
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 GRAFICO ESPONENZIALE Voglimo studire il comportmento dell relzione di dipendenz fre ciò distinguimo i due seguenti csi. y l vrire di. Per I CASO: Per fissre le idee considerimo. y - 0,5-0,5-0,5 0 4 8 Dll nlisi dell tbell e del grfico possimo dedurre che: ogni vlore di h un corrispondente ; i vlori del corrispondente sono tutti positivi, cioè ; vle l proprietà di crescenz, cioè:, con. II CASO: 0 Per fissre le idee considerimo y - 8-4 - 0 0,5 0,5. 0,5 Dll nlisi dell tbell e del grfico possimo dedurre che: ogni vlore di h un corrispondente ; i vlori del corrispondente sono tutti positivi, cioè ; vle l proprietà di decrescenz, cioè:, con. E. Modic, 00/0 www.glois.it
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 LOGARITMI Il teorem precedente ci permette di stbilire che dti due numeri reli positivi e b, con, l equzione b mmette un e un sol soluzione. Tle soluzione si chim logritmo di b in bse e si indic con: Definizione: Dti due numeri reli positivi e b, con, si chim logritmo in bse del numero b l unic soluzione dell equzione b, cioè quell unico numero, che dto come esponente d, rende l potenz ugule b. Pertnto le scritture: sono equivlenti. Il numero b si chim rgomento del logritmo e deve essere un numero positivo. Osservzione: L definizione di logritmo permette di ffermre che ogni numero rele positivo b si può scrivere, in modo unico, come potenz di un ltro qulsisi numero positivo, diverso d. È inftti: e In ltre prole ogni numero b 0 si può pensre come potenz di bse prefisst, qulsisi, positiv e divers d. log = 8, perché è.. log5 = 0 perché è 0 5 =. =. 8. log7 7 = perché è 7 = 7. 4. log7-7 =? non esiste perché b 7 non è positivo. 5. log 7 non h significto perché, secondo l definizione, l bse deve essere divers d. Inftti l equzione b è impossibile (se b ), indetermint (se b ), inoltre l potenz è definit per 0 ; l equzione 0 b, come sppimo è impossibile se b 0 rele ed indetermint se b 0. 6. log- 7 e log 07 non hnno significto perché, secondo l definizione, l bse deve essere positiv (i logritmi di numeri negtivi sono numeri immginri). E. Modic, 00/0 www.glois.it
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 PROPRIETÀ GENERALI. Il log b è positivo se:. Il log b è negtivo se: > 0 < < e b > 0 < b < > 0 < < e 0 < b < b >. log perché è =. 0 4. log 0 perché è =. 5. Se due numeri sono eguli, nche i loro logritmi (rispetto ll stess bse) sono eguli; e vicevers. 6. Se l bse è mggiore di, l crescere del numero b, cresce nche il logritmo di questo. 7. Se l bse è minore di, l crescere del numero b, il logritmo decresce. PROPRIETÀ FONDAMENTALI DEL LOGARITMO log y log log y.. log log log y n log nlog. n m m 4. log b log n b y Queste regole trsformno le quttro operzioni di moltipliczione, di divisione, di elevzione potenz di esponente n e di estrzione di rdice di indice n sopr numeri positivi ssegnti, rispettivmente, nelle operzioni di ddizione, di sottrzione, moltipliczione per n e divisione per n sopr i logritmi dei numeri ssegnti. Si teng presente che per poter pplicre le proprietà e i singoli numeri e y, dei quli si considerno i logritmi, devono essere positivi, e non soltnto deve essere positivo il loro prodotto y o il loro quoziente y. Osservzione: Non vi sono, invece, regole nloghe rigurdo ll somm e ll differenz: il logritmo di un somm o di un differenz non è esprimibile medinte i logritmi dei suoi singoli termini. SIMBOLISMO e numero di Nepero è un numero irrzionle che vle ( meno di 0-5 ),788 lnn LogN logritmo nturle o neperino (cioè bse e) di un numero positivo N logritmo decimle (cioè in bse 0) di un numero positivo N E. Modic, 00/0 www.glois.it 4
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 Siccome esistono infiniti sistemi di logritmi (poiché infinite sono le possibili bsi ), per pssre d un bse d un ltr b bst pplicre l seguente formul: log b log B N log b Esercizio: Spendo che log b 4, clcolre log b b. Si h: 4 log b log b log b b log b b. b Rest d clcolre log b b. Poiché: segue che log b b ; pertnto: log b log log b 4 log b b b b b 4 4 4 7 log b log b b b GRAFICO DEL LOGARITMO Voglimo studire il comportmento dell relzione di dipendenz Per fre ciò distinguimo i due seguenti csi. y log l vrire di. I CASO: Per fissre le idee considerimo. y 0 0,5-0,5 -,58496 4 5,9 6,58496 E. Modic, 00/0 www.glois.it 5
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 Dll nlisi dell tbell e del grfico possimo dedurre che: i vlori di che mmettono un corrispondente sono solo ; i vlori dell sono positivi per e negtivi per 0 ; vle l proprietà di crescenz, cioè:, con. II CASO: 0 Per fissre le idee considerimo. y 0 0,5 0,5 - -,585 4-5 -,9 6 -,585 Dll nlisi dell tbell e del grfico possimo dedurre che: i vlori di che mmettono un corrispondente sono solo ; i vlori dell sono negtivi per e positivi per 0 ; vle l proprietà di decrescenz, cioè:, con. E. Modic, 00/0 www.glois.it 6
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI Definizione: Si definisce equzione esponenzile ogni equzione in cui l incognit compre ll esponente di un o più potenze. Il cso più semplice di equzione esponenzile è l equzione esponenzile elementre: b con 0. Osservzione: Nell insieme dei numeri reli l equzione b può vere soluzioni solo se 0 e b 0 (se 0, llor 0 0 per ogni 0 e quindi l equzione 0 b è impossibile se b 0 e indetermint se b 0); inftti:. il primo membro di b h significto solo se è positivo;. inoltre risult sempre positivo per qulsisi vlore di pertnto l equzione può vere soluzioni soltnto se nche b è positivo.. Se e b l equzione divent che è un identità.. Se e b l equzione divent b che è impossibile.. Se e b l equzione divent che mmette come soluzione 0 poiché 0. Per tutti gli ltri csi in cui e b sono entrmbi positivi, con, vle il seguente: Teorem: Dti due numeri reli positivi e b, con, l equzione esponenzile: b mmette un e un sol soluzione. Tle soluzione è: positiv, se e b sono entrmbi mggiori di, o entrmbi minori di ; negtiv, se dei due numeri e b uno è mggiore di e l ltro è minore di ; ugule zero, se b e 0.. h come soluzione. 9. 9 non h soluzioni.. 9 non h significto. E. Modic, 00/0 www.glois.it 7
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI RIDUCIBILI AD UGUAGLIANZE DI DUE POTENZE AVENTI LA STESSA BASE L risoluzione di tli equzioni è semplice in qunto si pss dll uguglinz di due potenze ll uguglinz dei loro esponenti, cioè: y y. Per risolvere l equzione esponenzile porre 4.. Per risolvere l equzione esponenzile 5 6 e porre 4, bst riscrivere l equzione come e 8 5 6, d cui si ricv che e. 64 0, bst riscrivere l equzione come EQUAZIONI ESPONENZIALI RIDUCIBILI AD EQUAZIONI ALGEBRICHE MEDIANTE L USO DI UN INCOGNITA SUPPLEMENTARE. Risolvere l equzione esponenzile 6 0 0. Ponimo z e ottenimo: le cui soluzioni sono z e z 8. Quindi: ;. z 0z6 0. Risolvere l equzione esponenzile L equzione divent: 8 9. Ponimo z e ottenimo 9 7 8 9 7 z z, d cui si ottiene che z e 9 z 8. Quindi: 9 E. Modic, 00/0 www.glois.it 8
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 8 8 impossibile! EQUAZIONI LOGARITMICHE Definizione: Si dice equzione logritmic un equzione in cui compre il logritmo dell incognit o il logritmo di un espressione contenente l incognit. Nell risoluzione di un equzione logritmic si cerc, medinte l uso delle proprietà dei logritmi, di ricondurre tutto ll form: dove A e log A log B B sono espressioni lgebriche contenenti l incognit. Dll uguglinz precedente segue che i vlori dell che l verificno, devono verificre nche A B. l equzione Osservzione: Attenzione! Non vle il vicevers, cioè le soluzioni dell equzione A B può non essere soluzione dell equzione log A log B. Per risolvere tli equzioni si pone, quindi, A B soddisfno l equzione di prtenz.. Risolvere l equzione log log. Imponendo l condizione di esistenz dei logritmi si deve vere: cioè. Uguglindo gli rgomenti si h: 0 0 4 e si vede se le soluzioni trovte che è un soluzione ccettbile in qunto 4. E. Modic, 00/0 www.glois.it 9
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0. Risolvere l equzione log 6 log 5 8 Uguglindo gli rgomenti si h:. 6 8 5 4 0 7, L soluzione 7 è l unic ccettbile in qunto per i due logritmi perdono di significto.. Risolvere l equzione 5 7. Pssndo i logritmi si h: log7 log5 log 7 log5 log 7 log5 4. Risolvere l equzione 7,5,. Pssndo i logritmi si h: log, log 7,5 log, log 7,5 log,, 8 log 7,5 5. Risolvere l equzione 5 5 7 7 Si h: 5 4 5 5 7 7 65 87 49 Quindi si h: 4 log log 4 log 5 log log5 log 49 49 6. Risolvere l equzione Log 0. Pssndo i logritmi si h: Log Log Log0 Log Log E quindi: 0 e 0 E. Modic, 00/0 www.glois.it 0
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI ESPONENZIALI Definizione: Un disequzione si dice esponenzile se in ess l incognit, o qulche espressione contenente l incognit, compre come esponente di un o più potenze. Prim di pssre i metodi di risoluzione di tli disequzioni, ricordimo lcuni risultti già discussi in precedenz. ESPONENZIALI 0 è un numero rele positivo y y y y 0 y y y y LOGARITMI 0 y log log y y log log y y log log y y log log y DISEQUAZIONI RIDUCIBILI A DISUGUAGLIANZE DI DUE POTENZE DI UGUAL BASE Sono delle disequzioni che si presentno in un delle forme: f g oppure f g In questo cso si h: 0 g g g g f f g f f g f f g f f g. Risolvere l disequzione 5 5. In bse ll precedente tbell è fcile notre che ci si trov nel cso in cui 0 e quindi si h che. E. Modic, 00/0 www.glois.it
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 7. Risolvere l disequzione In bse ll precedente tbell è fcile notre che ci si trov nel cso in cui e quindi si h che 7. DISEQUAZIONI RISOLUBILI CON L UTILIZZO DI UN INCOGNITA AUSILIARIA Esempio: Risolvere l disequzione esponenzile Riscrivimo come segue l disequzione: 4 8 0 6 8 0 e ponimo z, ottenendo così: z 6z8 0 Le soluzioni di quest disequzione sono: t t 4 e quindi si h: ; 4. DISEQUAZIONI RISOLUBILI CON L UTILIZZO DEI LOGARITMI Per risolverle bst pplicre d mbo i membri dell disequzione: f g b oppure f b g i logritmi, fcendo ttenzione ll bse del logritmo considerto. Inftti si hnno i due csi: cso: c g logc g log f b f g log b f b f g log b c c c cso: 0c g logc g log f b f g log b f b f g log b c c c E. Modic, 00/0 www.glois.it
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 log log 9 9.. 8 log log 8 DISEQUAZIONI LOGARITMICHE Definizione: Un disequzione si dice logritmic se in ess compre o il logritmo dell incognit, o il logritmo di un espressione contenente l incognit. DISEQUAZIONI DELLA FORMA: log log A b A b Per risolvere tli disequzioni è necessrio considerre i seguenti csi. I cso: Le disequzioni si trsformno nei sistemi: II cso: 0 Le disequzioni si trsformno nei sistemi: A 0 A 0 b A A A 0 A 0 b A A b b Esempio: L disequzione 0 log 7 0 equivle l sistem: 7 0 0 70 0 00 E. Modic, 00/0 www.glois.it
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI DELLA FORMA: log A log B log A log B Per risolvere tli disequzioni è necessrio considerre i seguenti csi. I cso: Le disequzioni si trsformno nei sistemi: II cso: 0 Le disequzioni si trsformno nei sistemi: Esempio: A 0 A 0 B 0 B 0 A B A B L disequzione log log A 0 A 0 B 0 B 0 A B A B equivle l sistem: 0 0 4 4 E. Modic, 00/0 www.glois.it 4
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI Risolvere in le seguenti equzioni esponenzili. 64 7 7 4 4 4 4 7 4 0 4 4 4 54 8 4 64 4 5 54 9 64 8 4 4 6 7 5 5 5 5 5 4 4 6 7 6 7 5 6 5 4 5 5 5 55 4 5 8 8 4 4 44 7 EQUAZIONI LOGARITMICHE Risolvere le seguenti equzioni logritmiche. log 5 log log 4 log log log log log log log log log 7 log log log log log log log log log 00 log 7 4 log log log log 4 log 0 log log5 E. Modic, 00/0 www.glois.it 5
Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI ESPONENZIALI Risolvere nell insieme le seguenti disequzioni esponenzili. 0 e e e 0 e 4 0 7 8 4 0 0 8 9 5 6 5 5 0 4 0 4 4 4 0 Risolvere le seguenti disequzioni logritmiche. log 6 5 log 0 06 log log log 0 DISEQUAZIONI LOGARITMICHE log 6 log log 8 log 8 0 5 log log log 9 4 0ln ln 9 0 log 5 log 7log 0 log log 4 log log log E. Modic, 00/0 www.glois.it 6