Massa volumica. Esempio 1

Documenti analoghi
Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

STATICA E DINAMICA DEI FLUIDI

I fluidi Approfondimento I

Meccanica dei Fluidi: statica e dinamica

Densita. FLUIDI : liquidi o gas. macroscop.:

Lezione 9. Statica dei fluidi

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Fluidodinamica. Q=V/Δt=costante

Cap Fluidi

Stati di aggregazione della materia:

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Dinamica dei Fluidi. Moto stazionario

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

Meccanica dei fluidi

La corrente di un fluido

I FLUIDI. Archimede Pascal Stevino Torricelli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

è completamente immerso in acqua. La sua

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8.

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto

y h=10m v 1 A 1 v 2 0 p A 2 p 1 =1, Pa p 2

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

F > mg Il cubo galleggia

a) Calcolare il modulo di F.

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria)

Legge di Stevino ( d.c.)

Meccanica dei Fluidi - Fluidostatica -

STATICA EQUILIBRIO DEI FLUIDI

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

1. Statica dei fluidi

Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Caratteristiche energetiche di un onda

La circolazione del sangue

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

I D R O S T A T I C A

Meccanica dei FLUIDI

Alcuni valori della densita'

ESPERIENZA DELLA BURETTA

Lezione 11. Fluido dinamica

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue

PRESSIONE ATMOSFERICA

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

MODULO 3. La pressione

Il Corso di Fisica per Scienze Biologiche

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.?

ELEMENTI DI STATICA DEI FLUIDI

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

ATTRITO VISCOSO NEI FLUIDI

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille.

Esempi di esercizi per la preparazione al primo compito di esonero

Meccanica dei Fluidi

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

ESAME DI AERODINAMICA 12/12/2006

Lezione 10 Moto dei fluidi

Fisica applicata Lezione 7

FISICA DEL SISTEMA CARDIOCIRCOLATORIO

Equilibrio dei corpi rigidi e dei fluidi 1

ESAME DI AERODINAMICA 11/02/2015

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

Applicazione delle leggi dell'idrodinamica alla circolazione del sangue. Idrodinamica a Emodinamica. complicazioni

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Alcuni utili principi di conservazione

La meccanica dei fluidi

CENNI DI FLUIDODINAMICA

FENOMENI DI TRASPORTO DELLA MATERIA

Statica ed equilibrio dei corpi

Densità La densità di una sostanza o di un corpo, è pari al rapporto tra la massa del corpo e il volume che il corpo occupa.

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

EQUILIBRIO DEI FLUIDI

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti

Studente... Matricola...

Transcript:

Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi sono dei fluidi. Una distinzione fra liquidi e gas puo essere basata sulla osservazione che una certa quantita di liquido ha un volume definito, mentre un gas si espande fino a riempire completamente il recipiente in cui e posto. Questo differente comportamento macroscopico dipende dalle differenti proprieta delle forze di coesione fra le molecole. Pressione Immaginiamo di immergere in un fluido un sensore molto piccolo, come quello schematizzato in figura. Un pistone avente area A e massa trascurabile puo scorrere, vincolato ad una molla, in un cilindro all interno del quale e fatto il vuoto. Quando lo strumento viene immerso, il fluido esercita sul pistone una forza di modulo F, perpendicolare al pistone stesso, spingendolo verso l interno. Il pistone raggiungera la posizione in cui la forza esercitata dalla molla su di esso bilancia quella esercitata dal fluido. Definiamo pressione P del fluido nel punto in cui si trova il sensore lo scalare dato dal rapporto P= F/A Si trova sperimentalmente che la pressione P cosi definita non dipende dall orientamento del sensore. La unita di misura della pressione nel S.I. e il Pascal (Pa) 1 Pa = 1 N/m 2 Altre unita di misura della pressione ancora utilizzate sono: l atmosfera (atm)equivalente alla pressione media della atmosfera a livello del mare; il torrequivalente alla pressione esercitata da una colonna di 1 mm di mercurio ed il barequivalente a 10 5 Pa 1Atm=1.01 10 5 Pa = 1.01 bar = 760 torr

Massa volumica La massa volumica ρ(o densita ) di una sostanza e definita come la massa per unita di volume della sostanza considerata. Poiche come osservato i gas non hanno un volume definito, la loro massa volumica dipendera fortemente dalla pressione e dalla temperatura. Tale dipendenza e invece solitamente trascurabile o molto debole per i liquidi ed i solidi Esempio 1 Una stanza ha un pavimento di dimensioni 3.5 m per 4.5 m ed altezza di 3.2 m. Calcolare la massa m ed il peso mg dell aria contenuta nella stanza a pressione atmosferica e temperatura di 0 o C ed il modulo F della forza esercitata dall aria sul pavimento della stanza. m = ρ V = 1.29 (3.5 x 4.5 x 3.2) = 65 kg mg = 6.4 10 2 N F = PA= 1.01 10 5 x (3.5 x4.5) = 1.6 10 6 N Tale enorme forza e equivalente al peso di una massa di1.6 10 5 kg!!

Legge di Stevino Ci proponiamo di capire in che modo varia con la profondita la pressione di un fluido in quiete avente densita ρ costante. Consideriamo un contenitore contenente un liquido in quiete avente densita ρ come schematizzato in figura. y Consideriamo la quantita di liquido contenuta dentro un cilindro immaginario avente base di area A e che si estende dalla superficie fino alla profondita h. Sia P la pressione esercitata dal liquido esterno al cilindro sulla base del cilindro a profondita h. La pressione esercitata dall aria sulla superficie del cilindro e la pressione atmosferica P 0. Poiche il cilindro di liquido e in quiete, la componente rispetto all asse y della risultante delle forze agenti sul cilindro deve essere nulla. Quindi si ha: +P 0 A +Mg PA = 0 + P 0 A +(A h ρ)g PA = 0 P= P 0 + ρg h Cioe la pressione ad una profondita y=h e maggiore della pressione atmosferica di una quantita ρg h Tale legge prende il nome di legge di Stevino.

Esempio 2: il barometro a mercurio Evangelista Torricelli (1608-1647), al quale e dedicato il nome di una delle unita di misura della pressione, il torr, invento un semplice strumento che consente di misurare la pressione atmosferica: il barometro a mercurio. y Il barometro e costituito da un tubo, chiuso ad una estremita, riempito di mercurio. Il tubo viene rovesciato in un contenitore aperto, anch esso pieno di mercurio, avendo cura di non fare entrare aria nel tubo stesso durante la operazione. Alla estremita chiusa del tubo si crea una zona di vuoto dove la pressione puo essere considerata nulla. La altezza della colonna di mercurio osservata eseguendo l esperimento al livello del mare e di 76 cm. Dalla legge di Stevino abbiamo che P 0 = P+ ρgh = 0 + ρgh = ρgh = 1.01 10 5 Pa = 1 atm La pressione atmosferica e quindi equivalente a quella generata da una colonna di mercurio di altezza h=76 cm Principio di Pascal Come abbiamo visto, la pressione in un fluido in quiete dipende solo dalla profondita. Pertanto, ad esempio, un aumento della pressione P 0 sulla superficie sara trasmesso in qualsiasi altro punto del fluido. Il primo a comprendere cio fu Blaise Pascal (1623-1662), al quale e dedicato il nome della unita di pressione del S.I., che enuncio la legge oggi nota come principio di Pascal: Una variazione di pressione applicata ad un fluido viene trasmessa invariata ad ogni punto del fluido e alle pareti del contenitore.

Esempio 3: un sollevatore per auto Una importante applicazione del principio di Pascal e il martinetto idraulico la cui logica di funzionamento e la seguente. Una forza F 1 viene applicata ad un piccolo pistone di area A 1. La pressione viene trasmessa attraverso un fluido ad un pistone di area A 2 >A 1, sul quale sara quindi esercitata una forza F 2. Poiche la pressione e la stessa su entrambi i pistoni si ha: P = F 1 /A 1 = F 2 / A 2 F 2 = F 1 (A 2 /A 1 ) > F 1 Su tale principio si basa il funzionamento di freni idraulici, sollevatori idraulici, carrelli elevatori e simili. y Un elevatore tiene sollevata una automobile di massa M=1.3 10 3 kg. Per fare funzionare l elevatore si utilizza dell aria compressa per comprimere un pistoncino di raggio R 1 =5.0 cm, mentre il raggio del secondo pistone e R 2 =15 cm. Quale forza F 1 deve esercitare l aria compressa per tenere sollevata l auto? Quale sara la pressione dell aria compressa necessaria? Mg+ F 2 = ma= 0 -Mg + F 2 = 0 -Mg + F 1 (A 2 /A 1 ) =0 F 1 = Mg (A 1 /A 2 ) = Mg (R 1 /R 2 ) 2 = (1/9) Mg= 1.4 10 3 N P = F 1 /A 1 = F 1 /(πr 12 ) = 1.8 10 5 Pa = 1.8 atm

Principio di Archimede Archimede, piu di 2000 anni addietro, enuncio quello che e oggi noto come principio di Archimede: un corpo immerso in un fluido riceve una spinta dal basso verso l alto pari al peso del fluido spostato. Ci proponiamo di capire, alla luce delle nostre conoscenze attuali, quale e l origine di tale spinta. y Dato un contenitore contenente un fluido in quiete avente densita ρ, consideriamo la quantita di fluido contenuta dentro un cubo immaginario di lato L come schematizzato in figura. Poiche il cubo di fluido e in quiete, la componente lungo l asse y della risultante delle forze agenti sul cubo di fluido deve essere nulla. Quindi: -Fg + B = 0 B = Fg = mg Quindi la spinta B verso l alto agente sul cubetto di fluido e uguale, in modulo, al peso del cubetto di fluido stesso. Ora se il cubetto di fluido venisse sostituito da da un cubetto di un altra sostanza,avente le stesse dimensioni, il fluido circostante si comporterebbe allo stesso modo e la spinta rimarrebbe uguale al peso del fluido spostato. Notiamo che la spinta di Archimede e originata dalla differenza di pressione P = Pdown - Pup fra la faccia inferiore (down) e superiore (up) del cubo. B = Fdown Fup = L2 Pdown - L2 Pup = L2 (Pdown - Pup ) = L2 (ρ gl) = (L3 ρ) g = mg

Condizione di galleggiamento Cosa succede ad un corpo di densita ρ c quando viene immerso in un fluido di densita ρ f? Come conseguenza del principio di Archimede si ha che: se ρ c < ρ f il corpo sara soggetto ad una forza risultante rivolta verso l alto e galleggera nel fluido, se ρ c > ρ f il corpo sara soggetto ad una forza risultante rivolta verso il basso ed affondera nel fluido. Infatti, detto V c il volume del corpo considerato, la componente della forza risultante F rispetto ad un asse verticale rivolto verso l alto sara : F y =-mg + V c ρ f g =-V c ρ c g + V c ρ f g =V c g(ρ f -ρ c ) Essa sara quindi positiva se ρ c < ρ f e negativa se ρ c > ρ f. Esempio 4: il galleggiamento di un iceberg Dato un iceberg, che galleggia in mare aperto, ci proponiamo di calcolare quale e la frazione del suo volume che rimane immersa sapendo che: la densita del ghiaccio costituente l iceberg e ρ 3 i = 917 kg/m e la densita dell acqua dove esso e immerso e ρ f = 1030 kg/m 3. La parte immersa dell iceberg deve generare una spinta di Archimede Bpari in modulo al peso P i dell iceberg stesso. Pertanto, detti V i il volume totale dell iceberg e V il volume della sua parte immersa si ha: P i = B V i ρ i g = V ρ f g V/ V i = ρ i / ρ f = 0.89 = 89 % Da cui il modo di dire e solo la punta di un iceberg!

Introduzione alla dinamica dei fluidi: moto di un fluido ideale Finora ci siamo limitati allo studio di un fluido in quiete. Lo studio del moto di un fluido reale e molto complesso, pertanto ci limiteremo ad introdurre alcune nozioni basilari riguardanti lo studio del moto di un fluido ideale. Lo studio del moto di un fluido ideale e basato sulle seguenti ipotesi. Il fluido non e viscoso La viscosita e per i fluidi l analogo dell attrito per i solidi. Essa rappresenta una sorta di attrito interno fra le varie particelle del fluido e fra il fluido e le pareti della condotta. Ad esempio, dalla definizione data, segue che un oggetto in moto all interno di un fluido non viscoso non sarebbe soggetto ad alcuna forza che si oppone al suo moto. Analogamente all effetto delle forze di attrito nel moto dei solidi, nel moto di un fluido viscoso della energia meccanica viene trasformata in energia termica. Il fluido e incomprimibile. Assumiamo cioe che la massa volumica (densita ) del fluido sia costante. Essa sara quindi la stessa in qualsiasi punto all interno della condotta. Il moto e stazionario. Il moto e stazionario quando, considerato un punto generico all interno della condotta, la il vettore velocita delle particelle di fluido che transitano in quel punto non cambia col tempo. Il moto e irrotazionale. Il moto di un fluido e irrotazionale se nessuna delle sue particelle ruota attorno ad un asse passante per il suo centro di massa. Ad esempio immaginiamo di far muovere un piccolo granello di polvere in un fluido. Se il moto e irrotazionale, il granello di polvere non ruoterebbe attorno ad un asse passante per il suo centro di massa anche se dovesse muoversi lungo un camino circolare.

Equazione di continuita Consideriamo un fluido ideale che si muova lungo una condotta di sezione variabile come schematizzato in figura. La massa m 1 di fluido che attraversa la sezione A 1 in un intervallo di tempo t deve essere uguale alla massa m 2 che attraversa la sezione A 2 nello stesso intervallo di tempo. Pertanto: m 1 = m 2 ρ 1 (A 1 x 1 ) = ρ 2 (A 2 x 2 ) ρ 1 (A 1 v 1 t) = ρ 2 (A 2 v 2 t) ρ 1 A 1 v 1 = ρ 2 A 2 v 2 (se la densita e costante) A 1 v 1 = A 2 v 2 Tale equazione prende il nome di equazione di continuita e mostra che la velocita del fluido e maggiore dove il tubo e piu stretto e minore dove il tubo e piu largo. Il prodotto AV,che ha le dimensioni di un volume diviso un tempo, e chiamato portata. A 1 Esempio 5 Osservando un flusso di acqua che esce da un rubinetto, notiamo che la sua sezione si restringe (A 2 < A 1 ) man mano che l acqua cade acquistando velocita. Cio e una diretta conseguenza della equazione di continuita. Infatti: A 1 v 1 = A 2 v 2 ma v 2 >v 1 quindi A 2 A 2 <A 1

Equazione di Bernoulli Daniel Bernoulli ricavo per primo la seguente equazione che, per il moto di un fluido ideale di densita ρ, lega la pressione P, la velocita v e la quota y del fluido dentro la condotta dove esso scorre: P 1 + 1/2 ρv 12 + ρgy 1 = P 2 + 1/2 ρv 22 + ρgy 2 = costante Tale equazione, ricavata tramite considerazioni di tipo energetico, e oggi nota come equazione di Bernoulli. Ci proponiamo ora di dimostrare la suddetta equazione. Prendiamo in considerazione la quantita di fluido (avente volume V e massa m = V ρ) che in un tempo t attraversa le sezioni 1 e 2 della condotta. Poiche stiamo ipotizzando che il moto del fluido sia ideale (e quindi stazionario), la porzione di fluido compresa fra x 1 e x 2 non subisce alcuna variazione nel tempo t. Quindi, dal punto di vista energetico, e come se nel tempo t la massa m di fluido considerata si spostasse dal tratto x 1 al tratto x 2. Il fluido a sinistra della sezione 1 effettua sulla massa m di fluido considerata un lavoro L 1 L 1 = F 1 x 1 = P 1 A 1 x 1 = P 1 V Analogamente il fluido a destra della sezione 2 effettua su m un lavoro L 2 = -F 2 x 2 = -P 2 A 2 x 2 = -P 2 V Imponendo che lavoro totale sia uguale alla variazione di energia meccanica totale della massa m di fluido considerata, otteniamo la equazione di Bernoulli L tot = L 1 + L 2 = (P 1 -P 2 ) V L tot = K + U (P 1 -P 2 ) V = (1/2mv 2 2-1/2 m v 12 ) + (mgy 2 -mgy 1 ) (P 1 -P 2 ) = (1/2 ρv 2 2-1/2 ρv 12 ) + (ρgy 2 -ρgy 1 ) P 1 + 1/2 ρv 12 + ρgy 1 = P 2 + 1/2 ρv 22 + ρgy 2

Esempio 6 Un serbatoio di acqua ha su una parete un forellino di diametro trascurabile rispetto al diametro del serbatoio stesso. Il foro si trova ad una quota h al di sotto del livello dell acqua nel serbatoio. Con quale velocita l acqua esce dal forellino? Siano A ed a le sezioni del serbatoio e del forellino; V e v le velocita dell acqua alla superficie del serbatoio e all uscita dal forellino. Siano inoltre P 0 la pressione atmosferica e ρ f la densita dell acqua. Dalla equazione di continuita si ha: A V = a v V= v (a/a) Ma a<<a V<<v Applicando l equazione di Bernoulli si ottiene: P 0 + ½ ρ f V 2 + ρ f gh = P 0 + ½ ρ f v 2 + 0 + ½ v 2 = ½ V 2 + gh Poiche V<<v il termine 1/2 V 2 sara trascurabile rispetto ½ v 2 e si avra + ½ v 2 = gh v = [2gh] 1/2 L acqua avra quindi la stessa velocita che avrebbe un corpo cadendo da una quota h

Esempio 7: il tubo di venturi Il tubo di venturi e uno strumento che puo misurare la velocita di un fluido in una conduttura, se inserito nella conduttura stessa. Esso e essenzialmente un tubo avente gli estremi della stessa sezione A della conduttura in cui e inserito e il centro di sezione a minore. Un manometro consente di misurare la differenza di pressione P 1 -P 2 >0 fra un estremo dello strumento ed il centro. Abbiamo che: 1) Equazione di Bernoulli P 1 + 1/2ρv 12 =P 2 +1/2 ρv 2 2 2) Legge di Stevino P 1 -P 2 = ρgh misurabile 3)Equazione di continuita Av 1 =av 2 Utilizzando le 3 equazioni suddette e possibile esprimere la velocita v 1 del fluido in funzione della differenza di pressione ρgh misurata. Esempio 8: cosa genera la portanza negli aerei? La spinta che agisce sulle ali degli aerei e, in parte, una diretta conseguenza della equazione di Bernoulli. La forma dell ala e tale che la velocita dell aria che scorre sulla parte superiore dell ala sia maggiore di quella dell aria che scorre lungo la parte inferiore. Pertanto, come predetto dalla equazione di Bernoulli, la pressione sara inferiore sopra l ala e la forza risultante agente sara rivolta verso l alto. Un altro effetto che contribuisce a generare la portanza e il seguente. L ala ha una lieve angolazione verso l alto, per cui le molecole d aria che colpiscono la parte inferiore vengono deviate verso il basso. Cio significa che: l ala esercita sulle molecole d aria una forza diretta verso il basso, quindi, per la III legge di Newton, l aria esercitera una forza sull ala diretta verso l alto.

Fluidi Reali Il moto del fluido in un condotto cilindrico si può assimilare a quello di un fluido distribuito in cilindri concentrici che scorrono coassialmente l uno dentro l altro con velocità decrescente dal centro verso la periferia (regime laminare) Lalegge distokesesprime laforzadiattrito viscosoa cui è soggetta unasferain moto laminare rispetto ad un fluido F d = 6πηrv F d è la forza di attrito viscoso, η è il coefficiente di viscosità, r è il raggio della sfera e vè la velocità relativa tra fluido e sfera.

Fluidi Reali Velocità limite per una sfera: possiamo calcolare la velocità limite per una sfera di massa me raggio rche cade in un fluido con coefficiente di viscosità η. F T = F p F S F V A regime: F p F S F V =0 x F s mg ρfvg 6 πηrv=0 F T = F p F S F V v = mg ρ Vg F 6πηr = 2 ( ρ ρ ) S 9η F gr 2 Velocità di sedimentazione Esercizio: Una sfera di polistirolo con un raggio di 0,50 mm e densità 35 kg/m 3 cade in aria. Calcolare la velocità limite di caduta della sfera.

Fluidi Reali L attrito interno di un fluido produce una caduta di pressione secondo la legge di Hagen-Poiseuille. Quindi per far scorrere un fluido reale in un condotto orizzontale e necessario applicare ai suoi estremi una differenza di pressione. La variazionedi pressione tra due punti situati rispettivamente all'ingresso ed all'uscita di un condotto in regime laminare è data da: Dove Rè la resistenza idraulica e Qla portata. Nel caso di un condotto cilindrico: Gli sforzi di taglio tra strati adiacenti di fluido, nel flusso laminare, sono causati in parte dalle forze molecolari di coesione e in parte da scambi di quantità di moto dovuti al passaggio (per diffusione) di molecole tra strati a differenti velocità. Nel flusso turbolento, invece, gli sforzi di taglio sono causati dallo scambio di quantità di moto associato ad intere porzioni di fluido che si spostano. Si osserva sperimentalmente cheun flusso laminare, al variare di certe condizioni, può diventare turbolento.

Fluidi Reali Regime turbolento Con l aumento della velocita del fluido nel condotto la formula di Hagen Poiseuillecessa di valere e si ha il passaggio dal regime di moto laminare al regime di moto vorticoso o turbolento. Reynolds, nel 1883, studiò sperimentalmente e teoricamente la natura di queste condizioni: attraverso esperimenti nei quali il regime di un flusso d'acqua di velocità regolabile era reso osservabile iniettandovi dei coloranti, egli ricavò la formula di un parametro adimensionale che caratterizza il tipo di moto del fluido: N R = ρvd η Questo numero è dettonumero di Reynolds. Nella formulavè la velocità media del fluido rispetto al solido con cui viene a contatto,ρ è la sua densità, ηè il suo coefficiente di viscosità eduna lunghezza caratteristica del solido (per una condotta cilindrica, ad esempio, quest'ultima può essere identificata con il diametro).

Sistema circolatorio Il cuore è una doppia pompa che alimenta la circolazione sistemica e la circolazione polmonare (con uguale portata) Parte attiva (ventricoli) polmonare sistemica Compatibili con l equazione di continuità Sv=cost

La pressione arteriosa Per la misura si utilizza lo sfigmomanometro, costituito da una fascia, in cui si pompa aria, il circuito è connesso ad un manometro. In una arteria il flusso sanguigno è normalmente laminare (silenzioso) q N R = = vπr ρv2r η 2 cost Il restringimento della sezione dell arteria determina una transizione a flusso turbolento (rumoroso) La fascia viene applicata al braccio in modo da comprimere l arteria sottostante applicando una pressione maggiore di quella sistolica. L arresto delle pulsazioni viene rivelato con uno stetoscopio. Aprendo la valvola si fa uscire l aria lentamente fino a sentire la ripresa delle pulsazioni, che avviene al raggiungimento della pressione sistolica (massima). Con l ulteriore diminuzione della pressione nella fascia le pulsazioni sentite con lo stetoscopio cessano al raggiungimento della pressione diastolica (minima), poiche l arteria e completamente aperta ed il flusso e laminare e quindi silenzioso. P Fase sistolica Fase diastolica