Esercitazione 1. Francesca Apollonio Dipartimento Ingegneria Elettronica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 1. Francesca Apollonio Dipartimento Ingegneria Elettronica"

Transcript

1 Esercitaione rancesca Apollonio ipartimento Ingegneria Elettronica

2 Concetto di campo Campo: Regione dello spaio in cui è definita una grandea fisica variabile in funione dei punti della regione. per estensione: un campo è la grandea fisica stessa il cui valore dipende dai punti di una certa regione dello spaio in cui viene considerata. Il campo elettromagnetico è la grandea fisica, generalmente funione dello spaio e del tempo, in grado di descrivere uantitativamente le interaioni collegate alle carice elettrice in uiete o in moto E v B ( E v B) ora di Lorent apollonio@die.uniroma.it

3 Rappresentaione di un campo olo pocissime grandee fisice assumono valori costanti. Più freuentemente il valore di una uantità fisica (es. temperatura, fora) dipende dai punti dello spaio e dai valori temporali in cui essa è considerata. Per fare riferimento alla totalità dei valori della uantità fisica in tutti i punti dello spaio di interesse si introduce il concetto di campo. In sostana i campi sono rappresentati come funioni (scalari o vettoriali) di posiione e tempo. ( r, t) r i j k rr k (Cartesiane) (Cilindrice) rr (ferice) ebbene una rappresentaione analitica dei campi sia esseniale per una rigorosa trattaione teorica, una rappresentaione grafica risulta molto efficace. Campo scalare: linee di livello Campo vettoriale: linee di fora apollonio@die.uniroma.it

4 Operatore nabla Operatori differeniali [] [] [] [] Gradiente di uno scalare Φ Φ Φ Φ ivergena di un vettore A A A A rotore di un vettore A 0 A 0 A 0 A apollonio@die.uniroma.it

5 Operatori differeniali Operatore nabla [] [] [] Campo scalare Campo vettoriale [] Gradiente di uno scalare: Φ campo vettoriale A A A ivergena di un vettore: A campo scalare Φ Φ Φ Rotore di un vettore: campo vettoriale A A A A apollonio@die.uniroma.it

6 Gradiente: interpretaione fisica Φ Φ Φ Φ dr 0d 0d 0d 0 r n dr r 0 dφ d r n dl Φ dr Φ d Φ d Φ d 0 derivata direionale Φ n dφ dl La componente su n del gradiente misura il tasso di variaione della funione Φ rispetto alla distana nella direione di n. Quindi uanto più rapidamente Φvaria agli occi di un osservatore ce si allontana da un punto iniiale nella direione di n tanto più grande sarà la componente di Φ in uella direione. apollonio@die.uniroma.it

7 Esempio: gradiente P L Φ E dl > dφ P E dl P E 0 dl P dφ ( E d E d E d) dl d d d dφ Φ d Φ d Φ d E E E E E E E Φ Φ Φ E Φ Φ Φ Φ apollonio@die.uniroma.it

8 ivergena: interpretaione fisica V dv d n ρ V dv V d V V V > > n ρ 0 0 lim lim ρ lusso del vettore per unità di volume Il flusso netto attraverso il volume infinitesimo,, sarà pari al flusso attraverso le sei facce del volume : ( ) ( ) ( ) ( ) per la direione e uesto vale ance per le altre direioni e

9 ivergena: interpretaione fisica Quindi il flusso netto: ρ Al limite per v->0: ρ ρ La divergena di un campo vettoriale è uindi una descriione del modo in cui il campo varia in un punto. E la uantità di flusso per unità di volume ce emerge da un volumetto elementare in un punto.

10 Rotore: interpretaione fisica [ ] i i i d > l 0 lim Rotore->integrale di linea su un percorso ciuso infinitesimo, diviso per l area racciusa da uel percorso. Vettore le cui componenti si trovano orientando una piccola area normale alla direione di interesse e facendo il limite dell integrale di linea diviso per l area. d l d l [ ] [ ] [ ] 0 0 0

11 Proprietà integrali dell operatore ormula di Green [] n[] V Ne discende: V Φ dv dv d ) Teorema del gradiente s n Φ d ) Teorema della divergena A dv n A d V ) Teorema del rotore A n V s s dv A d n V s n ds Teorema di tokes (o della circuitaione) A n d s A ds apollonio@die.uniroma.it

12 Proprietà integrali dell operatore n d ds Teorema di tokes Γ ds lim > 0 Γ i i i ds i Γ ds lim i > 0 i i ( ) i Γ ds d apollonio@die.uniroma.it

13 Identità vettoriali differeniali Manipolaione di espressioni contenente l operatore nabla: si svolgono le operaioni come se fosse un vettore ordinario uando opera su prodotti (essendo un operatore differeniale) va applicata la regola di derivaione di un prodotto ) ( ΦΨ) ( ΦΨ) ( ΦΨ) Ψ Φ Φ Ψ Φ Ψ CΦΨ ΨCΦ ΦCΨ ) ( ΦA) ( ΦA) A ( ΦA) Φ A Φ A Φ C ( ΦA) ( CΦ) A ΦC A ) ( ΦA) ( ΦA) A ( ΦA) Φ A Φ A Φ ( ΦA) ( CΦ) A ΦC A C apollonio@die.uniroma.it

14 Identità vettoriali differeniali 4) ( A B) ( A B) ( A B) B A - A B 5) A B C A B B C A -A C ( A B) A ( A B) B ( A B) ( B ) A - ( A) B ( B) A - ( A )B C ( ) B ( A B) ( B C) A - ( C A) B ( C B) A - ( A C)B Operatori differeniali del II ordine 6) ( Φ) Φ Laplaciano In coordinate cartesiane: C Φ ( CΦ) ( C C) Φ C Φ Φ Φ Φ apollonio@die.uniroma.it

15 Identità vettoriali differeniali 7) ( A) ( A) ( ) A ( A) A C ( C A) ( A C) C - ( C C) A ( A C) C - C A 8) ( Φ) 0 C ( CΦ) ( C C) Φ 0 9) ( ) 0 A C ( C A) ( C C) A 0 apollonio@die.uniroma.it

16 Identità vettoriali differeniali Lemmi di Green ) ( Φ Ψ) Φ Ψ Φ Ψ Φ Ψ n d Ψ Φ n d τ ( ) ( ) Φ Ψ d Φ Ψ Φ Ψ ( Φ Ψ Φ Ψ ) τ τ dτ τ dτ ) scambiando le due funioni e sottraendo membro a membro Ψ Φ n d Φ Ψ d n ( Φ Ψ Ψ Φ ) τ dτ Ψ Φ ( ) ( ) Φ Ψ Ψ Φ n d Φ Ψ d Φ Ψ Ψ Φ n n τ dτ apollonio@die.uniroma.it

17 Generaliaione: sistemi di coordinate curvilinee Non sempre l uso di coordinate cartesiane è il più conveniente (, ), (,, ), (, ), funioni ad un solo valore, Con riferimento ad un sistema di coordinate cartesiane le euaioni istema di coordinate curvilinee C, C, C rappresentano tre superfici il cui punto di interseione P è individuato dai tre valori delle coordinate, e P(,, ) e incremento di d il punto P si sposta sulla linea della uantità ds ce in generale non coinciderà con d come avviene per le coordinate cartesiane, ma sarà proporionale ad esso. Il coefficiente di proporionalità verrà indicato con s ciamato coefficiente metrico apollonio@die.uniroma.it

18 Esempi istemi di coordinate curvilinee,, d ds d ds d ds r r r r d d d ds ds ds d d d d i0 i i r i,, i i i i i i s

19 istemi di coordinate curvilinee Coordinate cartesiane,,,,

20 r r r π ϕ π θ ϕ θ ϕ θ < < arctan arctan,, istemi di coordinate curvilinee ( ) r r θ sin,, Coordinate sferice

21 istemi di coordinate curvilinee < < < < π ϕ ρ ϕ ρ ϕ ρ 0 0 arctan,,,, ρ Coordinate cilindrice

22 orma matriciale Trasformaioni di coordinate ()

23 orma inversa Trasformaioni di coordinate ()

24 istemi di coordinate curvilinee Volumi, superfici e linee differeniali apollonio@die.uniroma.it

25

26 Esercii ) ) apollonio@die.uniroma.it

27 Esercii ) 4) apollonio@die.uniroma.it

28 oluioni ) ) apollonio@die.uniroma.it

29 oluioni ) 4) apollonio@die.uniroma.it

30 [] [] V dv d n ormula di Green istemi di coordinate curvilinee [] [] [] [] [] [] ( ) [] ( ) [] ( ) Φ Φ Φ Φ ( ) ( ) ( ) A A A A

31 A A A A istemi di coordinate curvilinee

32 Campi scalari e vettoriali Le proprietà dei campi EM sono descritte attraverso relaioni fra grandee fisice gran parte delle uali anno la natura di campi vettoriali Campi scalari e vettoriali Campo scalare: funione scalare di punto avvenire attraverso le superfici di livello Ψ( P) Ψ( r) La rappresentaione di un campo vettoriale può ( ) ( ) Campo vettoriale: funione vettoriale di punto A P A r La rappresentaione di un campo vettoriale può avvenire mediante linee di fora o linee di flusso del vettore Campo solenoidale: le linee di fora sono ciuse, non anno né iniio né fine (deriva da vortici, privo di sorgenti) Campo irrotaionale o conservativo: le linee di fora sono aperte, anno origine e termine in particolari punti dello spaio (deriva da sorgenti, privo di vortici) apollonio@die.uniroma.it

33 Campi irrotaionali e solenoidali ato un campo vettoriale ce sia il gradiente di una funione scalare Φ Φ 0 Consideriamo ora un campo vettoriale ce sia privo di vortici in una regione τ (irrotaionale), cioè supponiamo: 0 in τ ci ciediamo se esiste una funione scalare il cui gradiente sia pari al campo vettoriale Cioè: Φ se uesta funione esiste essa si ciama poteniale scalare del campo vettoriale E possibile dimostrare ce tale funione esiste a patto ce la regione in cui è irrotaionale sia a connessione lineare semplice ato un campo vettoriale B ce sia il rotore di una funione scalare A B A B 0 Consideriamo ora un campo vettoriale B ce sia privo di sorgenti in una regione τ (solenoidale), cioè supponiamo: B 0 in τ ci ciediamo se esiste una funione vettoriale il cui rotore sia pari al campo vettoriale B Cioè: A B se uesta funione esiste essa si ciama poteniale vettore del campo vettoriale B E possibile dimostrare ce tale funione esiste a patto ce la regione in cui B è solenoidale sia a connessione superficiale semplice apollonio@die.uniroma.it

Operazioni differenziali sui campi

Operazioni differenziali sui campi Operaioni differeniali sui campi ono operaioni di derivaione delle componenti del campo. giscono su campi e definiscono nuovi campi. Gradiente Divergena Rotore Laplaciano iccome le componenti sono funioni

Dettagli

Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente:

Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente: APPENDICE A.1 Operatori differeniali e relativi teoremi Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente: xˆ yˆ ˆ. x y E possibile provare che tale operatore

Dettagli

Prodotto Scalare e Prodotto Vettore I

Prodotto Scalare e Prodotto Vettore I Prodotto Scalare e Prodotto Vettore I Prodotto Scalare: pplicaione che va dallo spaio prodotto R 3 R 3 in R tale che: 3 B B B, = j = 1 j j Norma di un Vettore: pplicaione che va dallo spaio dei vettori

Dettagli

Premesse matematiche. 2.1 Gradiente

Premesse matematiche. 2.1 Gradiente Premesse matematiche 2.1 Gradiente ia f(x, y, z) : R 3 una funzione scalare delle coordinate spaziali (x, y, z). L ampiezza della funzione f(x, y, z) dipende dal punto di osservazione e risulta in genere

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

Corso di Laurea in Fisica Unipi G.M.P. Appunti di Fisica _I Primo semestre. Forze conservative

Corso di Laurea in Fisica Unipi G.M.P. Appunti di Fisica _I Primo semestre. Forze conservative ppunti di Fisica _I Primo semestre Novenmbre 20 Cap.3.v Sommario Fore conservative Il poteniale...2 Conservaione dell'energia...2 Il poteniale e la fora...3 Il poteniale nel campo gravitaionale costante...4

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015) ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC_2b (ultima modifica 30/09/2015) M. Usai ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC 27 L integrale S d s è un integrale superficiale

Dettagli

APPENDICE B Ausili matematici

APPENDICE B Ausili matematici APPENDICE B Ausili matematici B Sistemi di coordinate In molteplici circostane non risulta efficace l impiego dei sistemi di coordinate cartesiani sia nel piano che nello spaio Ciò accade in particolare

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk Appendice A A.1 - istemi di coordinate. 1) Coordinate cartesiane. Il sistema di riferimento è costituito da tre assi perpendicolari uscenti da una comune origine O ed orientati positivamente verso l esterno.

Dettagli

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica rgoento 1 Leione 1 Leione 2 Franceca pollonio Dipartiento Ingegneria lettronica -ail: Capo elettrotatico Generato da cariche che non variano nel tepo Legge di Coulob r 1 F 2 4πε Qq [N] r q Q La fora di

Dettagli

1) ELETTROSTATICA NEL VUOTO riassunto Gauss

1) ELETTROSTATICA NEL VUOTO riassunto Gauss 1) ELETTROSTATICA NEL VUOTO riassunto Gauss - flusso di un vettore attraverso una superficie: ϕ(v) 6 = 8 v n9 ds 6 - teorema di Gauss: ϕ(e) 6 = 8 E n9 ds =??FG q? 6 ε =>?@AB I utile solo se per motivi

Dettagli

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica iare la convergena della serie: kk!a k k 1 (fila 1), Analisi II k a k k 1 (fila ), /6/1 Analisi II efficienti a k definiti da: Analisi Matematica/6/1 II - Anno Accademico 9-1 Corsi di Laurea in Ingegneria

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

Lucio VEGNI Appunti dalle LEZIONI DI CAMPI ELETTROMAGNETICI II (anno accademico 2009/2010)

Lucio VEGNI Appunti dalle LEZIONI DI CAMPI ELETTROMAGNETICI II (anno accademico 2009/2010) Lucio EGNI Appunti dalle LEZIONI DI CAMPI ELETTROMAGNETICI II (anno accademico 009/00) INTRODUZIONE (/5) La previsione dell esistenza delle onde elettromagnetice (e.m.) costituisce il risultato più importante

Dettagli

l intersezione di due piani perpendicolari tra loro individua una retta, nello spazio, ossia un asse di riferimento

l intersezione di due piani perpendicolari tra loro individua una retta, nello spazio, ossia un asse di riferimento Coordinate cartesiane, polari sferiche e polari cilindriche i sistemi di coordinate curvilinee ortogonali sono costruiti scegliendo tre superfici dette superfici coordinate che vengono identificate ciascuna

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06)

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06) e engono I CMPI VTTORILI ntonio Meloni Per gli studenti di Introduione alla Fisica della Terra olida di Roma Tre, 05/06 1 Introduione In questa nota engono introdotti i campi ettoriali al solo scopo di

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico Barbarino - Appunti di Fisica II Cap 1 Il campo elettrostatico nel vuoto: I 11 - Legge sperimentale di Coulomb e definiione di campo elettrico Tutte le leggi dell elettrostatica possono essere dedotte

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Generale III con Laboratorio Campi elettrici e magnetici nella materia Leione 5 Diamagnetismo e Paramagnetismo Teorema di Larmor - I 1) Moto di precessione Grandea vettoriale generica, funione del

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercii. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 30 APRILE 05 ESERCIZIO (PUNTEGGIO: 4/30) Si studi il comportamento dell integrale in valore principale al variare

Dettagli

Lezioni L3.a. 5. Teorema dei Campi Conservativi; 7. Teorema di Stokes; 9. Rot E=0. FISICA GENERALE II, Cassino A.A

Lezioni L3.a. 5. Teorema dei Campi Conservativi; 7. Teorema di Stokes; 9. Rot E=0. FISICA GENERALE II, Cassino A.A Lezioni L3.a 1. Flusso attraverso una superficie;. Scalari, Pseudoscalari, Vettori e Pseudovettori; 3. Campi Scalari e Campi Vettoriali ed operatori; 4. Gradiente, Divergenza, Rotore, Laplaciano; 5. Teorema

Dettagli

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C.

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C. Serie 33: Soluioni FAM C. Ferrari Eserciio 1 Momento meccanico su una spira: motore elettrico 1. α F α = 0, ma non si tratta di una situaione di equilibrio! 2. Se l rappresenta il lato della spira M tot

Dettagli

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x).

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x). Teorema della divergenza Richiami di teoria Operatori divergenza e di Laplace R n un insieme aperto, x = (x 1, x 2,..., x n ). Divergenza Consideriamo un campo vettoriale F : R n R n differenziabile in

Dettagli

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira?

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira? FAM Serie 33: Elettrodinamica VIII C. Ferrari Eserciio Momento meccanico su una spira: motore elettrico Una spira conduttrice quadrata di lato 0cm si trova nel piano. Una corrente di 0A la percorre nel

Dettagli

Operatori vettoriali su R ³

Operatori vettoriali su R ³ Operatori vettoriali su R ³ Sui campi scalari e vettoriali tridimensionali è possibile definire degli operatori vettoriali che giocano un ruolo importantissimo anche per le applicazioni nel campo fisico

Dettagli

Geometria 3 primo semestre a.a

Geometria 3 primo semestre a.a Geometria 3 primo semestre a.a. 2014-2015 Esercizi Forme differenziali Ricordiamo alcune definizioni date a lezione. s-forma definite da Siano ω una k-forma e φ una ω = I a I dx I, φ = J b J dx J Definizione

Dettagli

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 4 12.10.2017 Campo elettrico come gradiente del potenziale Anno Accademico 2017/2018 Il campo elettrico come gradiente

Dettagli

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato 16-06-2009 Programma dettagliato di METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO_08_09.htm Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a. 2008-09 II sem. Prof.

Dettagli

Risultati di ANALISI VETTORIALE

Risultati di ANALISI VETTORIALE Guida allo studio autonomo in ELETTROMAGNETISMO U Unità Risultati di ANALISI VETTORIALE Introduzione Hai già studiato gran parte della matematica necessaria per questo corso Comunque vale la pena di rivedere

Dettagli

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + };

Dettagli

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Richiami di analisi vettoriale Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Derivate parziali - Gradiente = ( f) dx i i Esercizio Esempi Esempio C 1 b (1,1)

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

,1752'8=,21($//2678',2'(,&$03,

,1752'8=,21($//2678',2'(,&$03, ,175'8,1($//678','(,&$03, Sia Ω na regione nello spaio in ci, in ogni so pnto, sia definita na grandea J. La regione Ω si dice allora soggetta ad n campo. Un campo pò essere scalare, vettoriale o tensoriale,

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO 1) ELETTROSTATICA NEL VUOTO la lezione precedente consideriamo il lavoro che una carica q deve compiere per muoversi lungo una linea g da A a B sotto l azione della forza coulombiana generata da una carica

Dettagli

Capitolo II Idrostatica

Capitolo II Idrostatica Capitolo II Idrostatica II.1 Sforo E possibile distinguere due tipi di fore agenti sul corpo fluido: le fore di corpo e le fore di contatto. Le fore di corpo sono in grado di penetrare in tutte le parti

Dettagli

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Campi conservativi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Campi conservativi Analisi Matematica B 1 / 99 Premessa Riccarda Rossi (Università di

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

23(5$725,',))(5(1=,$/,9(7725,$/,/,1($5,'(/35,0225',1(

23(5$725,',))(5(1=,$/,9(7725,$/,/,1($5,'(/35,0225',1( 3(5$75,',))(5(1,$/,9(775,$/,/,1($5,'(/35,05',1( Sia Ω na regione nello spaio in ci, in ogni so pnto, sia definita na grandea J. La regione Ω si dice allora soggetta ad n campo. Un campo pò essere scalare,

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale:

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale: MOTO ROTOTRASLATORO D UN CORPO RGDO Equaioni cardinali Prima equaione cardinale: dv c M Fet Esprime il teorema del moto del centro di massa: il moto del centro di massa del corpo rigido è quello di un

Dettagli

CAMPI VETTORIALI (Note)

CAMPI VETTORIALI (Note) CAMPI VETTORIALI (Note) Sia v(x,y,z) il vettore che definisce la grandezza fisica del campo: il problema che ci si pone è di caratterizzare il campo vettoriale sia in termini locali, cioè validi punto

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Descrizione vettoriale dell esperimento di risonanza magnetica

Descrizione vettoriale dell esperimento di risonanza magnetica Descriione vettoriale dell esperimento di risonana magnetica oto di un momento magnetico in campo magnetico. Un momento magnetico (associato ad un momento angolare) in un campo magnetico è soggetto ad

Dettagli

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento La legge di Ampere e` inconsistente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo rof. Francesco Ragusa Università degli Studi di Milano Leione n. 6..7 Carica puntiforme e dielettrico Energia elettrostatica Corrente elettrica. Euaione di continuità Legge di Ohm Anno

Dettagli

Terzo esonero. 21 marzo Esercizio

Terzo esonero. 21 marzo Esercizio Terzo esonero 2 marzo 27. Esercizio Disegnare l insieme D : x, y) : x y 2 x, 2x 2 y 2x} e calcolarne l area. Determinare una trasformazione lineare che mandi D in un rettangolo. Calcolare l integale doppio

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3) ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame Testi di esercii di preparaione alla I prova in itinere Gli esercii in elenco sono in gran parte tratti da veccie prove d esame Eserciio Al variare di k discutere e ove possibile risolvere il sistema lineare

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 20.3.2018 Applicazioni della legge di Ampère Potenziale Vettore Anno Accademico 2017/2018 Filo di raggio a percorso

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità...

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità... Indice 1 Definizioni e relazioni fondamentali 9 1.1 Definizioni di E e B............................ 9 1.2 Equazioni di Maxwell........................... 10 1.3 Cariche e dielettrici............................

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 1 uperfici ia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 (u, v) R ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), cioè tale che le componenti x(u,

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi M. regnaghi 0. CINEMAICA: ENSORE DELLE VELOCIÀ DI DEFORMAZIONE ENSORE DEVIAORE DEGLI SFORZI Il tensore degli sfori può essere scritto come la somma di un tensore sferico (caso idrostatico) e di un tensore

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare

Dettagli

Finche il moto si svolge in una sola dimensione moto unidimensionale, moto rettilineo non abbiamo bisogno di vettori

Finche il moto si svolge in una sola dimensione moto unidimensionale, moto rettilineo non abbiamo bisogno di vettori Vettori Finche il moto si svolge in una sola dimensione moto unidimensionale, moto rettilineo non abbiamo bisogno di vettori La posiione e individuata dato il sistema di riferimento, e cosi pure tutte

Dettagli

SOLUZIONE AL PROBLEMA DELLE BIGLIE ROTANTI Jeckyll

SOLUZIONE AL PROBLEMA DELLE BIGLIE ROTANTI Jeckyll SOLUZIONE AL PROBLEMA DELLE BIGLIE ROTANTI Jeckyll Antonio ha costruito una pista per le biglie. Questo percorso prevede anche il passaggio su una guida formata da due binari non paralleli come in figura

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

2. Elementi. di algebra vettoriale. 1. Grandezze vettoriali

2. Elementi. di algebra vettoriale. 1. Grandezze vettoriali 2. Elementi di algebra vettoriale 1. Grandee vettoriali Una grandea fisica vettoriale èdefinita dal suo valore numerico, che si chiama modulo o intensità, e dalla sua direione. In generale un numero reale

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Gradiente, Divergenza, Rotore. Plinio Gatto

Gradiente, Divergenza, Rotore. Plinio Gatto Gradiente, Divergenza, Rotore Plinio Gatto 06 maggio 2006 Indice generale Licenza... 3 Introduzione...4 Gradiente... 5 Gradiente di temperatura... 5 Proprietà del campo Coulombiano... 6 Osservazioni sul

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 16.3.2018 Sorgenti del campo magnetico Divergenza e rotore del campo magnetico Applicazioni della legge di Ampère

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Capitolo III Cenni di cinematica dei fluidi

Capitolo III Cenni di cinematica dei fluidi Capitolo III Cenni di cinematica dei flidi III. Elementi caratteristici del moto. Nella descriione del moto di n flido è tile far riferimento a particolari famiglie di cre, nel segito sinteticamente descritte.

Dettagli

Ingegneria dei Sistemi Elettrici_3d

Ingegneria dei Sistemi Elettrici_3d Ingegneria dei Sistemi Elettrici_3d Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche elettriche fisse. I principi dei campi elettrostatici

Dettagli

si dirà campo vettoriale (stazionario). j il campo vettoriale si dice piano. Invece la espressione

si dirà campo vettoriale (stazionario). j il campo vettoriale si dice piano. Invece la espressione Campi Vettoriali e Forme Differenziali Prima Parte Tutte le funzioni presenti in questo capitolo sono per ipotesi sufficientemente regolari Terminologia e Notazioni: In questo capitolo ogni funzione si

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Ingegneria dei Sistemi Elettrici_4

Ingegneria dei Sistemi Elettrici_4 Ingegneria dei Sistemi lettrici_4 CMPO DI CORRNT Si definisce campo di corrente la regione dello spazio nella quale ha sede una distribuzione continua di corrente elettrica. sso è stazionario, se le grandezze

Dettagli

PARTE 3: Funzioni di più variabili e funzioni vettoriali

PARTE 3: Funzioni di più variabili e funzioni vettoriali PROGRAMMA di Fondamenti di Analisi Matematica 2 (Versione estesa del 14/1/ 10) A.A. 2009-2010, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica,

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Il significato visivo degli operatori gradiente, divergenza, rotore

Il significato visivo degli operatori gradiente, divergenza, rotore Il significato visivo degli operatori gradiente, divergenza, rotore 8 luglio 4 Luca Goldoni PhD Università di Trento-Dipartimento di Informatica Università di Modena -Dipartimento di Ingegneria Premessa

Dettagli

il luogo dei punti in cui un campo scalare assume un valore costante e detto superficie di livello ed e determinato dall equazione u(x,y,z) = c

il luogo dei punti in cui un campo scalare assume un valore costante e detto superficie di livello ed e determinato dall equazione u(x,y,z) = c Campo scalare e una regione di spazio dove punto per punto sia definibile una funzione scalare continua e derivabile ovunque ( una funzione da a ) n trascurando la dipendenza dal tempo e operando in coordinate

Dettagli

I tensori ed il calcolo tensoriale... 1

I tensori ed il calcolo tensoriale... 1 Appunti di Campi lettromagnetici Capitolo Richiami di calcolo vettoriale e tensoriale I tensori ed il calcolo tensoriale... IL CALCOLO VTTORIAL... Introduzione... Operatore immaginario j... 4 Operatore

Dettagli

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO Attività didattica ANALISI MATEMATICA 2 [500121] Modulo: ANALISI MATEMATICA

Dettagli

Geometria Geometria settembre 2006

Geometria Geometria settembre 2006 Geometria Geometria settembre ) Nel piano affine euclideo reale, in cui è fissato un sistema di coordinate cartesiane ortogonali, si considerino la retta t e i punti O(, ), (, ), (, ) i) Si scriva l equaione

Dettagli

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s 6ttI_NUNZIANTE_1 /6/11 17:59 Pagina 455 6.4 j Flessione retta j 455 e ricavando s u dalla relaione precedente si ha: d pr s θ s che è anche nota come formula di ariotte per i tubi in parete sottile. In

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Sistemi di riferimento

Sistemi di riferimento Sistemi di riferimento Sistema di riferimento solidale con la terra (coordinate dei punti sulla terra non variano nel tempo - a meno di deformaioni - movimenti placche tettoniche) non ineriale: i moti

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE LTTROMGNTISMO PPLICTO LL'INGGNRI LTTRIC D NRGTIC_4 (ultima modifica 6/0/0) CMPO DI CORRNT Si definisce campo di corrente la regione dello spazio nella quale ha sede una distribuzione continua di corrente

Dettagli