Appunti del corso: Intelligenza Artificiale 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti del corso: Intelligenza Artificiale 2"

Transcript

1 1 Appunti del corso: Intelligenza Artificiale 2 Maurizio Martelli Dipartimento di Matematica Università di Genova Anno Accademico

2 2

3 3 Conseguenze logiche e insoddisfacibilit? Teorema di deduzione T = F G iff T {F} = G Teorema Sia S un insieme di formule (chiuse), f una formula (chiusa), di un linguaggio del prim'ordine L f è una conseguenza logica di S iff l'insieme S {~f} è insoddisfacibile Sia I un modello di S, I è anche un modello di f e quindi non di ~f. Quindi non esiste nessuna interpretazione che sia modello di S e di ~f. Sia I una interpretazione che sia modello di S ma non di ~f. I è anche modello di f. Quindi f è conseguenza logica di S

4 4 Forme Normali H=G iff i loro valori di verità coincidono per ogni interpretazione Leggi di Equivalenza 1) H G = (H G) (G H) 2) H G = H ~G) 3) H G = G H H G = G H 4) (H P) G = H P G) (H P) G = H P G) 5) (H P) G = (H G) P G) (H P) G = (H G) P G) 6) H F = H H T = H 7) H T = T H F = F 8) H H = T H H = F 9) ~( H) = H 10) ~(H P) = ~H P ~(H P) = ~H ~P

5 5 Forme Normali Principio di rimpiazzamento: In una formula si può rimpiazzare una sua parte con una formula equivalente ed il valore di verità non cambia. Letterale: atomo o negazione di atomo Forma normale congiuntiva: F 1 F 2 F n con F i = L 1 L 2 L m Forma normale disgiuntiva: F 1 F 2 F n con F i = L 1 L 2 L m Procedura di trasformazione: (1) e (2) (9) e (10) (5) + semplificazioni

6 6 Forme Normali Forma normale prenessa (prenex): (Q 1 x 1 )(Q 2 x 2 ) (Q n x n ) (M) (Q i x i ) è x i o x i. M è una formula senza quantificatori (Q 1 x 1 )(Q 2 x 2 ) (Q n x n ) è il prefisso M è la matrice (spesso in f.n. congiuntiva o disgiuntiva) Leggi di Equivalenza 1a) (Qx)F[x] G = (Qx)(F[x] G) 1b) (Qx)F[x] G = (Qx)(F[x] G) 2a) ~(( x)f[x]) = ( x)(~f[x]) 2b) ~(( x)f[x]) = ( x)(~f[x]) 3a) ( x)f[x] ( x)g[x] = ( x)(f[x] G[x]) 3b) ( x)f[x] ( x)g[x] = ( x)(f[x] G[x]) 4a) (Q 1 x)f[x] (Q 2 x)g[x] = (Q 1 x)(q 2 y)(f[x] G[y]) 4b) (Q 1 x)f[x] (Q 2 x)g[x] = (Q 1 x)(q 2 y)(f[x] G[y]) Procedura di trasformazione: (1) e (2) (9) (10) (2a,2b) ridenominazione variabili, (1a,1b)(3a,3b)(4a,4b) (5) + semplificazioni

7 7 Forma standard di Skolem Sia F = (Q 1 x 1 )(Q 2 x 2 ) (Q n x n ) (M) prendiamo (Q r x r ) del tipo ( x r ) e si esaminino i (Q i x i ) con i<r. a) se non vi è nessun quantificatore universale ( i<r. Q i = ) sostituiamo ogni occorrenza di x r in M con una costante c (diversa da tutte le altre in M) e togliamo (Q r x r ). b) altrimenti, consideriamo s 1,s 2,s m : i m. s i <r e Qs i =. Sostituiamo ogni occorrenza di x r in M con un nuovo simbolo di funzione f (diverso da tutti gli altri in M) applicato ad x s1,x s2,x sm (f(x s1,x s2,x sm )) e togliamo (Q r x r ).

8 8 Clausole disgiunzione di atomi o negazioni di atomi, in cui le variabili sono implicitamente quantificate universalmente A 1 A 2 A n B 1 B 2 ~B m clausola vuota [] corrisponde a F è equivalente a (A 1 A 2 A n ) B 1 B 2 B m ) che si scrive (conclusione premesse) A 1 A 2 A n B 1 B 2 B m insieme di clausole: congiunzione di clausole.

9 9 Teorema di Skolemizzazione una teoria del prim'ordine si può ridurre in forma a clausole con semplici trasformazioni sintattiche: T diventa T' vale la seguente proprietà: T è insoddisfacibile iff lo è T' Teorema: Sia S un insieme di clausole che rappresenta una forma standard di Skolem di una formula F F è insoddisfacibile iff S è insoddisfacibile si può anche rappresentare la conoscenza direttamente in forma a clausole è comunque una forma particolarmente conveniente per il compito di dimostrare automaticamente teoremi

10 10 Trasformazione in forma a Clausole 1. x. y. (P(x) Q(x,y)) R(x) (eliminazione del connettivo ) 2. x. y. ~(P(x) Q(x,y)) R(x) (riduzione della portata della negazione) 3. x. y. (~P(x) ~Q(x,y)) R(x) (distribuzione del connettivo ) 4. x. y. (~P(x) R(x)) (~Q(x,y) R(x)) (Eliminazione del quantificatore esistenziale, introduzione di funzioni di Skolem) 5. x. (~P(x) R(x)) (~Q(x,f(x)) R(x)) (eliminazione del quantificatore universale) 6. (~P(x) R(x)) (~Q(x,f(x)) R(x)) (eliminazione del connettivo ) Insieme di clausole: {~P(x) R(x), ~Q(x,f(x)) R(x)}

11 11 SKOLEMIZZAZIONE Lemma sia S una formula in forma prenessa (Q1 X1) (Qn Xn) M(X1,,Xn), con Qr primo quantificatore esistenziale, ed S1 la formula ( X1) ( Xr-1) (Qr+1 Xr+1) (Qn Xn) M(X1,,Xr-1,f(X1,,Xr1),Xr+1,,Xn) S è inconsistente sse S1 è inconsistente Prova i) supponiamo S inconsistente e S1 consistente. Esiste I tale che S1 è vera in I: per tutti gli X1,,Xr-1 esiste almeno un elemento, f(x1,,xr-1), tale che è vera in I (Qr+1Xr+1) (QnXn) M(X1,,Xr-1,f(X1,,Xr-1),Xr+1,,Xn) quindi S sarebbe vera in I ii) supponiamo S1 inconsistente e S consistente esiste I (su D) tale che S è vera in I per tutti gli X1,,Xr-1 esiste almeno un elemento Xr tale che è vera in I (Qr+1 Xr+1) (Qn Xn) M(X1,,Xr-1,Xr,Xr+1,,Xn) Sia I' l interpretazione ottenuta estendendo I con una funzione f, tale che, per tutti gli X1,,Xr-1 in D, f(x1,,xr-1) = Xr.

12 per tutti gli X1,,Xr-1 (Qr+1 Xr+1) (Qn Xn) M(X1,,Xr-1,f(X1,,Xr-1),Xr+1,,Xn) è vera in I', cioè S1 sarebbe vera in I' 12

13 13 SKOLEMIZZAZIONE Teorema Sia C l insieme di clausole risultante dalla skolemizzazione dell insieme di fbf S. S è inconsistente se e solo se C è inconsistente. Prova S può essere un unica formula in forma prenessa. Si assuma che in S esistano m quantificatori esistenziali e si consideri la sequenza di formule S0 = S Skè ottenuto da Sk-1, sostituendo il primo quantificatore esistenziale in Sk-1 con una funzione di Skolem gk, k=1,,m Sm= C Per il lemma precedente, Sk è inconsistente sse Sk-1 è inconsistente, quindi C è inconsistente sse S è inconsistente

14 14 SKOLEMIZZAZIONE sia C l insieme di clausole risultante dalla skolemizzazione dell insieme di fbf S ses è consistente, C non è necessariamente equivalente a S Esempio S = { ( X) p(x) } C = { p(a) } un interpretazione I D = {1,2} [a] = 1 [p(1)] = F [p(2)] = T I è un modello di S e non di C

15 15 LA METODOLOGIA DI PROVA 1. W è conseguenza logica di T sse siano S un insieme di formule e f una formula di un linguaggio del prim ordine L f è una conseguenza logica di S se e solo se l insieme S {~f } è insoddisfacibile 2. {T ~W} è insoddisfacibile sse sia C l insieme di clausole risultante dalla skolemizzazione dell insieme di fbf S S è inconsistente se e solo se C è inconsistente 3. T', l insieme di clausole ottenuto skolemizzando {T ~W} è insoddisfacibile sse un insieme di clausole C è insoddisfacibile sse non ha modelli di Herbrand 4. T' non ha modelli di Herbrand basta considerare le interpretazioni su un particolare dominio, l Universo di Herbrand

16 16 UNIVERSO E BASE DI HERBRAND Sia L un linguaggio del prim ordine, il cui insieme di costanti non sia vuoto (se è vuoto, lo consideriamo formato da una costante arbitraria a) L Universo di Herbrand di L (UL) è l insieme di tutti i termini ground di L un termine (atomo) ground è un termine (atomo) che non contiene variabili un istanza ground di una clausola C in L è una clausola ottenuta da C sostituendo le variabili con termini di UL La Base di Herbrand di L (BL) è l insieme di tutti gli atomi ground di L, cioè di tutte le formule ottenute applicando i predicati di L agli elementi di UL

17 17 UNIVERSO E BASE DI HERBRAND Universo di Herbrand per un insieme di clausole S: H 0 = {c 0,,c n } c i costanti in S (sempre almeno una) H i+1 = H i {f(t 1,,t n ) f è un simbolo di funzione n-ario e i t j H i } HU = H i Base di Herbrand per un insieme di clausole S: B = {p(t 1,,t n ) p è un simbolo di funzione n-ario e i t i HU } esempio: il linguaggio L della teoria del prim ordine 1. p(0,x,x) 2. ~p(x,y,z) V p(s(x),y,s(z)) UL = {0,s(0),s(s(0)), } BL = {p(0,0,0), p(s(0),0,0), p(s(0),s(0),0), }

18 18 INTERPRETAZIONI E MODELLI DI HERBRAND un Interpretazione di Herbrand (H-interpretazione) per L è un interpretazione tale che i) il suo dominio è UL ii) ad ogni costante a di L è assegnata la costante stessa iii) ad ogni funzione n-aria f di L è assegnata la funzione da (UL)n a UL, che assegna il termine f(t1,,tn) alla n-upla di termini t1,,tn iv) ad ogni predicato n-ario p in L è assegnato un insieme di n-uple di termini di UL ogni H-interpretazione per L è determinata in modo univoco da un sottoinsieme qualunque (anche vuoto) di BL, che definisce l insieme degli atomi ground che sono veri sia A un insieme di formule chiuse del linguaggio del prim ordinel un modello di Herbrand (H-modello) di A è una qualunque H-interpretazione I tale che tutte le formule in A sono vere in I abusi di notazione: Universo, Base, Interpretazioni, Modelli di Herbrand indiciati dall insieme di formule (programma) invece che dal relativo linguaggio del prim ordine

19 19 INTERPRETAZIONI DI HERBRAND: UN ESEMPIO l insieme di clausole A 1. p(0,x,x) 2. ~p(x,y,z) V p(s(x),y,s(z)) UA = {0,s(0),s(s(0)), } BA = {p(0,0,0), p(s(0),0,0), p(s(0),s(0),0), } IA 1 = {p(0,0,0), p(0,s(0),s(0)),p(s(0),0,s(0)), p(0,s(s(0)),s(s(0))), } IA 2 = {p(0,0,s(0)), p(0,s(0),s(0)),p(s(0),0,s(0)), p(0,s(s(0)),s(s(0))), } IA 2 non è certamente un H-modello di A

20 20 CLAUSOLE E INTERPRETAZIONI DI HERBRAND Teorema ogni insieme consistente di clausole S ha un H-modello Prova sia I un modello di S e definiamo la H- interpretazione (corrispondente) I' = { p(t1,,tn) BS p(t1,,tn) è vera in I } è evidente che anche I' è un modello di S [attenzione al caso di assenza di costanti] Corollario un insieme di clausole S è insoddisfacibile sse non possiede modelli di Herbrand il teorema ed il corollario non valgono per insiemi di formule chiuse arbitrarie

21 21

22 22 UNA TEORIA CONSISTENTE SENZA H- MODELLI 1. p(a) 2. ~( X) p(x) la teoria è consistente, come dimostrato dal modello D = {0,1} a = 0 p(0) = T p(1) = F l Universo di Herbrand {a} la base di Herbrand {p(a)} le H-interpretazioni {} {p(a)} nessuna H-interpretazione è un modello! il problema è legato alle quantificazioni esistenziali c è ( X)~p(X) nell assioma 2

23 23 nella versione skolemizzata introdurrebbe una nuova costante (di Skolem) CLAUSOLE E H-INTERPRETAZIONI PROPRIETA' una H-interpretazione è un sottinsieme della base o si puo' pensare di reppresentarla come l'insieme di tutti i letterali ground veri I= {p(a), ~p(f(a)), p(f(f(a))),...} una istanza ground c' di una clausola c è soddisfatta in una interpretazione I sse c' I una clausola c è soddisfatta in una interpretazione I sse ogni istanza ground lo è. una clausola c è falsificata in una interpretazione I sse c'è almeno una istanza ground che lo è.

24 24 un insieme di clausole S è insoddisfacibile sse per ogni interpretazione I, c'è almeno una istanza ground di qualche c in S che non è soddisfatta da I. CLAUSOLE, H-INTERPRETAZIONI E PROGRAMMAZIONE LOGICA la maggior parte della teoria della programmazione logica ha a che fare solo con clausole è sufficiente restringersi alle H-interpretazioni alcune parti della teoria (completamento per trattare la negazione) richiedono l uso di fbf non clausali è necessario considerare interpretazioni arbitrarie

25 25 ALBERI SEMANTICI l insieme di tutte le H-interpretazioni può essere rappresentato da un albero (l albero semantico), i cui archi sono etichettati da assegnamenti di valori di verità agli atomi della Base di Herbrand tali che: per ogni nodo N vi è un numero finito di archi che partono da N (L 1,,L n ). Sia Q i la congiunzione di tutti i letterali che etichettano L i. Q 1 Q n è una formula proposizionalmente valida. per ogni nodo N, sia I(N) = insieme dei letterali che etichettano gli archi del cammino dalla radice a N. I(N) non contiene coppie complementari (A, ~A).

26 26 ALBERI SEMANTICI sia BS = {A 1, A 2,,A n, } la Base di Herbrand della teoria S un corrispondente albero semantico binario: A1 ~A1 A2 ~A2 A2 ~A2 se l Universo e la Base di Herbrand sono infiniti (se esiste almeno un simbolo di funzione), l albero semantico è un albero binario infinito ogni cammino sull albero semantico è una H- interpretazione = l insieme degli atomi positivi del cammino ad ogni nodo N è associata la H- interpretazione (parziale) I(N). Albero semantico completo se per ogni foglia N, I(N) contiene A o ~A per ogni A in BS.

27 27 NODI DI FALLIMENTO ED ALBERI SEMANTICI CHIUSI un nodo n dell albero semantico è un nodo di fallimento per l insieme di clausole S, se esiste almeno una clausola c di S tale che c (un istanza ground di c) è falsa nell Hinterpretazione In tutte le clausole di S (tutte le loro istanze ground) non sono false in tutte le H- interpretazioni Im con m antenato di n = nessun nodo m antenato di n è un nodo di fallimento. un albero semantico è chiuso, se ogni suo cammino contiene un nodo di fallimento. può essere rappresentato da un albero binario finito, le cui foglie sono i nodi di fallimento. un nodo n dell albero semantico è un nodo inferenza per l insieme di clausole S, se tutti i suoi immediati successori sono nodi fallimento.

28 28 TEOREMA DI HERBRAND 1 (versione 1) un insieme di clausole S è insoddisfacibile se e solo se per ogni albero semantico completo c'è un corrispondente albero semantico finito e chiuso. Prova si assuma S insoddisfacibile e sia T il suo albero semantico sia r un cammino di T poiché S è insoddisfacibile, Ir deve rendere falsa un istanza ground c' di una clausola c in S essendo c' una disgiunzione finita di atomi ground, deve esistere un nodo di fallimento ad una distanza finita dalla radice di T essendo questo vero per ogni ramo, T è chiuso si assuma T chiuso ogni cammino contiene un nodo di fallimento ogni H-interpretazione rende falso S S è insoddisfacibile

29 29 TEOREMA DI HERBRAND: UN ESEMPIO la teoria del prim ordine p(a,a) ( X)( Y) p(x,y) p(f(x),f(y)) la formula da provare ( X) p(f(a),x) la sua negazione ( X)~p(f(a),X) l insieme di clausole c1: p(a,a) c2: ~p(x,y) p(f(x),f(y)) c3: ~p(f(a),x) l Universo di Herbrand: {a,f(a),f(f(a)), } la Base di Herbrand: {p(a,a), p(f(a),a), p(f(a),f(a)), p(a,f(a)), }

30 30 TEOREMA DI HERBRAND: UN ESEMPIO c1: p(a,a) c2: ~p(x,y) p(f(x),f(y)) c3: ~p(f(a),x) l albero semantico è chiuso (i nodi di fallimento sono etichettati con la clausola che fallisce in quel nodo) P(a,a) ~P(a,a) C1 P(f(a),a) ~P(f(a),a) C3 P(f(a),f(a)) ~P(f(a),f(a)) C3 C2 la costruzione dell albero semantico e la determinazione dei nodi di fallimento costituisce una procedura che permette di semidecidere se una formula è conseguenza logica di un insieme di assiomi il metodo è semantico

31 alla ricerca di procedure ( sintattiche?) più efficienti 31

32 32 TEOREMA DI HERBRAND 2 (versione 2) un insieme di clausole S è insoddisfacibile se e solo se esiste un insieme finito insoddisfacibile S' di istanze ground di clausole di S sulla versione 2 del teorema sono basati i primi metodi per la verifica automatica di insoddisfacibilità (p.e., Gilmore[1960], e Davis&Putnam [1960]) a) algoritmo per generare sistematicamente le istanze ground delle clausole b) algoritmo per verificarne l insoddisfacibilità va bene un qualunque algoritmo per il calcolo proposizionale la procedura di Herbrand per a) al passo i-esimo si istanziano le clausole sostituendo le variabili con termini di HU k tale che k i non fattibile, perché il numero di clausole generate cresce in modo esponenziale il principio di risoluzione di Robinson [1965] un metodo sintattico, basato sulla versione 1 del teorema di Herbrand

33 33 evita la generazione di insiemi di istanze ground DAVIS E PUTMAN Regola della tautologia Cancellare le clausole che sono tautologie Regola del singolo letterale S={{L},{...,L,...},{...,~L,...},...} S'={ {...,~L,...},...} se S'={} S è soddisfacibile, altrimenti S"={ {...,,...},...} Regola del letterale puro Se un letterale L non compare mai come ~L è puro e si può ottenere un nuovo insieme di clausole eliminando tutte quelle che contengono L Regola di divisione S={{A 1,L},...,{A n,l},{b 1,~L},...,{B m,~l}, R} S 1 ={{A 1 },...,{A n },R} S 2 ={{B 1 },...,{B m }, R} S è insoddisfacibile sse lo è S 1 S 2

34 34 IL METODO DI RISOLUZIONE: SCHEMA un insieme di clausole S è insoddisfacibile se contiene la clausola vuota [] (contraddizione!) oppure da S si può derivare la clausola vuota [] il principio di risoluzione è una regola di inferenza sia S' l insieme ottenuto aggiungendo all insieme di clausole S le clausole derivabili da S con il principio di risoluzione se S è insoddisfacibile, anche S' è insoddisfacibile l albero semantico (chiuso) di S' è strettamente più piccolo di quello di S iterando l applicazione del principio di risoluzione si ottiene un insieme di clausole S* il cui albero semantico è costituito dalla sola radice la radice è un nodo di fallimento

35 S* contiene [] 35

36 36 IL PRINCIPIO DI RISOLUZIONE NEL CALCOLO PROPOSIZIONALE estensione della regola del letterale unico di Davis&Putnam siano c1 e c2 due clausole qualunque c1 = a1 1 a2 1 an 1 c2 = a1 2 a2 2 am 2 tali che i letterali ai 1 e aj 2 sono complementari il risolvente di c1 e c2 è la clausola a1 1 ai-1 1 ai+1 1 an 1 a1 2 aj-1 2 aj+1 2 an 2 disgiunzione delle clausole ottenute eliminando i letterali complementari esempi c1 = p r c2 = ~p q c1,2 =r q c1 = ~p q r c2 = ~q s c1,2 = ~p r s c1 = ~p q c2 = ~p r c1,2 non esiste il risolvente, se esiste, di due clausole

37 unitarie è la clausola vuota [] 37

38 38 CORRETTEZZA DEL PRINCIPIO DI RISOLUZIONE NEL CALCOLO PROPOSIZIONALE teorema date due clausole c1 e c2, un risolvente c di c1 e c2 è conseguenza logica di c1 e c2 prova siano c1 = a c1', c2 = ~a c2' e c = c1' c2', con c1' e c2' disgiunzioni di letterali sia I un modello di c1 e c2 in I è falso a oppure ~a supponiamo sia falso a c1' non può essere vuoto e deve essere vero in I (altrimenti I non sarebbe un modello di c1) è vero in I anche c = c1' c2' analogamente, se ~a è falso, c1' (e quindi c) è vero in I quindi, in ogni caso, c è vero in I come vedremo nel contesto dei linguaggi del prim ordine, il principio di risoluzione è una regola di inferenza completa per la dimostrazione dell insoddisfacibilità di un insieme di clausole

39 un insieme di clausole S è insoddisfacibile se e solo se la clausola vuota [] può essere ricavata da S, applicando il principio di risoluzione 39

40 40 PRINCIPIO DI RISOLUZIONE NEI LINGUAGGI DEL PRIM ORDINE c1 = p(x) q(x) c2 = ~p(f(y)) r(y) servono letterali complementari, che esistono se consideriamo opportune istanze di c1 e c2 c1' = p(f(a)) q(f(a)) c2' = ~p(f(a)) r(a) c1,2' = q(f(a)) r(a) c1" = p(f(y)) q(f(y)) c2" = ~p(f(y)) r(y) c1,2" = q(f(y)) r(y) c1,2" è più generale di c1,2', ed è anzi la più generale fra le clausole ottenibili da c1 e c2 mediante il procedimento istanziazione + risoluzione proposizionale ogni altra clausola è una istanza di c1,2" c1,2" è il risolvente di c1 e c2 deduzione di c da S: c1,...,cn tale che ogni ci è una clausola di S o un risolvente di clausole precedenti e cn = c refutazione: deduzione di [] da S

41 41 SOSTITUZIONI una sostituzione è un insieme finito della forma {v1 t1,, vn tn} vi è una variabile ti è un termine diverso da vi le variabili vi, i=1,,n sono tra loro distinte una sostituzione è una funzione da variabili a termini la sostituzione vuota è denotata da una sostituzione è ground se tutti i ti, i=1,,n sono ground siano = {v1 t1,, vn tn} una sostituzione ed E una espressione (termine, atomo, insieme di termini, etc.) l applicazione di ad E è l espressione ottenuta da E sostituendo simultaneamente ogni occorrenza della variabile vi, i=1,,n con il termine ti il risultato dell applicazione (denotato da E ) è una istanza di E la sostituzione è grounding per l'espressione E se E è una istanza ground di E

42 42 SOSTITUZIONI siano = {X1 t1,, Xn tn} e = {Y1 u1,, Ym um} due sostituzioni la composizione di e (denotata da ) è la sostituzione così definita i) costruiamo l insieme {X1 t1,, Xn tn, Y1 u1,, Ym um} ii) eliminiamo dall insieme gli elementi Xi ti tali che ti = Xi iii) eliminiamo dall insieme gli elementi Yj uj tali che Yj occorre in {X1,, Xn} anticipiamo alcune delle proprietà delle sostituzioni, che studieremo più avanti la composizione di sostituzioni è associativa ( ) = ( ) la sostituzione vuota è identità sia sinistra che destra = =

43 43 SOSTITUZIONI: ESEMPIO = {X f(y), Y Z} = {X a, Y b, Z Y} costruzione di i) {X f(b), Y Y, X a, Y b, Z Y} ii) {X f(b), X a, Y b, Z Y} iii) {X f(b), Z Y} costruzione di i) {X a, Y b, Z Z, X f(y), Y Z} ii) {X a, Y b, X f(y), Y Z} iii) {X a, Y b}

44 44 UNIFICAZIONE DI INSIEMI DI ESPRESSIONI sia dato un insieme di espressioni (termini, atomi, etc.) {E1,, Ek} una sostituzione è un unificatore per {E1,, Ek} se e solo se E1 = E2 = = Ek un insieme {E1,, Ek} è unificabile se e solo se esiste una sostituzione tale che è un unificatore per {E1,, Ek} l insieme {p(a,y), p(x,f(b))} è unificabile dato che la sostituzione = {X a, Y f(b)} è un unificatore per l insieme un unificatore per l insieme {E1,, Ek} è l unificatore più generale (most general unifier, mgu) se e solo se per ogni unificatore dell insieme {E1,, Ek} esiste una sostituzione tale che = esiste un algoritmo (algoritmo di unificazione), che, dato un insieme di espressioni E = {E1,, Ek}, rivela la sua non unificabilità, oppure calcola un unificatore più generale per E

45 45 MGU DI DUE ESPRESSIONI: UN ALGORITMO NA?F inizia con t1, t2 ed una sostituzione? 0 inizialmente vuota scandisci le due espressioni da sinistra a destra se le due espressioni sono uguali, termina con successo e restituisci la corrente sostituzione? k (mgu di {t1, t2}) altrimenti, siano t1,i and t2,i le prime due sottoespressioni diverse se nè t1,i nè t2,i sono una variabile, termina con fallimento altrimenti, supponiamo che t1,i sia la variable V se t2,i contiene V, termina con fallimento altrimenti, applica la sostituzione {V t2,i} a t1 e t2? i =? i-1 {V t2,i} riprendi la scansione delle espressioni dove era stata sospesa da notare che le sostituzioni cicliche causano fallimento (l occur check è necessario!)

46 vedremo nel seguito un diverso algoritmo ed il teorema di unificazione 46

47 47 MGU DI DUE ESPRESSIONI: UN ESEMPIO E = {p(a,x,f(g(y))), p(z,f(z),f(u))}? 0 = t1,1 = a t2,1? 1 = {Z a} = {Z a} E1 = {p(a,x,f(g(y))), p(a,f(a),f(u))} t1,2 = X t2,2 = f(a)?2 = {Z a} {X f(a)} = {Z a, X f(a)} E2 = {p(a,f(a),f(g(y))), p(a,f(a),f(u))} t1,3 = g(y) t2,3 = U?3 = {Z a, X f(a)} {U g(y)} = {Z a, X f(a), U g(y)} E3 = {p(a,f(a),f(g(y))), p(a,f(a),f(g(y)))}?3 è un mgu per E Teorema Se W è un insieme di espressioni finito, non vuoto ma unificabile, allora l'algoritmo di unificazione terminerà sempre al passo del successo e l'ultima sostituzione finale è un m.g.u. per W.

48 48 PRINCIPIO DI RISOLUZIONE NEI LINGUAGGI DEL PRIM ORDINE se la clausola c = L1 Ln contiene un insieme di letterali unificabile, con unificatore più generale, la clausola [L1 Ln] viene detta fattore unitario di c c = p(x) p(f(y)) q(x) i primi due letterali sono unificabili con mgu {X p(f(y)) q(f(y)) è un fattore unitario di c date due clausole senza variabili a comune (eventualmente ottenute per ridenominazione delle variabili) c 1 = L 1 L n c 2 = L' 1 L' k se esistono L i ed L' j (unificabili) con unificatore più generale tale che [L i ] = [~L' j ] la clausola (risolvente binario di c 1 e c 2 ) [L 1 L i-1 L i+1 L n L' 1 L' j-1 L' j+1 L' k ] è conseguenza logica di c 1 e c 2

49 49 PRINCIPIO DI RISOLUZIONE NEI LINGUAGGI DEL PRIM ORDINE Li e L'j vengono detti i letterali su cui si è risolto un risolvente di c 1 e c 2 è un risolvente binario di [un fattore unitario di] c 1 e di [un fattore unitario di] c 2 Es: da a b e b c deriva a c da a b e b,d c deriva a,d c da b,d e b c deriva c,d Es: c1= ~p(s(0),s(0),w) ~p(w,s(0),w1) c2= ~p(x,y,z) p(s(x),y,s(z)) = {X 0, Y s(0), W s(z) } c1,2 = ~p(s(z),s(0),w1) ~p(0,s(0),z)

50 50 IL METODO DI RISOLUZIONE un insieme di clausole S è insoddisfacibile se contiene la clausola vuota [] oppure da S si può derivare la clausola vuota [] sia S' l insieme ottenuto aggiungendo all insieme di clausole S tutti i fattori unitari di clausole di S ed i risolventi binari di coppie di clausole in S se S è insoddisfacibile, anche S' è insoddisfacibile l albero semantico (chiuso) di S' è strettamente più piccolo di quello di S iterando l applicazione del principio di risoluzione (generazione di fattori e risolventi) si ottiene un insieme di clausole S* il cui albero semantico è costituito dalla sola radice la radice è un nodo di fallimento S* contiene []

51 51 IL PRINCIPIO DI RISOLUZIONE? UNA REGOLA DI INFERENZA CORRETTA teorema: se c è una clausola e c' un suo fattore unitario, c' è conseguenza logica di c dimostriamo che ogni istanza è conseguenza logica supponiamo che c' sia falsa in una interpretazione M che è un modello di c un istanza ground di c' deve essere falsa in M un istanza ground di c è falsa in M M non può essere un modello di c teorema: se c1 e c2 sono clausole e c è un loro risolvente binario, c è conseguenza logica di c1 e c2 il risolvente può essere calcolato componendo due regole (l istanziazione e la risoluzione proposizionale) che sono state dimostrate essere regole di inferenza corrette

52 52 LEMMA DI GENERALIZZAZIONE Siano c'1 e c'2 istanze di c1 e c2 Sia c' un risolvente di c'1 e c'2 esiste un risolvente c di c1 e c2 tale che c' è una istanza di c dimostrazione c1 = A1 1 V V A1 n e c2 = A2 1 V V A2 m non hanno variabili comuni (eventualmente si ridenomina) c' = [ A1 1 V V A1 i-1 V A1 i+1 V V A1 n V A2 1 V V A2 j-1 V A2 j+1 V V A2 m ] = [ A1 1 V V A1 i-1 V A1 i+1 V V A1 n V A2 1 V V A2 j-1 V A2 j+1 V V A2 m ], dove c'1 = c1, c'2 = c2, è l mgu di A1 i e ~A2 j, cioè [A1 i ] = ~[A2 j ] A1 i e ~A2 j sono unificabili, in quanto è un loro unificatore esiste un loro unificatore più generale tale che sostituzione esiste un risolvente di c1 e c2 rispetto ai letterali A1 i e A2 j c = [ A1 1 V V A1 i-1 V A1 i+1 V V A1 n V A2 1 V V A2 j-1 V A2 j+1 V V A2 m ] c' = [ A1 1 V V A1 i-1 V A1 i+1 V V A1 n V

53 A2 1 V V A2 j-1 V A2 j+1 V V A2 m ] = c 53

54 54 TEOREMA DI CORRETTEZZA DEL METODO DI RISOLUZIONE se dall insieme di clausole S è possibile derivare con il principio di risoluzione la clausola vuota [], l insieme S è insoddisfacibile dimostrazione [] è uno dei risolventi generati a partire dalle clausole di S [] è conseguenza logica di S tutti i modelli di S sono anche modelli di [] [] (la contraddizione) non ha alcun modello anche S non ha alcun modello

55 55 NODI DI INFERENZA consideriamo l albero semantico chiuso di un insieme di clausole S insoddisfacibile un nodo di inferenza è un nodo dell albero semantico, tale che entrambe i suoi successori sono nodi di fallimento se le clausole che falliscono nei successori del nodo di inferenza n sono ck e cj, possiamo inferire da ck e cj una nuova clausola rkj (che è proprio un risolvente) tale che rkj fallisce nel nodo n o in un nodo antenato di n

56 56 NODI DI INFERENZA: ESEMPIO C1: P(a,a) C2: ~P(X,Y) P(f(X),f(Y)) C3: ~P(f(a),X) P(a,a) ~P(a,a) C1 P(f(a),a) ~P(f(a),a) C3 P(f(a),f(a)) ~P(f(a),f(a)) C3 le clausole che falliscono sotto il nodo d inferenza sono C2 e C3 il risolvente di C2 e C3 è C4 = ~P(a,Y) fallisce sopra il nodo di inferenza il nuovo albero semantico è infatti C2 P(a,a) ~P(a,a) C4 C1

57 57 IL LEMMA SUI NODI DI INFERENZA dalle clausole che falliscono nei successori di un nodo di inferenza n possiamo inferire una nuova clausola (che è proprio un risolvente) che fallisce nel nodo n dimostrazione sia n un nodo di inferenza, siano n1 e n2 i nodi di fallimento suoi immediati successori, e sia mn+1 l atomo assegnato a vero o a falso sotto il nodo n poiché n1 e n2 sono nodi di fallimento, mentre n non lo è, devono esistere due istanze ground c'1 e c'2 delle clausole c1 e c2 tali che c'1 e c'2 sono false in n1 e n2 rispettivamente e non sono falsificate da n c'1 e c'2 devono contenere ~mn+1 e mn+1 il risolvente rispetto a questi due letterali c' = (c'1 - ~mn+1 ) (c'2 - mn+1 ) fallisce in n poiché sia (c'1 - ~mn+1 ) che (c'2 - mn+1 ) sono falsificati da n (l unico letterale che non falliva è stato tolto!) per il lemma di generalizzazione, esiste un risolvente c di c1 e c2, tale che c' è una istanza ground di c (anche c fallisce in n)

58 58 TEOREMA DI COMPLETEZZA DEL METODO DI RISOLUZIONE se l insieme di clausole S è insoddisfacibile, è possibile derivare da S in un numero finito di passi con il principio di risoluzione la clausola vuota [] dimostrazione S è insoddisfacibile, quindi ha un albero semantico chiuso finito T se T è formato da un solo nodo (la radice), S deve contenere [], perché nessuna altra clausola può essere falsificata dalla radice altrimenti, T ha almeno un nodo di inferenza (in caso contrario ogni nodo avrebbe almeno un successore non di fallimento e si potrebbe trovare un cammino di T infinito, contro l ipotesi di finitezza) per il lemma dei nodi di inferenza, esiste un risolvente c di clausole in S, che fallisce in n sia T' l albero semantico (chiuso) di S {c} il numero di nodi di T' è strettamente minore di quello di T il procedimento può essere iterato, finché, dopo un numero finito di passi (l albero iniziale è finito!) si raggiunge la clausola vuota [] e si ottiene un albero semantico

59 chiuso formato dalla sola radice 59

60 60 UN ESEMPIO la teoria 1. p(0,x,x) 2. ~p(x,y,z) V p(s(x),y,s(z)) la formula da provare W. p(s(0),0,w) la sua negazione (clausola) 3. ~p(s(0),0,w) la prova (mostrata sotto forma di albero di rifiuto)

61 61 UN ESEMPIO le premesse (assiomi) i funzionari di dogana hanno perquisito tutti coloro che sono entrati in Italia, ad eccezione dei VIP alcuni spacciatori di droga sono entrati in Italia e sono stati perquisiti solo da spacciatori di droga nessuno spacciatore era un VIP la conclusione alcuni funzionari erano spacciatori e(x) rappresenta X è entrato in Italia v(x) rappresenta X era un VIP p(x,y) rappresenta Y ha perquisito X f(x) rappresenta X era un funzionario di dogana s(x) rappresenta X era uno spacciatore di droga ( X)(e(X) ~v(x)) ( Y)(p(X,Y) f(y)) ~ e(x) V v(x) V p(x,g(x)) ~ e(x) V v(x) V f(g(x)) ( X)s(X) e(x) ( Y)(p(X,Y) s(y)) s(a) e(a) ~ p(a,y) V s(y) ( X)(s(X) ~ v(x)) ~ s(x) V ~ v(x) ( X)s(X) f(x) la cui negazione è ~ s(x) V ~ f(x)

62 62 UN ESEMPIO (1) ~ e(x) V v(x) V p(x,g(x)) (2) ~ e(x) V v(x) V f(g(x)) (3) s(a) (4) e(a) (5) ~ p(a,y) V s(y) (6) ~ s(x) V ~ v(x) (7) ~ s(x) V ~ f(x) la dimostrazione per risoluzione (8) ~ v(a) da (3) e (6) (9) v(a) V f(g(a)) da (2) e (4) (10) f(g(a)) da (8) e (9) (11) v(a) V p(a,g(a)) da (1) e (4) (12) p(a,g(a)) da (8) e (11) (13) s(g(a)) da (5) e (12) (14) ~ f(g(a)) da (7) e (13) (15) [] da (10) e (14) notare che si sono usate tutte le clausole e che si sono generati solo alcuni dei risolventi

63 63 LA SCIMMIA E LA BANANA Una scimmia vuole mangiare una banana appesa al soffitto di una stanza, ma è troppo bassa per arrivarci. La scimmia può camminare nella stanza, portare una sedia e salirci sopra per prendere la banana. Se la scimmia è in a, la banana in b, la sedia in c, può la scimmia mangiarsi la banana? - P(X,Y,Z,S) rappresenta nello stato S, la scimmia è in X, la banana in Y, la sedia in Z - R(S) rappresenta in S la scimmia può mangiare la banana - cammina(x,y,s) rappresenta lo stato che si ottiene da S con la scimmia che va da X ad Y - porta(x,y,s) rappresenta S' che si ottiene da S con la scimmia che porta la sedia da X ad Y - arrampica(s) rappresenta S' che si ottiene con la scimmia che si arrampica sulla sedia ( X')( X)( Y)( Z)( S)(P(X,Y,Z,S) P(X',Y,Z,cammina(X,X',S))) ~P(X,Y,Z,S) V P(X',Y,Z,cammina(X,X',S)) ( X)( Y)( S)(P(X,Y,X,S) P(X',Y,X',porta(X,X',S))) ~P(X,Y,X,S) V P(X',Y,X',porta(X,X',S)) ( X)( S)(P(X,X,X,S) R(arrampica(S))) ~P(X,X,X,S) V R(arrampica(S)) P(a,b,c,start)

64 64 ( Sol)R(Sol) ~ R(Sol) la cui negazione è

65 65 IL METODO DI RISOLUZIONE il metodo di risoluzione è un potente metodo di dimostrazione sintattico (basato su una sola regola di inferenza) non piace a coloro cui piacciono le prove sono poco naturali e poco convincenti inoltre richiede la skolemizzazione, che fa perdere informazione è molto più efficiente degli altri metodi basati sul teorema di Herbrand l astuzia principale sta nell unificazione in molti casi produce comunque una tale esplosione nel numero di risolventi generati da risultare inutilizzabile anche perché vengono generate molte clausole irrilevanti e ridondanti da qui l interesse per particolari strategie di applicazione del principio di risoluzione, che generino meno clausole garantiscano la completezza risoluzione a livelli di saturazione (S 0 = S, S 1 = {risolventi a partire da S 0 },...)

66 strategie di cancellazione (tautologie, clausole sussunte: C sussume D sse D C ) 66

67 67 STRATEGIE DI RISOLUZIONE Risoluzione semantica (1) - interpretazione particolare per dividere le clausole in 2 insiemi - ordinamento dei simboli di predicato per determinare una scelta sulla applicazione della risoluzione Hyperisoluzione (positiva o negativa) (1a) - interpretazione particolare tutta positiva o negativa Set of support strategy(1b) - individuare S T tale che S-T è soddisfacibile e non scegliere mai di risolvere clausole in S-T. Lock resolution(2) - ogni letterale è indicizzato e si applica la risoluzione solo ai letterali con indicie minore di ogni clausola (non si può mescolare con altre startegie).

68 68 STRATEGIE DI RISOLUZIONE un esempio di strategia completa la AF-resolution (ancestry-filtered resolution), che costruisce alberi di rifiuto con la proprietà AF un albero di rifiuto è ancestry-filtered se ogni suo nodo è una clausola della teoria iniziale, oppure un risolvente con almeno una clausola genitrice nella teoria iniziale, oppure un risolvente di due clausole ci e cj, con ci antenato di cj teorema se una teoria è insoddisfacibile, possiede almeno un albero di rifiuto ancestry-filtered è simile alla strategia lineare, su cui si basa la programmazione logica

69 69 RISOLUZIONE LINEARE un altra strategia completa dall insieme S viene prelevata una clausola c0 (clausola iniziale) un albero di rifiuto lineare ha la seguente proprietà per i=1,,n-1 è un risolvente di ci (clausola centrale) e bi (clausola laterale) ogni bi appartiene a S oppure è un cj per j<i C?? 0 B 0 C 1?? B 1 C 2 C n-1?...?? B n-1 C n? teorema di completezza se S è insoddisfacibile e S- c0 è soddisfacibile, esiste un albero di rifiuto lineare con clausola iniziale c0

70 70 RISOLUZIONE INPUT E UNIT input resolution è un caso particolare della risoluzione lineare, in cui tutte le clausole laterali sono clausole di S non sono permessi risolventi fra risolventi non è completa, ma assomiglia molto alla SLD-resolution utilizzata nella programmazione logica unit resolution il risolvente è ottenuto da almeno una clausolo unitaria (come la input non completa) SL ed SLD resolution

71 71 UN ESEMPIO La teoria ~q p q p ~p q La formula da dimostrare ~p ~q Risoluzione lineare ~p q?? p q q?? p ~q p?? ~p ~q ~q?? q? Input resolution ~p? q? p q q?? p ~q p?? ~p ~q ~q?? ~p ~q ~p????

72 72 Clausole Horn clausola con al più un letterale positivo clausole definite: - regole A B 1 B 2 B m. - fatti A. clausole negative: (goal) B 1 B 2 B m. clausole Horn sono un sottinsieme vero delle clausole: non tutte le formule del calcolo dei predicati del prim'ordine sono esprimibili con esse. clausole definite esprimono 'conoscenza' programma logico = insieme di cl. definite clausole negative: domanda X 1 X n. B 1 B 2 B m ) negazione per applicare la refutazione ~ X 1 X n. B 1 B 2 B m ) X 1 X n. B 1 ~B 2 ~B m ) B 1 B 2 B m.

73 73 Risoluzione SLD risoluzione Lineare con funzione di Selezione per clausole Definite. si parte da un insieme di clausole definite (il programma P) ed un'unica clausola negativa (il goal G) ogni risolvente è sempre ottenuto da una clausola definita ed una negativa, riottenendo così un'altra clausola negativa (il nuovo goal) si deve selezionare a quale letterale del goal applicare la risoluzione (regola di sel. R). una derivazione SLD è una sequenza massimale (finita o no) di goal (G 0 G 1 di clausole di P (c 0 c 1 ) e di sostituzioni ( 0 1 ): - G 0 è il goal iniziale G - c i non ha variabili a comune con G,c i,...,c i-1 - G i+1 è ottenuto da G i = A 1 A 2 A m e c i = A B 1 B 2 B n [A j ] i = [A] i G i+1 = [A 1 A j-1 B 1 B 2 B n A j+1 A m ] i

74 74 Risoluzione SLD Esempio di derivazione SLD: G?? C 1 1 G 1?? C 2 2 G 2?... G? n-1? C n n G n?... una refutazione è una sequenza di goal che termina con il goal vuoto. una derivazione finita che non termina con la clausola vuota è detta fallita.

Programmazione Dichiarativa. Programmazione Logica. SICStus PROLOG PROLOG. http://www.sics.se/sicstus/ Bob Kowalski: "Algoritmo = Logica + Controllo"

Programmazione Dichiarativa. Programmazione Logica. SICStus PROLOG PROLOG. http://www.sics.se/sicstus/ Bob Kowalski: Algoritmo = Logica + Controllo Programmazione Logica Bob Kowalski: "Algoritmo = Logica + Controllo" nella programmazione tradizionale: il programmatore deve occuparsi di entrambi gli aspetti nella programmazione dichiarativa: il programmatore

Dettagli

Trasformazione in clausole

Trasformazione in clausole DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVACorso Principio di A.A. Intelligenza di 2005-2006 Risoluzione Artificiale ing. Marco Falda marco.falda@unipd.it atomi letterali) Una A1 A2 L An

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

TEORIA RELAZIONALE: INTRODUZIONE

TEORIA RELAZIONALE: INTRODUZIONE TEORIA RELAZIONALE: INTRODUZIONE Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE

La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE La logica modale e la dimostrazione dell esistenza di Dio di Gödel. In alcuni giornali ho letto che di recente ci sono stati diversi studi che hanno riportato alla ribalta la dimostrazione dell esistenza

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Linguaggi Elementari

Linguaggi Elementari Linguaggi Elementari Marzo 2007 In questi appunti verranno introdotte le conoscenze essenziali relative ai linguaggi del primo ordine e alla loro semantica. Verrà anche spiegato come preprocessare un problema

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo

Dettagli

CAPITOLO V. DATABASE: Il modello relazionale

CAPITOLO V. DATABASE: Il modello relazionale CAPITOLO V DATABASE: Il modello relazionale Il modello relazionale offre una rappresentazione matematica dei dati basata sul concetto di relazione normalizzata. I principi del modello relazionale furono

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Normalizzazione. Definizione

Normalizzazione. Definizione Normalizzazione Definizione Le forme normali 2 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la qualità, cioè l'assenza di determinati difetti Quando una relazione

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

Fondamenti di Internet e Reti 097246

Fondamenti di Internet e Reti 097246 sul livello di Rete Instradamento. o Si consideri la rete in figura.. Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi (solo i nodi e gli archi no reti). Si calcoli il cammino

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi

Dettagli

Predicati e Quantificatori

Predicati e Quantificatori Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche

Dettagli

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Universita' degli Studi di Udine FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Relatore:

Dettagli

Teoria della Progettazione delle Basi di Dati Relazionali

Teoria della Progettazione delle Basi di Dati Relazionali Teoria della Progettazione delle Basi di Dati Relazionali Complementi di Basi di Dati 1 Teoria della Progettazione delle Basi di Dati Relazionali Angelo Montanari Dipartimento di Matematica e Informatica

Dettagli

Efficienza secondo i criteri di first best

Efficienza secondo i criteri di first best Efficienza secondo i criteri di first best Ruolo del settore pubblico Intervento dello Stato L economia pubblica giustifica l intervento dello Stato nell economia in presenza di fallimenti del mercato

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

LOGICA MATEMATICA E CONCETTUALIZZAZIONE

LOGICA MATEMATICA E CONCETTUALIZZAZIONE STEFANO FERILLI Monografia su LOGICA MATEMATICA E CONCETTUALIZZAZIONE Università degli Studi di Bari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Corso di Ingegneria

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

L anello dei polinomi

L anello dei polinomi L anello dei polinomi Sia R un anello commutativo con identità. È possibile costruire un anello commutativo unitario, che si denota con R[x], che contiene R (come sottoanello) e un elemento x non appartenente

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Sudoku: ancora un esercizio

Sudoku: ancora un esercizio Sudoku: ancora un esercizio Silvio Ranise LORIA & INRIA-Lorraine Nancy (France) 17 Gennaio 2007 Un esempio (sempre lo stesso) 5 3 7 6 1 9 5 9 8 6 8 6 3 4 8 3 1 7 2 6 6 2 8 4 1 9 5 8 7 9 Regole (sempre

Dettagli

PROVA DI VERIFICA DEL 24/10/2001

PROVA DI VERIFICA DEL 24/10/2001 PROVA DI VERIFICA DEL 24/10/2001 [1] Il prodotto di due numeri non nulli è maggiore di zero se: a. il loro rapporto è maggiore di zero, b. il loro rapporto è minore di zero, c. il loro rapporto è uguale

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Capitolo 9. Esercizio 9.1. Esercizio 9.2

Capitolo 9. Esercizio 9.1. Esercizio 9.2 Capitolo 9 Esercizio 9.1 Considerare lo relazione in figura 9.19 e individuare le proprietà della corrispondente applicazione. Individuare inoltre eventuali ridondanze e anomalie nella relazione. Docente

Dettagli

Il calcolatore. Architettura di un calcolatore (Hardware)

Il calcolatore. Architettura di un calcolatore (Hardware) Il calcolatore Prima parlare della programmazione, e' bene fare una brevissima introduzione su come sono strutturati i calcolatori elettronici. I calcolatori elettronici sono stati progettati e costruiti

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, 16.04.04 Lezione 24 : IL SISTEMA K-G (1) CAPITOLO

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Informatica Teorica. Macchine a registri

Informatica Teorica. Macchine a registri Informatica Teorica Macchine a registri 1 Macchine a registri RAM (Random Access Machine) astrazione ragionevole di un calcolatore nastro di ingresso nastro di uscita unità centrale in grado di eseguire

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico ISTITUTO TECNICO STATALE MARCHI FORTI Viale Guglielmo Marconi n 16-51017 PESCIA (PT) - ITALIA PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico Docente PARROTTA GIOVANNI

Dettagli

Le aree dell informatica

Le aree dell informatica Fondamenti di Informatica per la Sicurezza a.a. 2006/07 Le aree dell informatica Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università

Dettagli

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione.

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione. 3.7.4 Disuguaglianze valide forti Cerchiamo disuguaglianze valide forti, ovvero disuguaglianze valide che forniscano migliori formulazioni (più stringenti). Per formalizzare il concetto sono necessarie

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

Banchi ortogonali Casi importanti

Banchi ortogonali Casi importanti anchi ortogonali anchi ortogonali Casi importanti Trasformata a blocchi (JPEG, MPEG) anchi a due canali (JPEG 000) anchi modulati Trasformata di Fourier a blocchi (OFDM) anchi coseno-modulati (AC3, MUSICAM)

Dettagli

Capitolo 7: Teoria generale della calcolabilitá

Capitolo 7: Teoria generale della calcolabilitá Capitolo 7: Teoria generale della calcolabilitá 1 Differenti nozioni di calcolabilitá (che seguono da differenti modelli di calcolo) portano a definire la stessa classe di funzioni. Le tecniche di simulazione

Dettagli

LA LOGICA. è la scienza dell'argomentazione rigorosa. Oggetto di studio della logica è il ragionamento, le sue procedure e i suoi stili.

LA LOGICA. è la scienza dell'argomentazione rigorosa. Oggetto di studio della logica è il ragionamento, le sue procedure e i suoi stili. LA LOGICA è la scienza dell'argomentazione rigorosa. Oggetto di studio della logica è il ragionamento, le sue procedure e i suoi stili. Recupero debito Lezione Prof. Giovanni Giuffrida RUOLO DELLA LOGICA

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Ricorsione in SQL-99. Introduzione. Idea di base

Ricorsione in SQL-99. Introduzione. Idea di base Ricorsione in SQL-99 Introduzione In SQL2 non è possibile definire interrogazioni che facciano uso della ricorsione Esempio Voli(lineaAerea, da, a, parte, arriva) non è possibile esprimere l interrogazione

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0 ASPETTI TEORICI Spazio vettoriale Un insieme qualunque di inniti elementi V = fv i g si dice uno spazio vettoriale sull'insieme dei numeri reali R se: { E possibile denire un'operazione binaria fra gli

Dettagli

Linguaggi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/32

Linguaggi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/32 Linguaggi Rosario Culmone, Luca Tesei 20/10/2009 UNICAM - p. 1/32 Alfabeto Un alfabeto è un insieme finito di simboli. Useremo Σ per denotare un alfabeto. Esempi di alfabeto sono: l alfabeto latino adottato

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso

Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

Intelligenza Artificiale Ing. Tiziano Papini

Intelligenza Artificiale Ing. Tiziano Papini Intelligenza Artificiale Ing. Tiziano Papini Email: papinit@dii.unisi.it Web: http://www.dii.unisi.it/~papinit Constraint Satisfaction Introduzione Intelligenza Artificiale - CSP Tiziano Papini - 2011

Dettagli