Lezione 5. Ricapitolando. De Bruijn graph. Koorde. de Bruijn graph. de Bruijn graph

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 5. Ricapitolando. De Bruijn graph. Koorde. de Bruijn graph. de Bruijn graph"

Transcript

1 Lezioe 5 Ricapitolado. Sistemi PP puri Sistemi Uiformi Sistemi No uiformi Abbiamo detto abbastaza Neighbor of Neighbor routig (NON) E u protocollo chord like rig cosistet hashig per mappare le chiavi ei odi De Bruij graph APL O(log ) co grado costate APL O(log / log(log )) co grado O(log ) U ha u odo per ogi umero biario di b bits Ogi odo ha due archi usceti, i particolare il odo m ha u lik al odo m mod b ; u lik al odo m+1 mod b ; I altre parole dato u odo m per otteere i suoi due vicii basta fare lo shift a siistra della codifica biaria di m (elimiado il bit più sigificativo) e poi aggiugere 0 e 1; Es.: suppoiamo di voler cooscere i vicii del odo allora facciamo lo shift a siistra di e otteiamo 0; elimiiamo il bit più sigificativo e otteiamo ; i due vicii soo quidi: + 0 = + 1 = Deotiamo co m 0 0 il primo vicio di m m 1 1 il secodo vicio di m Routig Suppoiamo di voler passare dal odo s=(s 0,s 1,,s,s b-1 ) al odo t=(t 0,t 1,,t,t b-1 ) passo 1: s s 1 = s ts 0 s 1 =(s 1,s,,t,t 0 ) passo : s 1 s = s 1 t 1 s =(s,,, t 0,t 1 ) passo 3: s s 3 = s t s 3 =(,, t 0,t 1,t ) passo b: s b-1 s b = s b-1 t b-1 s b =(t 0,t 1,,, t b-1 )=t b passi diametro = b = log 1

2 Routig Es.: vogliamo passare dal odo al odo Passo 1: da a Passo : da a Passo 3: da a t=m topbit(ks ks) (k,ks ks<<1) La prima chiamata è k) m odo sorgete k odo destiazioe Routig ottimizzato Calcolo la dimesioe j del più grade suffisso del odo sorgete s che è ache prefisso del odo destiazioe t. Il routig iizia al passo j+1 Es.: vogliamo passare dal odo s= al odo t= Passo : da a Passo 3: da a t=m topbit(ks ks) (k,ks ks<<1) La prima chiamata è k <<j) m odo sorgete k odo destiazioe E difficile da guardare figuriamoci da implemetare E se maca u odo? E se e macao tati? b è di solito 160 (SHA) 160 Gli idirizzi IP soo 3 primo vicio secodo vicio La maggior parte delle applicazioi usa u umero di odi effettivo molto più piccolo di b. Evitare collisioi ell assegare chiavi; I geerale il sistema deve poter evolversi ( deve poter variare).

3 , : m Cosideriamo ora u rig o completo Il odo m ha due lik ai odi immagiari: m mod b m+1 mod b Aggiugiamo due ulteriori lik per ogi odo: U lik al successore ell aello U lik al predecessore di m mod b Lik a odi effettivi La uova procedura di routig, ivece di attraversare i odi del grafo di de Bruij e attraversa i predecessori; fasi Cerca il predecessore di s i Passa al uovo odo s i+1 d( Abbiamo raggiuto la destiazioe? t=m topbit topbit(ks) (k,ks<<1) Abbiamo raggiuto il predecessore del odo immagiario? if k (m, ] retur successor if i (m, retur d.lookup(k, d è il lik al predecessore di m mod.successor.lookup(k, b 1 if k (m, ] retur successor if i (m, 3 retur d.lookup(k, 4 5.successor.lookup(k, Passiamo al uovo odo del grafo di de Bruij Cerchiamo il predecessore del odo immagiario? Il passo 3 viee eseguito al massimo b volte Quate volte eseguiamo il passo 5, vale a dire quato impieghiamo per trovare il predecessore di u odo immagiario? Lemma Il umero medio di passi, durate ua operazioe di lookup i è 3b Prova Ogi hop su u grafo Nel passare dal odo immagiario di i al de Bruij odo si traduce i ua path i koorde. immagiario i topbiti topbit(ks), ci muoviamo Quato dal è luga odo questa m=predecessor(i) al odo m.d (predecessor path i media? m mod b ) e poi ci spostiamo usado i successor poiter fio a raggiugere il predecessor del odo immagiario i topbit(ks), Le frecce gialle soo b Quate soo le frecce verdi? d ( x y ) i+1 i m I odi attraversati fra due frecce gialle soo i odi che si trovao fra m e i+1 Quati odi ci soo ell itervallo I =(m,i+1)? I =(i-m)/( m)/( b /) Sapedo che il valore atteso di i-m i b / I ( b / )/( b /) = I totale duque per ogi freccia gialla media frecce verdi I totale 3b passi gialla vi soo i Distaza media fra due odi b / m i 3

4 1 if k (m, ] retur successor if i (m, 3 retur d.lookup(k, 4 5.successor.lookup(k, Claim La distaza fra m e il suo successore è co alta probabilità maggiore di b / Prova (Sketch) Poiché m è resposabile di tutti i odi immagiari che vao da m e m.successor è possibile migliorare ulteriormete l algoritmo. La distaza fra m e il suo successore è co alta probabilità maggiore di b / Distaza media b / Distaza b / Fissato u odo la probabilità che u altro odo qualsiasi sia più vicio di b / è( b / )/ b = 1/. La probabilità che essuo degli altri -1odi sia più vicio di b / è (1-1/ ) -1 >1-1/. Abbiamo dimostrato che la distaza fra m e il suo successore è co alta probabilità maggiore di b / Questo sigifica che il odo m è resposabile di odi immagiari co tutte le possibili combiazioi degli ultimi log( b / )= b-log bit. Scegliedo come odo immagiario iiziale il odo che ha gli ultimi b-log bit uguali a i primi b-log del odo destiazioe, dobbiamo effettuare alla fie soltato (b-(b- log))*3 passi = 6log passi circa. d ( (base ) Ha APL O(log ) co grado costate Si può dimostrare che ache il diametro è co alta probabilità (WHP) O(log ). (base k) Utilizziamo i grafi di de Bruij base k Scegliamo k = log d ( base k Per ogi k, i u grafo di de Bruij base k, ogi odo m è coesso a altri k odi: km mod k b km+1 mod k b km+(k (k-1) mod k b Esempio k=4,, =k b =64 e m=31 4 = 57 Il primo vicio è 10 4 =36 Il secodo vicio è 4 =37 Il terzo vicio è 1 4 =38 Il quarto vicio è 13 4 =39 Diametro O(log k ) k= base k Esempio, b=, =k b = b= 0 4

5 base k k+1 uovi lik Il lik al successore ell aello k lik ai predecessori dei vicii E possibile fare routig co grado k e APL O(log k ) 0 10 b= 1 1 d ( 0 base k Scegliedo k = O(log ): Grado = O(log ) O(log / log (log( )) Svataggi Bisoga stimare a priori; No è possibile cambiare il grado i u sistema attivo; E molto complicato stabilizzare la rete; 0 10 b= Ricapitolado. Sistemi PP puri Sistemi Uiformi Sistemi No uiformi Neighbor of Neighbor routig (NON) 5

Ancora esercizi!!! 27/10/2008. Materiale didattico. Sistemi Peer to Peer. Le vostre domande. Ancora esercizi!!! Nessun pervenuto!!!

Ancora esercizi!!! 27/10/2008. Materiale didattico. Sistemi Peer to Peer. Le vostre domande. Ancora esercizi!!! Nessun pervenuto!!! Materiale didattico Sistemi Peer to Peer i) Peer to Peer Sstems ad Applicatios Series: Lecture Notes i Computer Sciece, Vol. 3485 Sublibrar: Iformatio Sstems ad Applicatios, icl. Iteret/Web, ad HCI www.peer

Dettagli

3 Ricorrenze. 3.1 Metodo iterativo

3 Ricorrenze. 3.1 Metodo iterativo 3 Ricorreze Nel caso di algoritmi ricorsivi ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Ricorrenze. 3 1 Metodo iterativo

Ricorrenze. 3 1 Metodo iterativo 3 Ricorreze 31 Metodo iterativo Il metodo iterativo cosiste ello srotolare la ricorreza fio ad otteere ua fuzioe dipedete da (dimesioe dell iput). L idea è quella di reiterare ua data ricorreza T () u

Dettagli

CAPITOLO 3. Quicksort

CAPITOLO 3. Quicksort CAPITOLO 3 Quicksort I questa lezioe presetiamo l algoritmo di ordiameto Quicksort(vedi []). L algoritmo Quicksort riceve i iput u array A e idici p r ed ordia l array A[p,, r] el modo seguete. L array

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1 Iva Zivko PROCESSI ITERATIVI PER VALORI SCALARI Docete: Iva Zivko Processi umerici: puti ulli Immagiiamo ua fuzioe y f ( ), a., b Spesso è utile saper determiare tutti i suoi puti ulli, cioè tutti i puti

Dettagli

Analisi Matematica I Soluzioni del tutorato 2

Analisi Matematica I Soluzioni del tutorato 2 Corso di laurea i Fisica - Ao Accademico 07/08 Aalisi Matematica I Soluzioi del tutorato A cura di Davide Macera Esercizio Abbiamo che x 3 + si(log(x)) + cosh(x) x3 + si(log(x)) + e x ( + x 6 ) / + log(e

Dettagli

Note per la Lezione 11 Ugo Vaccaro

Note per la Lezione 11 Ugo Vaccaro Progettazioe di Algoritmi Ao Accademico 2017 2018 Note per la Lezioe 11 Ugo Vaccaro Abbiamo visto ella lezioe scorsa u argometo ituitivo secodo il quale il tempo medio di esecuzioe di QuickSort è O( log

Dettagli

Elementi di Teoria dell Informazione

Elementi di Teoria dell Informazione Elemeti di Teoria dell Iformazioe A cura di Carlo Caii Argometi della Presetazioe Quatità di iformazioe Etropia di u alfabeto Etropia di ua sorgete Ridodaza Codifica Etropica Codifica di uffma Quatità

Dettagli

Entropia ed informazione

Entropia ed informazione Etropia ed iformazioe Primi elemeti sulla teoria della misura dell iformazioe Per trasmettere l iformazioe è ecessaria ua rete di comuicazioe, che, secodo l approccio teorico di Claude E. Shao e Warre

Dettagli

CONFRONTO TRA SUCCESSIONI DIVERGENTI. (2) Sia a>1. Allora lim =+ per ogni β>0.

CONFRONTO TRA SUCCESSIONI DIVERGENTI. (2) Sia a>1. Allora lim =+ per ogni β>0. Lezioi -2 34 CONFRONTO TRA SUCCESSIONI DIVERGENTI a ) Sia a>. Allora lim + per ogi β>0. β Dimostriamolo solo per a 4eβ. Si ha ricordado che 2 per ogi ) 4 2 2 2, per cui 4 e il limite risulta + per cofroto

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 7

Esercizi di Calcolo delle Probabilità Foglio 7 Esercizi di Calcolo delle Probabilità Foglio 7 David Barbato Esercizio. Siao Y e X } N variabili aleatorie idipedeti e co distribuzioe espoeziale di parametro λ =. Siao ioltre: W := maxy, X } N T := miw

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO

ELEMENTI DI CALCOLO COMBINATORIO ELEMENTI DI CALCOLO COMBINATORIO 1 Elemeti di calcolo combiatorio Si tratta di ua serie di teciche per determiare il umero di elemeti di u isieme seza eumerarli direttamete. Dati elemeti distiti ci chiediamo

Dettagli

Esercitazione 2 Soluzione di equazioni non lineari

Esercitazione 2 Soluzione di equazioni non lineari Esercitazioe 2 Soluzioe di equazioi o lieari Scopo di questa serie di esercizi è quella di trovare ove possibile gli zeri di fuzioe di equazioi o lieari utilizzado i vari metodi spiegati a lezioe. I metodi

Dettagli

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I)

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I) Algoritmi e Strutture Dati (Mod. B) Programmazioe Diamica (Parte I) Numeri di Fiboacci Defiizioe ricorsiva (o iduttiva) F() = F() = F() = F() + F() Algoritmo ricorsivo Fib(: itero) if = or = the retur

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Biari di Ricerca Alberi biari (ripasso) U albero biario è ua struttura dati defiita i modo ricorsivo come u isieme fiito di odi che è vuoto (albero vuoto o albero ullo) oppure è composto da tre

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 1 12/03/2015 Soluzioi del primo foglio di esercizi Esercizio 0.1. Ua classe di studeti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vegoo esposti i ua graduatoria

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero - Problema del trasporto Prof. Cerulli Dott.ssa Getili Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, j) A

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1 A.A. 00 05 Esame di Algoritmi e strutture dati luglio 005 Esercizio (6 puti) Risolvere co almeo due metodi diversi la seguete relazioe di ricorreza T = T =T Master Theorem a= b= per cui log b a = log /

Dettagli

Sperimentazioni di Fisica I mod. A Lezione 2

Sperimentazioni di Fisica I mod. A Lezione 2 La Rappresetazioe dei Numeri Sperimetazioi di Fisica I mod. A Lezioe 2 Alberto Garfagii Marco Mazzocco Cizia Sada Dipartimeto di Fisica e Astroomia G. Galilei, Uiversità degli Studi di Padova Lezioe II:

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Selezioe e statistiche di ordie Problemi di statistiche d ordie Estrarre da gradi quatità di dati u piccolo isieme di idicatori che e rappresetio caratteristiche statisticamete

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Il notaio digitale Quando è stato creato. il documento D? Firme digitali. Integrita dei dati. Certificazione del tempo.

Il notaio digitale Quando è stato creato. il documento D? Firme digitali. Integrita dei dati. Certificazione del tempo. %!"### "$ Idea alla base: il valore hash h(m) è ua rappresetazioe o ambigua e o falsificabile del messaggio M L output della fuzioe hash è detto figerprit o digest o hash Proprietà: comprime ed è facile

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n Esercizi 2 Pietro Caputo 4 dicembre 2006 Esercizio. Siao Y, per =, 2,..., variabili aleatorie co distribuzioe biomiale di parametri e p := λ, per qualche λ > 0. Dimostrare che Y coverge i distribuzioe

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Outline. P2P: Applicazioni. Peer-to-Peer (P2P) P2P: Storia(2) P2P: Storia. Sistemi Peer To Peer (P2P) Avanzati. Peer-to-Peer (P2P) Un po di storia

Outline. P2P: Applicazioni. Peer-to-Peer (P2P) P2P: Storia(2) P2P: Storia. Sistemi Peer To Peer (P2P) Avanzati. Peer-to-Peer (P2P) Un po di storia Sistemi Peer To Peer (PP) Avazati Gearo Cordasco cordasco@dia.uisa.it http://www.dia.uisa.it/~cordasco Laboratorio ISISLAB (L a Baroissi) Outlie Peer-to-Peer (PP) Motivazioi U po di storia Napster Gutella

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

Accenni al calcolo combinatorio

Accenni al calcolo combinatorio Accei al calcolo combiatorio Dario Malchiodi e Aa Maria Zaaboi ottobre 2017 Pricipio fodametale del calcolo combiatorio: se ci soo s 1 modi per operare ua scelta e, per ciascuo di essi, ci soo s 2 modi

Dettagli

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1 Lezioe 4. Rappresetazioe grafica della risposta i frequeza F. Previdi - Fodameti di Automatica - Lez. 4 Schema della lezioe. Rappresetazioi grafiche della risposta i frequeza. Diagramma di Bode del modulo:

Dettagli

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo Abbiamo visto che, data ua v.a. X di cui o si cooscao valore atteso e variaza, tali umeri si possoo stimare putualmete el seguete modo: si prede u casuale X 1,...,X di v.a. aveti la stessa legge di X;

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati Complessità degli algoritmi m.patrigai Nota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o

Dettagli

Un risultato di compattezza: il Teorema di Ascoli-Arzelà. Applicazione ad un risultato di esistenza per le equazioni differenziali ordinarie.

Un risultato di compattezza: il Teorema di Ascoli-Arzelà. Applicazione ad un risultato di esistenza per le equazioni differenziali ordinarie. U risultato di compattezza: il Teorema di Ascoli-Arzelà. Applicazioe ad u risultato di esisteza per le equazioi differeziali ordiarie. Voglio comiciare questo secodo icotro co u risultato di compattezza

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Appedice B Cei di calcolo combiatorio B Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare degli

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimaa 2 Esercizio 1. Si cosideri la seguete strategia per il gioco della roulette. Si scommette 1 sul rosso. Se esce rosso (si ricordi che la roulette è da 37 umeri, di cui 18 rossi e 18

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

algoritmi e strutture di dati

algoritmi e strutture di dati algoritmi e strutture di dati complessità degli algoritmi m.patrigai ota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o limitatamete,

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Fiaza iziao Vargiolu vargiolu@math.uipd.it 1 1 Uiversità degli Studi di Padova Ao Accademico 2012-2013 Lezioe 3 Idice 1 Il modello di Cox-Ross-Rubistei 2 Dal modello di Cox-Ross-Rubistei

Dettagli

x x x + 25 Problemi: Supponiamo che una palla, lasciata cadere da un altezza h, perda il 12% di energia ad ogni rimbalzo.

x x x + 25 Problemi: Supponiamo che una palla, lasciata cadere da un altezza h, perda il 12% di energia ad ogni rimbalzo. Compito di Matematica Classe III B Data 9//007 Aluo > 5 + + < + + 0 + 0 5 + 5 + 0 > + 5 + Problemi: Suppoiamo che ua palla, lasciata cadere da u altezza h, perda il % di eergia ad ogi rimbalzo.. scrivi

Dettagli

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10 Rappresetazioe dell'iformazioe I calcolatori elettroici soo macchie i grado di elaborare iformazioi trasformadole i altre iformazioi. Nel modo dell'iformatica, itediamo i modo più restrittivo per iformazioe

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B Probabilità e Statistica Laurea Trieale i Matematica 7/06/204 Soluzioi traccia B Esercizio 2. (Appello completo) Cosideriamo due ure A e B. L ura A cotiee 4 biglie rosse e 2 ere, metre l ura B cotiee biglia

Dettagli

Prova d esame di Calcolo delle Probabilità 02/07/2011

Prova d esame di Calcolo delle Probabilità 02/07/2011 Prova d esame di Calcolo delle Probabilità 0/07/0 N. MATRICOLA... COGNOME e NOME... Esercizio Cosideriamo due ure ed ua moeta truccata. La prima ura (ura A) cotiee pallie rosse e 4 biache, la secoda ura

Dettagli

esercizi v5.doc

esercizi v5.doc esercizi-0809-05-v5.doc Esercizio a) Calcolare il diametro massimo di ua rete etheret operate a 0 Mb/s cosiderado esclusivamete il vicolo sul RTT massimo di 46.38 µs. (Si cosideri ua velocità di propagazioe

Dettagli

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni)

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni) Corso di Liguaggi e Traduttori 1 AA 2004-05 TEORIA DELLA COMPUTAZIONE cei) 1 Sommario Iterazioe e ricorsioe Relazioi di ricorreza Complessità computazioale 2 Iterazioe e Ricorsioe Dato u problema, la sua

Dettagli

Esercitazione IV Complementi di Probabilità a.a. 2011/2012

Esercitazione IV Complementi di Probabilità a.a. 2011/2012 Esercitazioe IV Complemeti di Probabilità a.a. 2011/2012 Argometi: idipedeza, 2 lemma di Borel Catelli, σ-algebra coda. Esercizio 1. a) Dato (Ω, F, P), siao J 1, J 2,..., J m π-system su Ω tali che Ω J

Dettagli

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore(

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore( Tempo di calcolo. Tempo di calcolo di u algoritmo La complessità computazioale è ua misura della difficoltà di risolvere problemi di calcolo co algoritmi. Per misurare la complessità di u algoritmo si

Dettagli

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n )

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n ) SPAZI TOPOLOGICI: topologia locale (a cui siamo iteressati topologia globale (proprieta a larga scala, come quelle che distiguoo ua sfera da u coo Nozioi prelimiari: sia R lo spazio -dimesioale dell algebra

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Progettazione di Algoritmi - lezione 23

Progettazione di Algoritmi - lezione 23 Progettazioe di Algoritmi - lezioe 23 Discussioe dell'esercizio [palidroma] Dobbiamo trovare u algoritmo efficiete che data ua striga s di caratteri trova la più luga sottostriga di s che sia palidroma.

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Statistica I - A.A

Statistica I - A.A Statistica I - A.A. 206-207 Prova scritta - 9 aprile 207 Problema. (pt. 20 U azieda che produce ricambi per stampati esamia la durata di u certo modello di cartuccia d ichiostro, misurata i umero di copie

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Igegeria delle Telecomuicazioi Prova scritta del -2-27 Esercizio. puti) Sia = {, y) R 2 :, y 3 + }. a) 3 puti) Utilizzare il teorema di Stokes o Poicaré-Carta) per calcolare d dy

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Esercizi di Variabile complessa - 5 (possibili soluzioni) cos(kθ) = sen((n )θ) z k = 1 z(n+1) 1 z

Esercizi di Variabile complessa - 5 (possibili soluzioni) cos(kθ) = sen((n )θ) z k = 1 z(n+1) 1 z Esercii di Variabile complessa - 5 possibili soluioi. Sfruttado le idetità Ree iθ = cos θ e Ime iθ = se θ dimostrare l idetità trigoometrica coskθ = + se + θ seθ/ Soluioe. Sia = e iθ. Allora dall uguagliaa

Dettagli

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!)

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) Per fortua le cose o cambiao poi di molto visto che la uova variabile x µ s x co s x

Dettagli

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n.

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n. Algebra lieare Matematica CI) 263 Somma di matrici Siao m ed due iteri positivi fissati Date due matrici A, B di tipo m, sommado a ciascu elemeto di A il corrispodete elemeto di B, si ottiee ua uova matrice

Dettagli

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato Divide et Imera Risoluzioe di roblemi er artizioe co lavoro bilaciato Miimo e Massimo L algoritmo Mi-Max calcola il miimo ed il massimo tra i valori di u vettore A. Mi-Max A least A[] greatest A[] for

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18.

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18. Esercizio. Sia Soluzioi di esercizi del secodo esoero di Aalisi Matematica 207/8. a 3 2 + π si si +. a Determiare, al variare di a > 0, se esiste, lim 0 + u a. b Determiare, al variare di a > 0, se esiste,

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Analisi Matematica 1 Matematica

Analisi Matematica 1 Matematica Aalisi Matematica 1 Matematica Secodo Compitio Luedì 30 Geaio 01 VERSIONE A Esercizio 1 (8 puti) Sia α R u parametro e si cosideri la serie di poteze complessa z. i) Calcolare il raggio di covergeza R

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

GARA A SQUADRE - SOLUZIONI

GARA A SQUADRE - SOLUZIONI PROGETTO OLIMPIADI DI MATEMATICA SEZIONE DI ROMA GARA A SQUADRE - SOLUZIONI Roma, 7 marzo 01 Dipartimeti di Matematica delle Uiversità Sapieza, Tor Vergata, Roma Tre co il sostego di: Uioe Matematica Italiaa,

Dettagli

Lezione 9bis. xdsl. Reti di Telecomunicazioni R. Bolla, L. Caviglione, F. Davoli

Lezione 9bis. xdsl. Reti di Telecomunicazioni R. Bolla, L. Caviglione, F. Davoli Lezioe 9bis xdsl Reti di Telecomuicazioi R. Bolla, L. Caviglioe, F. Davoli Coteuto della lezioe 9bis Aspetti geerali della tecologia xdsl Architettura della tecologia ADSL Tipologie delle tecologie xdsl

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e aalisi di algoritmi Roberto Cordoe DTI - Uiversità degli Studi di Milao Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordoe@dti.uimi.it Ricevimeto: su apputameto Web page:

Dettagli

L indovinello delle Uova Fabergé

L indovinello delle Uova Fabergé Giacomo Salvati Pavia, 15-12-2017 L idoviello delle Uova Fabergé La città a appea aperto u museo di Uova Fabergé ce ospita 100 uova, ua per ogi piao del palazzo del museo, e il più grade ladro di gioielli

Dettagli