1 Esponenziale e logaritmo.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Esponenziale e logaritmo."

Transcript

1 Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a k } k di umeri reali positivi è verificata la seguete disuguagliaza a k a k. La dimostrazioe di lemmi è u facile; procediamo duque alla dimostrazioe della disuguagliaza delle medie. Dimostrazioe Lemma Sia P il predicato l equazioe a k a k è verificata per ogi upla {ak } k di umeri reali positivi. Osserviamo iazitutto che P è baalmete vera se = metre per = si verifica immediatamete che a + a a a a + a a a = 3 Vorremmo procedere per iduzioe sul umero di elemeti dell upla, ovvero dimostrare che se P è vera allora è vera ache P +. Purtroppo questo passaggio o è semplice e richiede u piccolo trucco: dimostreremo ifatti che i P P. ii Se P è vera allora Pm è vera per ogi m. Quidi per passare da a + procederemo el modo seguete: P P P + dove la prima implicazioe è vera grazie a i e la secoda grazie a ii uitamete al fatto che +. Per dimostrare i procediamo ella maiera seguete: a k = a k a +k quidi supposta P vera otteiamo a k a +k a k a +k = [ a k ] a +k 4

2 ma, utilizzado la disuguagliaza 3 osserviamo che a k a +k [ a k + ] [ a +k = e sostituedo l espressioe trovata al secodo membro dell equazioe 4 termiaimo la dimostrazioe del puto i. Dimostriamo allora ii: suppoiamo che P sia vera, dato m e data comuque ua m-upla {a k } k m defiiamo µ = m { ak k m a k, b k = 5 m µ k > m Osservado che b k = µ m m a k, b k = m a k + mµ = mµ + mµ = µ si verifica facilmete che applicado la disuguagliaza all -upla {b k } k si ottiee la disuguagliaza m µ m a k µ quidi o a k = 0 k el qual caso o c e ulla da dimostrare oppure µ > 0 e duque dividedo etrambi i membri per la quatità positiva! µ m e ricordado la defiizioe di µ otteiamo la tesi. # a k ] Esercizi:. Dimostrare il lemma.. Dimostrare il lemma. Dimostrare ioltre che la disuguagliaza o è vera i geerale seza l ipotesi α e idividuare ella dimostrazioe i passaggi i cui tale ipotesi viee utilizzata. 3. Dimostrare che la disuguagliaza delle medie si riduce ad u uguagliaza se e solo se gli a soo tutti uguali. 4. Dimostrare la disuguagliaza tra media geometrica e media armoica, ovvero che se {b k } k è ua upla di umeri strettamete positivi allora /b k [Suggerimeto: porre a k = /b k e utilizzare la disuguagliaza.]. La fuzioe espoeziale i base aturale. Sia x lr, cosideriamo la successioe di poliomi defiita da p x = + x dove ln : Poiamo expx def = lim + p x. Al fie di studiare le proprietà della fuzioe expx procederemo per piccoli passi successivi: b k.

3 a Per ogi x lr fissato la successioe p x è crescete per > x. Pertato expx = lim p x = sup{p x : > x}. + Ifatti posto + x k α k = k = + quidi, applicado la disuguagliaza delle medie agli + umeri positivi α k + + α k + cioè, sostituedo ella formula sopra l espressioe esplicita degli α k ed elevado etrambi i membri a poteza + -esima otteiamo p + x = + α k + x + + x = p x + b Per ogi x lr fissato p è superiormete limitata. Pertato expx < + per ogi x. Ifatti si ha e duque p x p x = + x x = x 0 < p x p x < > x 6 ora, visto che p x è crescete, posto 0 = mi{ ln : > x } avremo che p x p 0 x 0 da cui, teedo ache coto dell equazioe 6, si ottiee p x p x p 0 x. 7 da cui la tesi. Osserviamo che la disuguagliaza 7 implica che expx p 0 x. c Vale l idetità algebrica + y + x = y x + y k + x k. k=0 d Dalla disuguagliaza precedete segue che, se x y C, 0 + y + x expcy x d Dal puto c segue ache che, se x y, expxy x expy expx expyy x. Pertato exp è ua fuzioe strettamete crescete, ioltre per ogi C R fissato exp : ], C] R è ua fuzioe strettamete crescete. 3

4 e Se x x allora + x expx. Cosegueza di c poedo y = x e passado al limite. La fuzioe exp si chiama espoeziale i base aturale. La proposizioe seguete recapitola le proprietà pricipali di exp e giustifica, oltre al ome, ache la otazioe expx = e x. Proposizioe 3 La fuzioe exp : R, + R +, è u omomorfismo strettamete crescete. Valgoo ifatti le segueti proprietà. expx expy = expx + y x, y lr. I particolare exp0 =, exp x = [expx].. expx > 0 x R. 3. expx + x x R. Dim: Se x, y lr, si ha che expx expy = lim + + x lim + + y x + y + xy/ = lim + = expx + y 8 + dove l ultima uguagliaza segue da e. Le altre proprietà seguoo facilmete dalla defiizioe, dalla proprietà o dalle osservazioi precedeti. # Esercizi:. Dimostrare per iduzioe che [expx] = expx x lr, Z.. Sia exp := e e è detta la costate di Nepero. Mostrare che < e < Mostrare che exp : R R + è surgettivo cioé che per ogi b > o l equazioe e x = b ha soluzioe. [Sugg: provare che se b la successioe x = b / è decrescete, iferiormete limitata e pertato ammette u limite a che soddisfa l equazioe e a = b.] 4. Calcolare lim expx = 0, lim x expx = +. 9 x + 5. Provare che per ogi x, x R si ha expx = expx + x x. 6. Mostrare che per ogi x 0, x R e t [0, ] vale la disuguagliaza exptx + tx 0 t expx + t expx 0 ovvero la fuzioe espoeziale è covessa. 7. Mostrare che +x expx per ogi x <. 8. Provare che 9. fuzioi iperboliche????? expx + exp x 4

5 .3 La fuzioe logaritmo. Nella sezioe precedete esercizio 4 abbiamo dimostrato che la fuzioe espoeziale i base aturale è bigettiva se come codomiio prediamo la sua immagie lr +. Quidi essa ammette u iversa log : lr + lr che viee chiamata fuzioe logaritmo e risulta essere u omomorfismo crescete da R +, R, +. Valgoo ioltre le segueti proprietà. logxy = logx + logy x, y R +, i particolare log = 0 e logx = logx.. loglr + = lr; 3. log + x x x >. Esercizi:. Mostrare che, se x > 0, x = exp/ log x.. Mostrare che logx logx 0 + x 0 x x 0 per ogi x, x 0 R Dimostrare che per x < vale la seguete stima Dedure che x log + x x. + x + log + 4. Utilizzare il risultato precedete per provare che 5. Mostrare che, se 0 < δ x < y allora log +. k 0 < log y log x y x. δ 6. Dimostrare che il logaritmo è ua fuzioe cocava, ovvero ln. logtx + ty t log x + t log y t [0, ] x, y > 0 7. Dimostrare la seguete disuguagliaza disuguagliaza di Youg ab ap p + bq q, a, b, p, q > 0, : p + q =. [Suggerimeto: sfruttare la cocavità del logaritmo.].4 L espoeziale e il logaritmo i base qualuque..5 La fuzioe espoeziale. Sia a > 0 fissato, si cosideri la seguete applicazioe Z lr a tale fuzioe mada Z, + i lr,, trasformado somme i prodotti a x+y = a x a y x, y Z 0 5

6 Se vogliamo estedere tale fuzioe a tutto lr i modo che la proprietà 0 sia verificata x, y lr basta porre exp a x def = expx log a. È facile verificare che se p/q Q allora exp a p/q = q a p pertato i geere si usa la otazioe exp a x = a x. Ioltre co tale defiizioe la proprietà 0 è verificata su tutto lr. Osserviamo ioltre che, se a, si ha logexp a x = x loga, exp a log x log a = x pertato la fuzioe x log x log a è l iversa di exp a, viee chiamata il logaritmo i base a ed idicata col simbolo log a x, si oti che logx = log e x. I effetti tutti i logaritmi differiscoo uicamete per u fattore moltiplicativo: log a x log b x = log b log a a, b R + \ {0}, pertato, se o c e motivo particolare, utilizzeremo sempre il logaritmo i base aturale. Esercizi: Dimostrare che. log a blog b a = a, b > 0. log a b = log c blog a c 3. Mostrare la formula già be ota el caso x, y fossero iteri a x y = a xy x, y R 4. Le segueti valutazioi del logaritmo soo umeri razioali; calcolarle seza l ausilio della calcolatrice log 3 7 log 3 /9 log 3 / 3 log 8 / log 4 8 log Mostrare che se, m N + e m log < m + allora l espressioe di i base ha m + cifre. 6. Dire, seza utilizzare la calcolatrice, quate cifre soo ecessarie per esprimere il umero 64 ell usuale base 0. Il logaritmo i base aturale si idica talvolta ache co lx. 6

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Esercizi sul principio di induzione

Esercizi sul principio di induzione Esercitazioi di Aalisi I, Uiversità di Trieste, lezioe del 0/0/008 Esercizi sul pricipio di iduzioe Esercizio Dimostrare per iduzioe che + + + ( + ), Risoluzioe Le dimostrazioi di ua proprietà P() per

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Alcune applicazioni della diseguaglianza tra la media geometrica e la media aritmetica

Alcune applicazioni della diseguaglianza tra la media geometrica e la media aritmetica Alcue applicazioi della diseguagliaza tra la media geometrica e la media aritmetica Giulio C. Barozzi Uiversità di Bologa barozzi@ciram.uibo.it . Iiziamo co u semplice problema: tra tutti i rettagoli di

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Analisi Matematica I

Analisi Matematica I Aalisi Matematica I Apputi delle lezioi teute dal Prof. A. Foda Uiversità di Trieste, CdL Fisica e Matematica, a.a. 016/017 Lezioe 1 del 03/10/016: I umeri aturali e il pricipio di iduzioe Descriviamo

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI.

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. Ua progressioe (o successioe) è u isieme iþito di umeri reali P = {a co =,,...} = {a,a,...}. La somma dei primi termii

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Successioni di numeri reali

Successioni di numeri reali CAPITOLO Successioi di umeri reali. Defiizioi ed esempi. Limite di ua successioe. Nell ultimo paragrafo del capitolo precedete abbiamo itrodotto alcue fuzioi elemetari da sottoisiemi di) R a valori i R,

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Induzione, medie, disuguaglianze

Induzione, medie, disuguaglianze Iduzioe, medie, disuguagliaze. Notazioi e richiami Perché queste pagie abbiamo ua certa dose di autosufficieza è opportuo fissare alcue otazioi e richiamare alcue ozioi e alcui risultati che utilizzeremo...

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

3. Calcolo dei limiti e confronti asintotici

3. Calcolo dei limiti e confronti asintotici Lezioi di Aalisi Matematica per Iformatici a.a. 009/00) Capitolo 3 Prof. Paolo Caldiroli 3. Calcolo dei iti e cofroti asitotici 3. Itroduzioe La teoria delle serie umeriche sviluppata el capitolo ci forisce

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

Appunti sui numeri complessi e i polinomi.

Appunti sui numeri complessi e i polinomi. INDICE 1 Apputi sui umeri complessi e i poliomi. Roberto Cateacci Versioe del 7 Marzo 011 Idice 1 Equazioi quadratiche. Numeri complessi. Radici - esime dell uità. 9 4 Poliomi. 10 5 Poliomi ciclotomici.

Dettagli

Calcolo differenziale Parte prima. Mauro Saita Versione provvisoria. Novembre

Calcolo differenziale Parte prima. Mauro Saita Versione provvisoria. Novembre Calcolo differeziale Parte prima Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Novembre 204. Idice Derivate 2. Defiizioe di derivata............................... 2.2 Fuzioi differeziabili...............................

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2)

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2) SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimeto. 2) Nel presete capitolo verrao cosiderate successioi e serie di fuzioi reali aveti u domiio comue D. 5.1. Successioi di fuzioi Si

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Copyrighted. Collezione di esercizi di Analisi Matematica uno Università di Padova Scuola di Ingegneria A.A. 2016/2017 A.

Copyrighted. Collezione di esercizi di Analisi Matematica uno Università di Padova Scuola di Ingegneria A.A. 2016/2017 A. Collezioe di esercizi di Aalisi Matematica uo Uiversità di Padova Scuola di Igegeria A.A. 6/7 A. LANGUASCO Versioe del 9 ovembre 6 Versioe del 9 ovembre 6 p. Questo documeto è stato preparato esclusivamete

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

16. Derivate di ordine superiore.

16. Derivate di ordine superiore. 6. Derivate di ordie superiore. Fiora abbiamo visto due livelli di approssimazioe Livello uzioi cotiue ()=( )+ε () co ε () ε ( ) Livello uzioi diereziabili ()=( )+ ( ) (- )+ε () co Ci si chiede se è possibile

Dettagli

2. PROBLEMI ISOPERIMETRICI

2. PROBLEMI ISOPERIMETRICI . ROBLEMI IOERIMETRICI (OLUZIONI roblema isoperimetrico classico : Tra le figure piae di perimetro fissato trovare quella di area massima. ROBLEMA IOERIMETRICO ER I RETTANGOLI: (itra tutti i rettagoli

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

ESERCIZI SULLE SERIE NUMERICHE

ESERCIZI SULLE SERIE NUMERICHE ESERCIZI SULLE SERIE NUMERICHE a cura di Michele Scaglia RICHIAMI TEORICI Richiamiamo brevemete i pricipali risultati riguardati le serie umeriche. Teorema (Codizioe Necessaria per la Covergeza) Sia a

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente Corso di Laurea i Matematica LEZIONI PER IL CORSO DI ANALISI MATEMATICA..2 A.A. 2007-2008 ARGOMENTO: SERIE NUMERICHE Dott.ssa Sadra Lucete Idice :. Prime geeralità sulle serie. 2. Serie a termii o egativi:

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli Uiversità degli Studi di Bologa Scuola di Ecoomia Maagemet e Statistica Corso di Laurea i Scieze Statistiche Apputi del corso di Aalisi Matematica Ao Accademico 03 04 f b y prof. Daiele Ritelli f a a b

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

Le tante facce del numero e di Nepero

Le tante facce del numero e di Nepero Le tate facce del umero e di Nepero Paolo Tilli Dipartimeto di Matematica Politecico di Torio Premessa Questa breve ota raccoglie e i parte itegra il coteuto della cofereza da me teuta col medesimo titolo

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli