La dinamica dei sistemi - intro

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La dinamica dei sistemi - intro"

Transcript

1

2 La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali estesi. U sistema materiale esteso può essere sempre immagiato come costituito da u isieme di puti materiali. Talvolta, il sistema esteso è effettivamete formato da u certo umero di costitueti praticamete putiformi ciascuo idetificabile e distiguibile dagli altri: si dice allora che si ha a che fare co u sistema discreto. Più spesso, a livello macroscopico, u corpo esteso si preseta come u sistema cotiuo: i questo caso si può comuque immagiare di suddividere il sistema cotiuo i u certo umero di elemeti di massa elemetare dm e di volume dτ praticamete putiforme.

3 Il cetro di massa Si cosideri u sistema formato da due particelle di massa rispettivamete m 1 ed m 2 soggette alle forze estere F 1 ed F 2. Tale sistema soggiace alle leggi del moto come se etrambe le masse m 1 +m 2 fossero cocetrate i u uico puto chiamato cetro di massa soggetto ad ua forza F 1 +F 2 agete sul puto. si defiisce cetro di massa di u sistema composto da più di ua particella, il puto i cui si suppoe cocetrata tutta la massa del sistema. Si può supporre che sul puto agisca ua forza estera etta i modo tale che il moto di u sistema di particelle si possa descrivere attraverso il moto del suo cetro di massa.

4 Il cetro di massa La posizioe del cetro di massa è data dalla relazioe Da cui: r cm = m 1r 1 + m 2 r 2 m 1 + m 2 x cm = m 1x 1 + m 2 x 2 m 1 + m 2 Se assumiamo, ad esempio, x 1 = 2m, x 2 = 8m, m 1 = m 2 = 6Kg, allora x cm = (6Kg)(2m) + (6Kg)(8m) 6Kg + 6Kg = 5m

5 Cetro di massa caso geerale Se il sistema è composto da particelle, allora la relazioe può essere geeralizzata: Ovvero, el piao cartesiao: r cm = m 1r 1 + m 2 r 2 +. m 1 + m 2 + = i=1 m i r i i=1 m i x cm = m 1x 1 + m 2 x 2 + m 1 + m 2 + = i=1 m i x i i=1 m i i=1 i=1 m i i=1 i=1 m i y cm = m 1y + m 2 y 2 + m 1 + m 2 + = m i y i z cm = m 1z 1 + m 2 z 2 + m 1 + m 2 + = m i z i

6 Velocità del cetro di massa La velocità co cui si muove il cetro di massa di u sistema di particelle è: da cui: v cm = m 1v 1 + m 2 v 2 + m 1 + m 2 + = i=1 m i v i i=1 m i v i = dr dt = dx i dt i + dy i dt j + dz i dt k Pertato le sue compoeti cartesiae soo: v xcm = m 1v x1 + m 2 v x2 + m 1 + m 2 + = i=1 m i v xi i=1 m i i=1 i=1 m i i=1 i=1 m i v ycm = m 1v y1 + m 2 v y2 + m 1 + m 2 + = m i v yi v zcm = m 1v z1 + m 2 v z2 + m 1 + m 2 + = m i v zi

7 Accelerazioe del cetro di massa L accelerazioe del cetro di massa di u sistema di particelle è: da cui: a cm = m 1a 1 + m 2 a 2 + m 1 + m 2 + = i=1 m i a i i=1 m i a i = dv dt = dv xi dt i + dv yi dt j + dv zi dt k o, ciò che è lo stesso: a = d2 r i dt 2 i + d 2 yi j + d2 z i k dt 2 dt 2 dt 2 = d2 x i Pertato le sue compoeti cartesiae soo: a xcm m a m a... 1 x1 2 x2 x1 m1m2... x1 ma i m i xi a ycm m a m a... 1 y1 2 y2 y1 m1m2... y1 ma i m i yi a zcm m a m m a... m... 1 z1 2 z2 1 2 x1 x1 ma i m i zi

8 Il moto del cetro di massa La ciematica di u sistema di particelle può essere studiata aalizzado il moto del suo cetro di massa. Si cosideri u sistema di particelle il sui moto è di sola traslazioe. Si sa, per defiizioe, che r cm = i=1 Se idichiamo la massa totale del sistema come allora si potrà scrivere: i=1 m i r i m i Derivado, si potrà scrivere: La quatità a destra dell uguagliaza rappreseta la quatità di moto del cetro di massa.

9 Il teorema del cetro di massa Pertato si potrà scrivere: Derivado ulteriormete, si avrà: Il termie a destra dell uguagliaza rappreseta la somma delle forze applicate su ciascua particella del sistema Questa relazioe prede il ome di teorema del cetro di massa: Il cetro di massa di u sistema materiale che abbia massa M costate si muove come u puto materiale i cui sia cocetrata tutta la massa M del sistema e a cui sia applicata ua forza pari alla risultate F delle forze estere ageti sul sistema stesso

10 E le forze itere? Si oti che la quatità F i rappreseta la somma delle forse estere ageti sul sistema e delle forse itere al sistema di iterazioe tra le sigole particelle. Tuttavia, se ad esempio si cosiderao due particelle si ota che la forza che la massa 1 esercita sulla massa 2 è uguale ed opposta a quella che la massa 2 esercita sulla massa 1. Pertato la somma delle forze itere è ulla. NB: U cocetto simile al cetro di massa è quello di cetro di gravità defiito come il puto i cui si immagia applicata la forza di attrazioe gravitazioale. Per sistemi di particelle o corpi costituiti da particelle le cui dimesioi soo trascurabili rispetto alle dimesioi della Terra, il cetro di gravità e il cetro di massa coicidoo.

11 Le equazioi cardiali della diamica dei sistemi Si cosideri u sistema materiale S e se e scriva la posizioe del suo cetro di massa: r c = m ir i M Nell ipotesi che la massa M sia costate, derivado, si ha: ovvero v c = m iv i M Mv c = m i v i = q i = Q La relazioe ci mostra che la quatità di moto Q di u sistema materiale di massa costate può essere espressa come prodotto fra la massa totale del sistema M e la velocità v c del suo cetro di massa.

12 Le equazioi cardiali della diamica dei sistemi Derivado ulteriormete, si ottiee: cioè: Ma c = dq dt F e = dq dt Dal teorema del mometo agolare si è ricavato, ioltre che: M = dp dt Mettedo isieme le osservazioi fiora fatte e teuto coto della trascurabilità delle forze itere tra le particelle, si ottegoo le equazioi cardiali della diamica dei sistemi: F e = dq dt M e = dp dt

13 Cetro di massa di sistemi cotiui Nel caso di sistemi cotiui, il cetro di massa si defiisce i modo del tutto aalogo al caso dei sistemi discreti. Si suddivide il sistema i tati elemeti praticamete putiformi di massa dm i e volume dτ i ; la posizioe del cetro di massa è data approssimativamete da Il calcolo diviee esatto eseguedo il limite a zero dei volumetti: r cm = lim Δτ i 0 i=1 i=1 dm i r i dm i Usado la simbologia propria del calcolo itegrale, questo limite si scrive

14 Cetro di massa di sistemi cotiui Per il calcolo dell itegrale è ecessario esprimere la massa elemetare dm i fuzioe delle coordiate x,y, z. A questo scopo si itroduce la desità di massa del sistema cosiderato. La desità ρ=ρ(x,y,z) è quella fuzioe delle coordiate che moltiplicata per l elemeto di volume dτ forisce la massa dm dell elemeto di volume dτ: dm= ρdτ = ρ(x,y,z)dxdydz Da queste ultime cosiderazioi si può dedurre:

15 Note Beché, a rigore, ogi corpo materiale esteso abbia struttura tridimesioale, o è raro che la forma del corpo sia tale che risulti coveiete schematizzarlo come u sistema a due dimesioi o addirittura a ua dimesioe sola. I questi casi coviee itrodurre, rispettivamete, ua desità superficiale σ e ua desità lieare λ. Il risultato molto importate a cui si è giuti è che, quado il corpo ha ua desità costate, il cetro di massa (e il cetro di gravità se il campo gravitazioale è costate) dipedoo solo dalla cofigurazioe geometrica del corpo e o dalle sue proprietà fisiche

16 Il teorema di Koeig Si cosideri u sistema di puti materiali che si muove i u sistema di riferimeto ierziale R(0xyz); si itroduca u secodo sistema di riferimeto mobile R che abbia origie coicidete co il cetro di massa C del sistema S e orietameto fisso rispetto a R. Sia r C il vettore posizioe di C rispetto a R e r i il vettore posizioe del puto P i di S acora rispetto a S. Sia ioltre r i il vettore posizioe di P i rispetto a R. Si ha: r i = r c + r i Derivado questa relazioe rispetto al tempo, si ottiee: v i = v c + v i dove v i è la velocità di P i rispetto a R; v c è la velocità del cetro di massa C rispetto a R; v i è la velocità di P i rispetto a R, cioè rispetto al sistema solidale co C.

17 Il teorema di Koeig L eergia cietica K i del puto P i el sistema ierziale R può essere scritta come: K i = 1 2 m iv i 2 = 1 2 m iv i v i = 1 2 m i v c + v i v c + v i = 1 2 m iv c m iv i 2 + m i v i v c Sommado sull idice i, si ottiee l eergia totale del sistema S: 1 K = K i = 2 m iv 2 1 c + 2 m iv 2 i + + m i v i v c = 1 2 v c 2 m i + A proposito dei tre termii possiamo scrivere: 1 2 m iv i 2 + v c m i v i 1 v 2 c 2 m i può essere scritto come 1 Mv 2 c 2 dove M = m i è la massa totale del sistema. 1 m 2 2 iv i rappreseta l eergia cietica del sistema S el sistema di riferimeto R che ha origie el cetro di massa C e orietameto fisso rispetto a R, ovvero rappreseta l eergia cietica di S rispetto al cetro di massa: la si può chiamare S. v c m i v i questo termie è ullo perché m i v i = Mv c e v c rappreseta la velocità del cetro di massa rispetto a R ma el sistema R tale velocità è ulla.

18 Il teorema di Koeig I defiitiva: K = 1 2 Mv c 2 + K I u sistema di riferimeto ierziale qualuque, l eergia cietica di u sistema materiale S può essere espressa come somma dell eergia cietica 1 2 Mv c 2 che il sistema avrebbe se tutta la sua massa fosse cocetrata el suo cetro di massa più l eergia cietica K che il sistema S ha i u sistema di riferimeto co origie el cetro di massa e orietameto fisso.

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio.

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio. Scopo dell'esperieza Laboratorio di isica per Scieze aturali Esperieza Verifica della legge di Hooe Misura dei coefficiete di elasticità di molle di acciaio. ) verifica del fatto che l allugameto di ua

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Corso di Costruzioni in Zona Sismica

Corso di Costruzioni in Zona Sismica Corso di Costruzioi i Zoa Sismica Uiversità degli Studi di Cassio e del Lazio Meridioale Eresto Grade e.grade@uicas.it +39.0776.299.3478 Corso di Costruzioi i Zoa Sismica Lezioe 2 Sistema a u grado di

Dettagli

PROPRIETA DELLE FUNZIONI ARMONICHE

PROPRIETA DELLE FUNZIONI ARMONICHE CAPITOLO PROPRIETA DELLE FUNZIONI ARMONICHE - Defiizioi ed esempi Le fuzioi armoiche vegoo defiite ello spazio euclideo; i questa tesi sarà cosiderato u umero itero positivo maggiore di metre Ω sarà u

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Università del Salento

Università del Salento Uiversità del Saleto FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea i Fisica I N T R O D U Z I O N E A L L A F I S I C A M O D E R N A R O S A R I O A N T O N I O L E O Ao Accademico

Dettagli

Comportamento dei gas da un punto di vista macroscopico

Comportamento dei gas da un punto di vista macroscopico GAS Può essere compresso facilmete Esercita ua pressioe sul recipiete No ha forma propria è volume proprio Occupa tutto il volume dispoibile Due gas diffodoo facilmete uo ell altro Tutti i gas hao basse

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

PROBLEMI DINAMICI. 6.1 Equazioni di equilibrio dinamico. L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è:

PROBLEMI DINAMICI. 6.1 Equazioni di equilibrio dinamico. L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è: Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo 6. Equazioi di equilibrio diamico L'equazioe di equilibrio diamico di u corpo discretizzato i elemeti fiiti è: 6.)... M C K F dove:

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

A8 - Campi vettoriali conservativi e solenoidali

A8 - Campi vettoriali conservativi e solenoidali A8 - Campi vettoriali coservativi e soleoidali A8.1 Campi coservativi e campi irrotazioali Sia V(x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω.

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

FONDAMENTI DI MECCANICA DELLE VIBRAZIONI

FONDAMENTI DI MECCANICA DELLE VIBRAZIONI Uiversità degli Studi di Bologa II Facoltà di Igegeria sede di Forlì Corso di Laurea i Igegeria Meccaica DINAMICA DELLE MACCHINE E DEI SISTEMI MECCANICI FONDAMENTI DI MECCANICA DELLE VIBRAZIONI prof. Alessadro

Dettagli

Inflessione nelle travi

Inflessione nelle travi Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Il corso è indirizzato a studenti che affrontano per la prima volta dinamiche non lineari e caos

Il corso è indirizzato a studenti che affrontano per la prima volta dinamiche non lineari e caos Itroduzioe Il corso è idirizzato a studeti che affrotao per la prima volta diamiche o lieari e caos Mira a far familiarizzare gli studeti co la feomeologia e lo studio quatitativo, della diamica dei sistemi

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Università del Salento

Università del Salento Uiversità del Saleto FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea i Fisica I N T R O D U Z I O N E A L L A F I S I C A M O D E R N A R O S A R I O A N T O N I O L E O Ao Accademico

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

SOLLECITAZIONI SEMPLICI

SOLLECITAZIONI SEMPLICI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

10 - Carichi sui tre livelli associati all azione sismica

10 - Carichi sui tre livelli associati all azione sismica Dott. Ig Paolo Serafii Cilc per tutti gli apputi (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mail per suggerimeti 0 - Carichi sui tre livelli associati all azioe sismica Il calcolo

Dettagli

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai

Dettagli

Elettrotecnica II. 1 Materiale didattico

Elettrotecnica II. 1 Materiale didattico Politecico di Torio Elettrotecica Materiale didattico Trasformatore Si cosideri il seguete circuito magetico: Sia S la sezioe del materiale ferromagetico. Si facciao le segueti ipotesi: ) asseza di flussi

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici per il corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì SOLLECITZIOI COPOSTE GGIORETO 8/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì FLESSIOE DEVIT Si ha flessioe deviata

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Significato fisico di derivate e integrali per la formulazione delle leggi termodinamiche

Significato fisico di derivate e integrali per la formulazione delle leggi termodinamiche Corso di Laurea i Biologia Molecolare Elisabetta Collii, Ottobre 215 Sigificato fisico di derivate e itegrali per la formulazioe delle leggi termodiamiche Nel corso dei primi giori di lezioe di Chimica

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Comportamento dei gas da un punto di vista macroscopico

Comportamento dei gas da un punto di vista macroscopico GAS uò essere compresso facilmete Esercita ua pressioe sul recipiete No ha forma propria è volume proprio Occupa tutto il volume dispoibile Due gas diffodoo facilmete uo ell altro Tutti i gas hao basse

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente:

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente: l sistema MOFE l MOFE è u FE che utilizza come caale la regioe di iversioe che si crea i ua struttura MO opportuamete polarizzata. l cotatto di gate del trasistor coicide co il Metallo della struttura

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli