PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013"

Transcript

1 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva. Dopo aver calcolato h, si determii la distribuzioe di X =, e si cofroti (se possibile) il valor medio di X co quello di Y. Y Esercizio poga Sia (X ) ua successioe I.I.D. di variabili aleatorie di tipo B(, 3 ), e si 4 X = X i, per =,,... Dopo aver calcolato valor medio e variaza di X, si trovi, i base a oti teoremi, il limite (quasi certo, i probabilita o i distribuzioe) della successioe i= Y = (4X 3), e successivamete quello della successioe Z = Y. Esercizio 3 Sia X ua variabile aleatoria la cui fuzioe di desita e k θx, x >, f(x; θ) =, altrove, dove θ > e il parametro icogito. Si chiede di (a) calcolare k ed E(X) i fuzioe di θ; (b) forire uo stimatore di θ co il metodo della massima verosimigliaza, sulla base di u campioe casuale X,..., X. Soluzioi compito 6//3 Esercizio Ovviamete, la fuzioe f Y e ua desita se ha itegrale. Essedo x e 3/x dx = 3 e 3/x,

2 si ha x e 3/x dx = 3 ( e 3 ). Pertato e h = 3e3 e 3. La variabile Y comuque o e i L, i quato la fuzioe x x e 3/x e maggiorate di x x e 3, la quale chiaramete o e itegrabile i s.g. Per quato riguarda la X, tale variabile chiaramete assume valori compresi fra e. Se duque x [, ] si ha F X (x) = P ([X x]) = P ([Y x ]) = x h t e 3/t dt = h 3 ( e 3x ), dove h e la costate trovata prima. Se e deduce subito che X ha la seguete desita : f X (x) = 3e3 e 3 e 3x, co x [, ], e ulla altrove. Facilmete poi si trova E(X) = e3 e 3 3xe 3x dx = e3 e 3 {[ xe 3x ] + = e3 e 3 { e 3 3 ( e 3 )} = 3 e 3.8. e 3x dx} = Esercizio Evidetemete, si ha E(X ) = E(X ) = 3 per ogi. I base alle Legge 4 Forte dei Gradi Numeri, si puo allora affermare che X coverge quasi certamete e i L a 3 4, e quidi Y = 4X 3 coverge a allo stesso modo. V (X ) = 3, avremo ache V (X 6 ) = 3. Pertato, per ogi si ha 6 Essedo poi X = 4 X = Y 3. E chiaro allora che Y = 3X, e quidi, i base al teorema del Limite Cetrale, si ottiee che Y coverge i Distribuzioe alla legge N(, 3). Esercizio 3 Per trovare k, basta calcolare l itegrale θx dx = θ θ l, e quidi k = θ θ l. Per determiare E(X), si calcola il seguete itegrale: E(X) = kx θx dx = + θ l.

3 Sulla base di u campioe aleatorio (x,..., x ), la fuzioe di verosimigliaza ha la seguete forma: L(x, x,..., x ; θ) = k θs, ove S = i= x i, purche tutti i valori x,..., x siao maggiori di. Passiamo a logaritmo aturale, e poiamo F (x,..., x ; θ) = l L(x, x,..., x ; θ): abbiamo F (x,..., x ; θ) = l k θs l Massimizzare L equivale a massimizzare F, e cio equivale a massimizzare la fuzioe G(x,..., x ; θ) = θs l + (l θ + θ l ), i quato G e F differiscoo per ua costate. Essedo G (θ) = S l + θ + l, si ottiee facilmete il puto critico θ =, ove x (x ) l = S, e tale puto critico e esattamete la stima di massima verosimigliaza. Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria X abbia desita f, e che E(X) =, V (X) =. Si poga ora g(x) = f(x + 3), per ogi x IR. Dopo aver dimostrato che g e ua desita, si trovio valor medio e variaza di ua qualsiasi variabile aleatoria Y che abbia g come desita, e si trovi la desita della stadardizzata di Y. Esercizio Sia Z ua variabile aleatoria discreta, co distribuzioe NB(, p), < p <. Per ogi umero reale s, si poga poi G(s) = + = s P ([X = ]). Dopo aver determiato i valori di s per cui la serie data coverge, si calcoli l espressioe di G(s), e si cofroti G () co E(Z). Esercizio 3 Da u idagie codotta su = 6 studeti diplomati co maturita scietifica, risulta che 6 studeti hao coseguito la laurea trieale i Igegeria ei 5 ai successivi. a) Costruire u itervallo di cofideza al 99% per la proporzioe p degli studeti che hao coseguito la laurea. 3

4 b) Quale dev essere il valore miimo di affiché, co gli stessi dati, l itervallo di cofideza abbia meta ampiezza? (Detta Φ la fuzioe di ripartizioe della distribuzioe ormale N(, ), utilizzare la seguete tabella: Φ(.6).94 Φ(.645).95 Φ(.8).96 Φ(.96).975 Φ(.33).99 Φ(.58).995) Soluzioi compito 6//3 Esercizio Si puo facilmete osservare che la variabile aleatoria Y = X 3 ha proprio la desita g. Si trova duque facilmete E(Y ) = E(X) 3 = 3, e V (Y ) = V (X) =. Ioltre, la stadardizzata di Y e Y + 3, cioé X, e quidi la desita di Y é f. Esercizio Dalla legge della distribuzioe biomiale egativa, si vede subito che ove q = p. G(s) = + = ps(qs) = ps + m= (qs) m Poiche la serie i questioe e di tipo geometrico, essa coverge sez altro se s <, e i tal caso si ha G(s) = ps q poi G (s) = Esercizio 3. Ua semplice derivazioe forisce qs p ( qs) e G () = p : si coclude quidi che E(X) = G (). Detta X la variabile aleatoria dei laureati tra gli itervistati, X segue ua distribuzioe biomiale co probabilita di successo p. Sfruttado l approssimazioe ˆp( ˆp) ormale, gli estremi dell itervallo di cofideza cercato soo ˆp ± z a, dove ˆp =., = 6 e, dalla tabella, z a.58. Pertato l itervallo di cofideza e [ ] , [.684,.36]. 6 6 L ampiezza dipede da i ragioe quadratica iversa: per dimezzare tale ampiezza bastera moltiplicare per 4: duque, occorre u campioe di almeo 4 persoe, co la stessa media di laureati. Prova scritta del 3//3 4

5 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e x f Y (x) =, x >, x, co h opportua costate positiva. Dopo aver calcolato h, si determii la distribuzioe di X =, e si cofroti (se possibile) il valor medio di X co quello di Y. Y Esercizio Sia (X ) ua successioe I.I.D. di variabili aleatorie discrete del tipo di Poisso, P (λ), e si poga S = X i, i= T = S λ, per =,,... Dopo aver calcolato valor medio e variaza di S e di T, si dimostri che la differeza é idipedete da e da m. Esercizio 3 E(T m T ) E((T T m ) ) Siao X,..., X variabili aleatorie I.I.D., co distribuzioe di Beroulli, B(, p). Adoperado l approssimazioe gaussiaa, quato dev essere grade perché sia miore di la probabilita che risulti X p( p) p >? (Detta Φ la fuzioe di ripartizioe della distribuzioe ormale N(, ), utilizzare la seguete tabella: Φ(.6).94 Φ(.645).95 Φ(.8).96 Φ(.96).975 Φ(.33).99 Φ(.58).995) Esercizio Soluzioi compito 3//3 Per trovare la costate h, bisoga calcolare l itegrale x e x dx : mediate la sostituzioe t = x, e quidi dx = t dt, si puo scrivere x e x dx = t e t / t dt = 5 e t dt = e t dt = π

6 com é be oto dalla distribuzioe N(, ). Duque, la costate h é π. Ora, per trovare la distribuzioe di Y =, calcoliamo la sua fuzioe di ripartizioe: per X y > avremo F Y (y) = P ([ X y]) = P ([X > y ]) = Applicado di uovo la sostituzioe t =, l itegrale diviee x F Y (y) = y Derivado, si perviee ifie alla desita di Y : y π e t / dt. f Y (y) = π e y, π x e x dx. ovviamete solo per y >, metre f Y (y) = se y. La distribuzioe di Y é quella che spesso viee deomiata ormale ripiegata. Per calcolare E(Y ), basta svolgere il seguete itegrale (praticamete immediato): ye y dy =, π π essedo y la derivata dell espoete y. Quato al valor medio di X, é facile cotrollare che la fuzioe x hx e x o é itegrabile i [, + [, i quato preseta i + u ifiitesimo di ordie. Esercizio Com é be oto, abbiamo E(X ) = V (X ) = λ per ogi, e quidi E(S ) = V (S ) = λ (per l idipedeza delle X la variaza della somma coicide co la somma delle variaze), e coseguetemete E(T ) =, ogi. V (T ) = V (S ) = λ per Si deduce subito che E(T ) = V (T ) + E (T ) = λ per ogi, e quidi E(T T m) = ( m)λ. valutiamo ora E((T T m ) ), poedo > m e m = h. Allora possiamo scrivere T T m = h i=m+ (X i λ). Poiché le v.a. X i λ soo a media ulla e idipedeti, il valor medio del loro quadrato coicide co la loro variaza, che é λ. Ache la loro somma ha media ulla, e quidi il mometo secodo di T +h T coicide co la sua variaza, che a sua volta é la somma delle variaze delle X i, per i =...h. I defiitiva, E[(T T m ) ] = V (T T m ) = hλ = ( m)λ. Allora chiaramete la differeza E(T m T ) E((T T m ) ) é ulla, e quidi idipedete da e m. 6

7 Esercizio 3 Essedo E(X ) = p, e V (X ) = p( p), troviamo p( p) X p = X e quidi la codizioe X p > p( p) equivale a richiedere che ossia p( p) X p( p) > X >. Adoperado l approssimazioe ormale per X, la probabilita richiesta é di circa se si ha =.58, ossia se é il primo itero maggiore di (5.8), cioé =

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Convergenza di variabili aleatorie

Convergenza di variabili aleatorie Covergeza di variabili aleatorie 1 Covergeza quasi certa Ua successioe (X ) 1 di v.a. coverge quasi certamete alla v.a. X se: X X (P-q.c.), cioè P(X X) = 1, ove {X X} = {ω : X (ω) X(ω)} è l issieme di

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

****** FUNZIONI MISURABILI E INTEGRAZIONE ******

****** FUNZIONI MISURABILI E INTEGRAZIONE ****** ****** FUNZIONI MISURABILI E INTEGRAZIONE ****** 1 2 1. Fuzioi misurabili. I questo umero estediamo la ozioe di misurabilità alle fuzioi. Defiizioe 1. Siao u isieme o vuoto, Y uo spazio topologico e µ

Dettagli

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL.

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL. versioe 28-05-2004 0 Variabili aleatorie i casi più geerali: idipedeza, LGN e TCL.. Variabili aleatorie idipedeti Molte delle defiizioi e delle proprietà delle variabili aleatorie i spazi fiiti valgoo

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

versione

versione versioe 3-06-2004 37 La seguete Lezioe 4 riguarda pricipalmete la legge dei gradi umeri ed il teorema cetrale del limite. Iclude ache la geeralizzazioe del cocetto di idipedeza completa per successioi

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

Analisi Funzionale 1 - a.a. 2012/2013

Analisi Funzionale 1 - a.a. 2012/2013 Secodo appello Esercizio Sia H spazio di Hilbert reale separabile. Aalisi Fuzioale - a.a. 202/203. Si euci il teorema di caratterizzazioe di ua base hilbertiaa per H. 2. Si provi che H ha ua base hilbertiaa

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 4 Teoremi limite classici I Teoremi limite classici, la Legge dei Gradi Numeri e il Teorema Limite Cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 5 Teoremi limite classici I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Dinamica del pacchetto d onda Gaussiano

Dinamica del pacchetto d onda Gaussiano Diamica del pacchetto d oda Gaussiao Suppoiamo di avere u sistema descritto da ua fuzioe d oda ormalizzata x ψ ψx π x e x x per cui si trova che la desità di probabilità di trovare la particella i x è

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

1 Variabili Continue come limiti di variabili discrete

1 Variabili Continue come limiti di variabili discrete 8-maggio Variabili Cotiue come limiti di variabili discrete Suppoiamo che sia u umero itero grade, e di avere ua variabile aleatoria U uiforme sull isieme {x ( i = i, i =,,..., }, ossia P (U = i =, i {,,...,

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli

Riassunto delle Esercitazioni di Analisi Matematica II

Riassunto delle Esercitazioni di Analisi Matematica II Riassuto delle Esercitazioi di Aalisi Matematica II C.d.L. i Matematica e Matematica per le Applicazioi - A. A. 2006-2007 Prof. Kevi R. Paye e Dott. Libor Vesely 1 Serie Numeriche - Mer. 28 marzo - due

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Per approssimare la funzione, occorre determinare la derivata prima e seconda:

Per approssimare la funzione, occorre determinare la derivata prima e seconda: Esercizi sul Poliomio di Taylor Approssimare lafuzioe f() = l(+si) coilpoliomio di Taylor di ordie = e puto iiziale 0 = 0. Soluzioe Per approssimare la fuzioe, occorre determiare la derivata prima e secoda:

Dettagli

Successioni di variabili aleatorie

Successioni di variabili aleatorie 0 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria.

Dettagli

Funzioni di distribuzione e test statistici

Funzioni di distribuzione e test statistici Capitolo 3 Fuzioi di distribuzioe e test statistici Presetiamo i questo capitolo i cocetti e gli strumeti del Calcolo delle Probabilità e della Statistica idispesabili per la costruzioe e l uso di modelli

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli