Le funzioni trigonometriche e l esponenziale complesso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le funzioni trigonometriche e l esponenziale complesso"

Transcript

1 Le funzioni trigonometriche e l esponenziale complesso 1

2 r1 Sia xoy un sistema di riferimento cartesiano ortonormale Una circonferenza che: 1. ha centro l origine O degli assi y. ha raggio r1 O x E una circonferenza GONIOMETRICA E una circonferenza GONIOMETRICA

3 r1 In generale un punto P è individuato dalle proprie coordinate cartesiane (x 1,y 1 ) y y 1 P(x 1,y 1 ) O x 1, x Come è possibile sfruttare la la proprietàdi di appartenere ad ad una circonferenza GONIOMETRICA? 3

4 P è univocamente determinato dall angolo α descritto dal raggio r. y y 1 P(x 1,y 1 ) O r1 α x 1, x Come definire le le coordinate cartesiane di di P (x 1,y,y 1 ) in in funzione dell angolo α?

5 Poniamo per definizione: Ascissa del punto P x 1 cos(α) y y 1 Ordinata del punto P y 1 sen(α) P(cos(α), sen(α) ) O r1 α x 1, x Noto αsi possono calcolarele le coordinate di di P e viceversa!! 5

6 Esempio: α0 απ/ απ α3π/ cos(0)1 cos(π/)0 cos(π)-1 cos(3π/)0 sen(0)0 sen(π/)1 sen(π)0 sen(3π/)-1 y P(0,1) P(-1,0) O P(1,0) x P(0,-1) 6

7 Le funzioni : cos(α) sen(α) sono assumono valori in [-1,1] -1 cos(α) 1-1 sen(α) 1 (-1,0) sono periodiche di periodo π ovvero: O (0,1) (0,-1) (1,0) cos(α +kπ) cos(α) sen (α +kπ) sen(α) Es. Partendo da α si effettua un giro α+π si ritrova il punto P O α P 7

8 inoltre sfruttando le simmetrie del cerchio: x 1 -x cos(α)-cos(π-α) y 1 y sen(α)sen(π-α) x 1 x cos(α)cos(-α) y 1 -y sen(α)-sen(-α) x 1 -x 3 cos(α)-cos(π+α) y 1 -y 3 sen(α)-sen(π+α) P (x,y 3 ) α+π π-α O y r1 α -α P 1 (x 1,y 1 ) x P 3 (x 3,y 3 ) P (x,y ) Proprietà degli archi associati 8

9 I numeri complessi e l esponenziale complesso 9

10 Esempio 1 Risolviamo l equazione x -1 la soluzione non esiste nell insieme dei Numeri Reali R ma posto i 1 la soluzione e data da: ± i i viene detta unità immaginaria i è un numero complesso 10

11 L unità immaginaria i gode delle proprietà i 1 i 1 i 3 i i i i i 3 i 1 i 5 i i i... Le potenze dell unità immaginaria sono cicliche (hanno periodo ) 11

12 Esempio Risolviamo l equazione x - la soluzione è ± i i è un numero complesso (immaginario puro) In generale un numero complesso e del tipo zx+iy con x,y numeri reali Esempi z-3i z1+7i z6+9i 1

13 L insieme: { z x iy : x, y reali } C : + si chiama insieme dei numeri complessi. Assegnato un numero complesso zx+iy Re(z)x si chiama parte reale Im(z)y si chiama parte immaginaria Esempio z 3 +i5 Re(z)3 è la parte reale Im(z)i5 è la parte immaginaria 13

14 Come si sommano (o sottraggono) due numeri complessi? 1

15 Esempio z 1 3 +i5 z i quanto vale zz 1 +z? z(3 +i5)+( i)(3+)+i(5-) 7+3i Si sommano separatamente le parti reali e quelle immaginarie In generale z 1 a +ib z c +id zz 1 + z (a+c)+i(d+b) zz 1 + z (a+c)+i(d+b) 15

16 Come si moltiplicano due numeri complessi? 16

17 Esempio z 1 3 +i5 z i quanto vale zz 11 z? z(3 +i5)( i)1-i6+i0-i i(-6+0)+10+i1 Si moltiplicano algebricamente i numeri complessi e si sfruttano le proprietà dell unità immaginaria In generale zz 1 z z 1 a +ib (a+ib)(c+id)ac+ibc+iad+i bd. z c +id zz 1 z (ac-bd)+i(ad+bc) zz 1 z (ac-bd)+i(ad+bc) 17

18 Quanto costa computazionalmente effettuare una somma o una moltiplicazione complessa? 18

19 1 somma complessa zz 1 + z (a+c)+i(d+b) zz 1 + z (a+c)+i(d+b) richiede op. fl.p. (ovvero due somme f.p.) 1 moltiplicazione complessa zz 1 z (ac-bd)+i(ad+bc) zz 1 z (ac-bd)+i(ad+bc) richiede 6 op. fl.p. (ovvero prodotti f.p.. somme) Le operazioni complesse hanno un costo maggiore rispetto a quelle reali!! 19

20 Come è possibile rappresentare graficamente i numeri complessi? 0

21 Consideriamo un piano cartesiano del tipo iyim(z) iy 1 i z+i zx 1 +iy 1 w O x 1, Re(z)x Esempio z+i E possibile rappresentare un numero complesso su un piano w detto piano complesso sull asse x ci sono tutti i numeri reali sull asse iy gli immaginari puri 1

22 Esempio Consideriamo il numero immaginario puro ziπ quanto vale l esponenziale e iπ? Sfruttando l identità di Eulero Si ottiene e iy cos(y) + isen(y) π e i cos( π) + isen( π) 1

23 e iy cos(y) + isen(y) Nell esponenziale complessodi un immaginario puro intervengono le le funzioni trigonometriche e e possibile rappresentarlo opportunamente nel piano complesso w? 3

24 Utilizzando la circonferenza goniometrica π e i cos( π) iy + isen( π) 1 P(cos(s), sen(s)) P(cos(π), sen(π))(-1,0) O r1 x In generale e is cos(s) + isen(s) L esponenziale complesso e is is rappresenta il il punto della circonferenza goniometrica sul piano complesso individuato dall angolo s

25 r1 e is cos(s) + isen(s) iy P(cos(s), sen(s)) O x Esiste uno stretto legame tra l esponenziale complesso di di un un immaginario puro e le le funzioni trigonometriche sin(α), cos(α) 5

26 Esempio Consideriamo il numero complesso z 1 e iπ/ z π cos( ) π + isen( ) iy i / 1 e π + i, P( ) Calcoliamo z 1 9 O x z 9 1 (e iπ/ ) 9 e 9π 9π cos( ) + isen( ) π π cos( π + ) + isen( π + ) + i z iπ9/ Per le proprietà di periodicità delle funzione trigonometriche!! Per le proprietà di periodicità delle funzione trigonometriche!! 6 1

27 Esempio Consideriamo i numeri complesso z 1 e iπ/ z e i5π/ z z π π cos( ) + isen( ) 5π 5π cos( ) + isen( ) i / 1 e π + i i5π / e cos( π + + isen( π + i iy π ), P 1 ( ) π ), P ( ) O x z 1 - z z 1 - z Per le proprietà degli archi associati delle funzione trigonometriche!! Per le proprietà degli archi associati delle funzione trigonometriche!! 7

28 Esempio Consideriamo il numero complesso z 1 e iπ/ z π cos( ) π + isen( ) + iy i / 1 e π i, P( ) Calcoliamo z 1 O x z 8 1 (e iπ/ ) 8 e iπ8/ 8π cos( ) 8π + isen( ) cos( π) + isen( π) 1 z 1 si dice radice ottava dell unità!! z 1 si dice radice ottava dell unità!! 8

29 DEFINIZIONE z e i s è una radice N-ma dell unità def z N 1 9

30 Esempio Consideriamo l esponenziale complesso w N e π π cos( ) + isen( ) N N iπ /n w N e -iπ/n iy O x Cosa rappresentano le potenze di questi numeri sulla circonferenza goniometrica? 30

31 Esempio: N w e -i π/ s0 s1 s 0 -i π/ 0 π π w e cos( 0) isen( 0) 1 -i π/ 1 π π w e cos( 1) isen( 1) 1 -i π/ π π w e cos( ) isen( ) 1 1 w w 0 w w s N (s 0,,N 1) sono le radici primitive dell unità 31 twiddle factor

32 Esempio: N w e -i π/ s0 s1 0 -i π/ 0 π π w e cos( 0) isen( 0) 1 1 -i π/ 1 π π w e cos( 1) isen( 1) i -i π/ π π s w e cos( ) isen( ) 1 s3 3 -i π/ 3 π π w e cos( 3) isen( 3) i i w 3 w -1 1 w 0 -i w 1 3

33 Esempio: N w e -i π/ s s6 -i π/ π π w e cos( ) isen( ) w 6 e -i π/ 6 cos( π 6) isen( π 6) 1 1 cos(3 π ) isen(3 π ) cos( π + π ) isen ( π + π ) s9 w 9 e -i π/ 9 cos( π 9) isen( π 9) i cos( 9 π ) isen( 9 π ) cos( π + π ) isen ( π + π ) w w -i w 9 33

34 Definizione Assegnati N numeri complessi posto w N e-i π /N il vettore f 0, f 1,., f N-1 cos (π /N ) - i sin (π /N) F (F 0,F 1,F N -1 ) con N 1 jk Fk fj w N k j 0 0,...N - 1 èdetto Trasformata Discreta di Fourier (DFT) del vettore f (f 0, f 1, f N-1 ) 3

35 FINE LEZIONE!! 35

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI INTRODUZIONE Problema: Esiste la radice quadrata di un numero reale x negativo? ( 4) =? Nell insieme dei numeri reali R il problema non

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI I Numeri Complessi L'esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali IR non sempre sono possibili. x 2 + 1 = 0? log (-10)? log -2 3? (-1) ½? Allo scopo

Dettagli

Note sui numeri complessi

Note sui numeri complessi Note sui numeri complessi Andrea Damiani 2 marzo 2015 Numero complesso Definiamo, senza ulteriori considerazioni, unità immaginaria la quantità i = 1 Definiamo poi il numero immaginario z = a + i b in

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 L insieme dei numeri complessi è indicato con. a è detta parte reale del numero complesso b è

Dettagli

NUMERI COMPLESSI. Rappresentazione cartesiana dei numeri complessi

NUMERI COMPLESSI. Rappresentazione cartesiana dei numeri complessi NUMERI COMPLESSI Come sappiamo, non esistono nel campo dei numeri reali le radici di indice pari dei numeri negativi. Ammettiamo pertanto l esistenza della radice quadrata del numero 1. Questo nuovo ente

Dettagli

Numeri complessi. Esercizi.

Numeri complessi. Esercizi. Numeri complessi. Esercizi. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Marzo 014. Indice 1 Numeri complessi 1.1 Test di autovalutazione............................... 1. Test di

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

Insiemi numerici: i numeri complessi

Insiemi numerici: i numeri complessi Insiemi numerici: i numeri complessi Riccarda Rossi Università di Brescia Analisi I Introduzione Storicamente: I si è passati da N a Z perché la sottrazione di due numeri naturali non è operazione interna

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Ottobre 2012 Esercizi

Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Ottobre 2012 Esercizi Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria (Docente: Federico Lastaria) Ottobre 0 Esercizi Indice Esercizi e complementi. Numeri complessi...................................

Dettagli

29. Numeri complessi

29. Numeri complessi ANALISI Argomenti della Lezione 9. Numeri complessi 11 gennaio 01 9.1. L insieme C. L insieme C dei numeri complessi é l insieme delle coppie ordinate di numeri reali C = R R La tradizione vuole che la

Dettagli

Definizione 1 L insieme C dei numeri complessi è costituito dalle coppie (u,v) di numeri reali con le operazioni di somma e prodotto definite da:

Definizione 1 L insieme C dei numeri complessi è costituito dalle coppie (u,v) di numeri reali con le operazioni di somma e prodotto definite da: 1 Numeri complessi L equazione x 2 + 1 = 0 (1) non ha soluzioni tra i numeri reali, ma ammettiamo che essa abbia una soluzione i in un qualche insieme di numeri C. Se in C valgono le usuali proprietà del

Dettagli

Numeri complessi. Esercizi

Numeri complessi. Esercizi Numeri complessi. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Indice Esercizi isposte e suggerimenti. 7 Esercizi Esercizio.. Scrivere in forma algebrica (x + iy) i seguenti numeri complessi:

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Complementi 1: numeri complessi I numeri complessi La definizione dei numeri complessi nasce dalla esigenza di trovare una soluzione alla equazione: x 1 che non

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia:

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia: I NUMERI COMPLESSI Perché i numeri complessi? Perché i numeri complessi? Risolviamo l equaione di Risolviamo l equaione di grado:. grado:. 0 3 + x x? 8 1 4 ± ± x? x unità immaginaria, rappresentata dal

Dettagli

2 + 4i 3. = i. = 1 z 2 1 i (iii) Rez + Imz = 2. = i z = i.

2 + 4i 3. = i. = 1 z 2 1 i (iii) Rez + Imz = 2. = i z = i. Esercizio 1 Esprimete in forma algebrica i seguenti numeri complessi : (i) (5 i)( i) (ii) + i (iii) i (iv) 1 + i i. (i) (5 i)( i) = (15 ) + i( 5 6) = 1 11i; (ii) + i = = + i; (iii) i = i + i + i = 6 +

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15.

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15. Esercizi proposti di goniometria 1. Un settore circolare, in un cerchio di raggio 14 cm, ha area uguale a 42π cm 2. Determina la misura in gradi, primi e secondi dell angolo al centro corrispondente. 2.

Dettagli

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI ISTITUZIONI DI MATEMATICA I (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI I numeri complessi Anche se il campo reale è sufficientemente ricco per la maggior parte delle applicazioni, tuttavia le equazioni

Dettagli

I NUMERI COMPLESSI Nell insieme dei numeri reali R non è possibile risolvere l'equazione di secondo grado

I NUMERI COMPLESSI Nell insieme dei numeri reali R non è possibile risolvere l'equazione di secondo grado COME NASCONO I NUMERI COMPLESSI Lo spunto per la nascita dei numeri complessi derivò dal tentativo di soluzione di un problema chiaramente impossibile. Dividere 10 in due parti il cui prodotto dia 40.

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Esercizi proposti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 7 3 7i,

Esercizi proposti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 7 3 7i, Numeri complessi Esercizi proposti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 7 3 7i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero complesso

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

HP VP. (rispettivamente seno, coseno e tangente di β)

HP VP. (rispettivamente seno, coseno e tangente di β) Trigonometria Prerequisiti: Nozione di angolo e di arco. Obiettivi convertire le misure degli angoli dai gradi ai radianti e viceversa; sapere le relazioni fra gli elementi (lati, angoli) di un triangolo;

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0)

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0) Numeri Complessi I numeri complessi sono un'estensione dei numeri reali, vengono introdotti anchè tutte le equazioni algebriche ammettano soluzioni. Dato l'insieme R = R R = { (a, b) R R } deniamo per

Dettagli

I Numeri complessi - Motivazioni

I Numeri complessi - Motivazioni I Numeri complessi - Motivazioni In Telecomunicazioni Elettronica Informatica Teoria dei segnali... si studiano i segnali, cioè delle grandezze fisiche dipendenti dal tempo, matematicamente esprimibili

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

Politecnico di Torino. Seminari MAT+ Numeri complessi: trigonometria con e senza la H

Politecnico di Torino. Seminari MAT+ Numeri complessi: trigonometria con e senza la H Politecnico di Torino Corso di Laurea in Matematica per le Scienze dell Ingegneria Dipartimento di Matematica Seminari MAT+ Mercoledì 9 marzo 008 Numeri complessi: trigonometria con e senza la H Marco

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi Esercitazione sui numeri complessi Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno Ottobre 0. Come tali sono ben lungi dall essere esenti da errori, invito quindi chi ne

Dettagli

( 1 ) AB:A B =BC:B C =CA:C A

( 1 ) AB:A B =BC:B C =CA:C A Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati

Dettagli

Capitolo 3. Le funzioni elementari

Capitolo 3. Le funzioni elementari Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio

Dettagli

MATEMATICA. Definizioni:

MATEMATICA. Definizioni: Definizioni: Funzione: dati due insiemi A e B, dove A è l insieme di partenze e B quello di arrivo, una funzione tra di essi è una relazione che ad ogni elemento dell insieme A associa uno e un solo elemento

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Funzioni Reali di Variabile Reale

Funzioni Reali di Variabile Reale Funzioni Reali di Variabile Reale Lezione 2 Prof. Rocco Romano 1 1 Dipartimento di Farmacia Università degli Studi di Salerno Corso di Matematica, 2017/2018 Prof. Rocco Romano (Università Studi Salerno)

Dettagli

Soluzioni del tutorato di AC310

Soluzioni del tutorato di AC310 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Soluzioni del tutorato di AC310 A.A. 01-013 - Docente: Prof. Pierpaolo Esposito Tutori: Dario Giannini e Giulia Salustri Tutorato 1 9 Ottobre

Dettagli

LE RADICI N-ESIME DELL UNITÀ SEMINARIO PER LA VK DEL LICEO CLASSICO ALEXIS CARREL DI MILANO

LE RADICI N-ESIME DELL UNITÀ SEMINARIO PER LA VK DEL LICEO CLASSICO ALEXIS CARREL DI MILANO LE RADICI N-ESIME DELL UNITÀ SEMINARIO PER LA VK DEL LICEO CLASSICO ALEXIS CARREL DI MILANO 1 I PROBLEMI, IL PROBLEMA Problema n 1 Nel passaggio da R + a R i radicali sono cambiati: da aritmetici sono

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - 6 settembre 06

Dettagli

Esercizi di Matematica A.A. 2017/2018

Esercizi di Matematica A.A. 2017/2018 C.d.L. in Produzioni Animali - Scuola di Agraria e Medicina Veterinaria - Università di Bologna Cod. corso 65965 Esercizi di Matematica A.A. 2017/2018 Insiemistica Dati: A = {1, 2,, 4, 5} B = {1, 5, 7,

Dettagli

CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA

CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA (per classi elettrotecnica e automazione) Autore Nunzio Siciliano rev. Nov.2014 Quest'opera è distribuita con Licenza Creative Commons

Dettagli

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi:

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi: Esercizi sui numeri complessi Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1 Esercitazione 1. Trovare parte reale e immaginaria dei numeri complessi: 3 + i 5 4i e Soluzione: 3 + i

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

LE FUNZIONI SENO, COSENO E TANGENTE

LE FUNZIONI SENO, COSENO E TANGENTE LE FUNZIONI SENO, COSENO E TANGENTE 1. LE FUNZIONI LE FUNZIONI SENO, E COSENO COSENO E TANGENTE 2 /15 DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato, e sia B

Dettagli

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo Quinto modulo: Funzioni Obiettivi. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo. saper operare con le funzioni esponenziale e logaritmo per risolvere

Dettagli

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A. 205-206 March 4, 206 In questa parte vengono brevemente presentati alcuni richiami a) sui numeri complessi b) sulle funzioni complesse e

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

Appunti di Algebra Lineare - 1

Appunti di Algebra Lineare - 1 Appunti di Algebra Lineare - 1 Mongodi Samuele - s.mongodi@sns.it 10/11/2009 Le note che seguono non vogliono, né possono, essere il sostituto delle lezioni frontali di teoria e di esercitazione; anzi,

Dettagli

Appunti di Analisi Matematica 3

Appunti di Analisi Matematica 3 1 Appunti di Analisi Matematica 3 Capitolo 1: funzioni in campo complesso ( 1 52) Capitolo 2: trasformazioni conformi (53 63) Capitolo 3: integrazione in campo complesso (64 116) Capitolo 4: modelli matematici

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007 Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse 1 ottobre 007 Misura degli angoli Un angolo può essere misurato: mediante il confronto rispetto ad un angolo unitario (misura

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Argomento2 Iparte Funzioni elementari e disequazioni

Argomento2 Iparte Funzioni elementari e disequazioni Argomento Iparte Funzioni elementari e disequazioni In questa lezione richiameremo alcune fra le più comuni funzioni di variabile reale, mettendone in evidenza le principali proprietà. Esamineremo in particolare

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x. QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

TRIGONOMETRIA. Ripasso veloce

TRIGONOMETRIA. Ripasso veloce TRIGONOMETRIA Ripasso veloce Definizioni principali Sia u un segmento con un estremo nell origine e l altro sulla circonferenza di centro l origine e raggio (circonferenza goniometrica) che formi un angolo

Dettagli

Lezione 7 Rifrazione ROMA

Lezione 7 Rifrazione ROMA Lezione 7 Rifrazione 1/12 Riflessione e rifrazione della luce su una superficie di separazione tra due mezzi Legge di Snell 1) Raggio incidente, riflesso e la normale N alla superficie che separa i due

Dettagli

~ E 2 (R) si determini l equazione cartesiana del

~ E 2 (R) si determini l equazione cartesiana del In Esercizio 1 ~ E (R) si determini l equazione cartesiana del luogo dei punti equidistanti dal punto F=(1,) e dalla retta y=x. a) Si classifichi la conica così ottenuta; b) Si determini l asse e il vertice;

Dettagli

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Modulo 1 RACCORDO CON IL BIENNIO EQUAZIONI (SISTEMI)

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 7 Capitolo

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angolo è una porzione di piano racchiusa

Dettagli

ESERCITAZIONE 4: I NUMERI COMPLESSI

ESERCITAZIONE 4: I NUMERI COMPLESSI ESERCITAZIONE 4: I NUMERI COMPLESSI Tiziana Raparelli 19/0/008 1 DEFINIZIONI E PROPRIETÀ Vogliamo risolvere l equazione x + 1 = 0, estendiamo dunque l insieme dei numeri reali, introducendo l unità immaginaria

Dettagli

ITI M.FARADAY Programmazione Modulare a.s Matematica

ITI M.FARADAY Programmazione Modulare a.s Matematica CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze MODULO 1 RACCORDO

Dettagli

Banca Dati Finale Senza Risposte

Banca Dati Finale Senza Risposte Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)

Dettagli

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze 1 Raccordo con il biennio

Dettagli

Lezione 16 (15 dicembre) Funzioni reali di due variabili

Lezione 16 (15 dicembre) Funzioni reali di due variabili Lezione 16 (15 dicembre) Funzioni reali di due variabili Funzioni in due variabili Una funzione reale di due variabili è una funzione f: Ω R 2 R (x, y) f(x, y) e per rappresentarla è necessario usare lo

Dettagli

Numeri Complessi. Perché i numeri complessi? PSfrag replacements

Numeri Complessi. Perché i numeri complessi? PSfrag replacements Numeri Complessi Sono numeri del tipo = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i = 1 3 + 3i i i L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero

Dettagli

Prerequisiti. A(x) B(x).

Prerequisiti. A(x) B(x). Prerequisiti 4 Equazioni e disequazioni irrazionali Proprietà: la casistica delle equazioni e disequazioni irrazionali è ilitata, potendosi presentare un qualsivoglia numero di radici in ogni membro Noi

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4.

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4. CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica MACRO UNITÀ PREREQUISITI TITOLO UNITÀ DI APPRENDIMENTO COMPETENZE PREVISTE PERIODO RACCORDO CON IL BIENNIO U.D.A.1:

Dettagli

1. Cos è un radiante s.gif

1. Cos è un radiante   s.gif 1. Cos è un radiante http://static2.businessinsider.com/image/5191168a69bedd006d00000b/circle_radian s.gif 2. Determinare graficamente (applicando la definizione) il seno e il coseno dell angolo riportato

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF IV Lezione TRIGONOMETRIA Dr. E. Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

ANGOLI MAGGIORI DELL ANGOLO RETTO

ANGOLI MAGGIORI DELL ANGOLO RETTO ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 ottobre 0 Esercizio (6 punti Si usi il metodo dei residui per calcolare l integrale J (z + sin 3 (/z, z con il cammino d integrazione percorso in senso

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli