Corso di Analisi Matematica 1 - professore Alberto Valli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Analisi Matematica 1 - professore Alberto Valli"

Transcript

1 Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - 6 settembre 06 numeri complessi. Esercizio - Esprimete in forma algebrica i seguenti numeri complessi : i) 5 i) i) ii) + i iii) i iv) + i i. i) 5 i) i) = 5 ) + i 5 6) = i; ii) + i iii) i = = + i; = i + i + i = 6 + i 9 + = i; iv) + i i = + i i i i = + + i ) + = i.. Esercizio - Determinate i numeri complessi tali che: i) z = + i ii) Rez = z i iii) Rez + Imz =. i) z = + i z = + i i i = i = i z = + i. x ii) Poniamo z = x+iy dove x = Rez e y = Imz. Occorre quindi risolvere l equazione x + iy = i che equivale a x = x + iy) i) = x + iy ix + y = x + y + i x + y); ossia y x + iy x) = 0. Pertanto l insieme delle soluzioni dell equazione è S = z C Rez = Imz,Rez 0} = z C z = x + ix,x R \ 0}}. iii) Per quanto osservato nel punto precedente, risolviamo l equazione x + y =. Pertanto l insieme delle soluzioni dell equazione è S = z C z = x + x)i, al variare di x R}.. Esercizio - Determinate le soluzioni delle equazioni: i) zimz + Rez) = z ii) z + i + z = i + iii) z z = + i.

2 i) Poniamo come nell esercizio precedente z = x + iy. Pertanto possiamo scrivere x iy)y + x) = x + iy xy + x iyy + x) = x + iy xy + x x iy + yx + y) = 0 x + xy x = 0 xx + y ) = 0 y + yx + y = 0 yy + x + ) = 0 Pertanto le soluzioni dell equazione saranno z = 0, z = 0 i = i, z = + i0 =. ii) Pertanto la soluzione è data da z = i. z z i) + z = i + + z = i + + i z i) + z = i + x + iy) i) + x iy) = i + x + y + iy x) + x yi = + i x + y + i y x) = + i x + y = y x = y = x = iii) Considerando il sia a destra che a sinistra si ottiene z z = + i ; poiché z = z si ha z = + = e quindi z =. Dunque z = + i da cui z = + i. Infine z = i.. Esercizio - Determinate le soluzioni delle equazioni: i) zz + Rez) = + i ii) 8 z z = + i iii) z + z =. i) Ponendo z = x + iy si ha Le soluzioni sono x + iy)x iy + x) = + i x + y + i xy + xy) = + i x + y = xy = y = x x + x = 0 y = x x x + = 0 y = x x = ± z = i z = + i z = + i z = i.

3 8 ii) Osserviamo che prendendo il modulo da entrambe le parti dell equazione si ottiene z = + i =. Pertanto z 8 = e l equazione di partenza si può riscrivere z = + i. Da questa si ottiene e la soluzione ricercata è z = i. z = i = i) = i + i i iii) Poniamo z = x + iy e riscriviamo l equazione nella forma x + iy) + x iy) =. Abbiamo poi le successive equivalenze: x + iy) + x iy) = x y + xyi) + x iy + = 0 x y ) + x + + ixy y) = 0 x y + x + = 0 yx ) = 0 y = 0 x = x oppure + x + = 0 6 y + 5 = 0 x = y = ± Ci sono quindi due soluzioni dell equazione: z = i z = + i..5 Esercizio - Rappresentate nel piano complesso l insieme dei numeri complessi z che soddisfano le relazioni: z + i > z + i z + i = z + i i) ii) z + < z + <

4 Per cominciare osserviamo che, dati due numeri complessi z = x + iy e z 0 = x 0 + iy 0, il modulo della loro differenza z z 0 è la distanza fra i punti del piano che rappresentano z e z 0 : z z 0 = x x 0 ) + y y 0 ) Studiamo il sistema di disequazioni i). Cominciamo con la prima disequazione in alto. quanto osservato all inizio: z + i = z i) è la distanza di z da i; Per z + i = z + i) è la distanza di z da + i. Per comodità poniamo z = i e z = + i. Abbiamo allora che i numeri complessi z per i quali vale l uguaglianza z+i = z+ i si possono rappresentare come i punti del piano che stanno sull asse del segmento di estremi z e z, ossia la retta r perpendicolare a tale segmento e passante per il suo punto medio. La retta r divide il piano in due semipiani; quello dei due che non contiene il punto z, cioè quello che si vede ombreggiato nella figura in alto, è l insieme degli z per i quali è verificata la disequazione z + i > z + i. Chiamiamo A questo semipiano. Vediamo ora la seconda disequazione. Procedendo in modo analogo a quanto abbiamo appena fatto, poniamo z = e rappresentiamo i numeri complessi z per i quali vale la disuguaglianza z + = z z < come i punti del piano che appartengono al cerchio di centro z = e raggio, bordo escluso. Chiamiamo B questo cerchio. In conclusione l insieme degli z C che verificano il sistema di disequazioni i) è l intersezione A B dei due insiemi visti sopra, ossia il semicerchio senza bordo rappresentato nell ultima figura in basso. Studiamo ora il sistema ii). Come già osservato in precedenza, i numeri complessi z per i quali vale l uguaglianza z+i = z+ i si possono rappresentare come i punti del piano che stanno sull asse del segmento di estremi z e z, ossia la retta r in figura. D altra parte i numeri complessi z per i quali vale z + < corrispondono ai punti del cerchio di raggio e centro, bordo escluso, che si vede ombreggiato in figura. In conclusione l insieme delle soluzioni del sistema ii) è l intersezione della retta r col cerchio, ossia il segmento, che non comprende gli estremi, evidenziato in rosso.

5 .6 Esercizio - Rappresentate nel piano complesso l insieme dei numeri complessi z che soddisfano le relazioni: Rez + Imz Im z i) ii) z + i < z = z Per cominciare osserviamo che, se z = x + iy è un numero complesso allora Rez = x e Imz = y. Studiamo il sistema i). Per quanto appena osservato, la prima disequazione in alto si scrive x + y ossia y x+. Pertanto i numeri complessi z che verificano questa prima disequazione corrispondono ai punti del piano che stanno sopra la retta r di equazione y = x +. La seconda disequazione del sistema i) si scrive anche z z 0 < dove z 0 = i. I numeri complessi che verificano questa disequazione corrispondono quindi ai punti del cerchio di centro z 0 e raggio, bordo escluso. L insieme delle soluzioni del sistema i) si rappresenta quindi col semicerchio ombreggiato in figura, dove il diametro appartiene al semicerchio ma la semicirconferenza è esclusa. Studiamo ora il sistema ii). Per quanto osservato sopra, la prima disequazione si scrive y ossia y. Quindi i numeri complessi z che verificano la prima disequazione corrispondono ai punti del piano compresi tra la retta r di equazione y = e la retta s di equazione y =, rette incluse.tale regione di piano si vede ombreggiata in figura. Infine i numeri complessi z che verificano l uguaglianza z = z, come già osservato nell esercizio precedente, si possono rappresentare come i punti del piano che stanno sull asse del segmento di estremi z = 0 e z =, cioè i punti del piano appartenenti alla retta di equazione x =. Pertanto concludiamo dicendo che l insieme delle soluzioni del sistema ii) è l intersezione della regione fra le rette r e s rette comprese) con la retta x =, ossia il segmento, estremi inclusi, che si vede evidenziato in figura..7 Esercizio - Rappresentate nel piano complesso le potenze qui sotto riportate: i) + i) 5 ii) i) iii) ) 9 + i. 5

6 i) Ricordiamo che ogni numero complesso z = x + iy si può scrivere nella forma x + iy = z θ + isinθ) dove θ R si dice argomento di z. Ricordiamo anche che il prodotto di due numeri complessi z = z α + isinα), w = w β + isinβ) ) è il numero z w α + β) + isinα + β) che ha come modulo il prodotto dei moduli e come argomento la somma degli argomenti. Calcoliamo le potenze del numero complesso z = + i. Osserviamo che z = e argz = π. Abbiamo quindi + i) = ) π + isin ) ) π e + i) 5 = ) 5 5 π ) + isin 5 π ) ) Le potenze +i) k per k =,...,5 sono rappresentate nella figura, dalla quale si vede anche come le successive potenze si ottengono graficamente con una successione di triangoli rettangoli equilateri. ii) In modo simile a quanto fatto per il caso precedente, calcoliamo le potenze del numero complesso z = i. Osserviamo che z = e argz = π. Abbiamo quindi i) = π ) + isin π ) ) e i) = π ) + isin π ) ) Le potenze rappresentate nella figura. i) k per k =,..., sono 6

7 iii) Calcoliamo le potenze del numero complesso z = + i. Osserviamo che z = e argz = π. Abbiamo quindi ) 9 + i = 9 π ) + isin 9 π ) ) = π) + isinπ)..8 Esercizio - Rappresentate nel piano complesso le radici qui sotto riportate: i) i ) ii) z, essendo z = + i iii) i + 0. i) Per cominciare poniamo z 0 = + i, dunque si ha che z 0 = 8 = e α = arg z 0 = π. Abbiamo quindi ) ) ) + i = ) α + kπ α + kπ + isin = π + ) π kπ + isin + ) ) kπ Vediamo evidenziate in figura le soluzioni. ii) Ricordiamo che se z = x+iy allora z = x iy. Pertanto se z 0 = + i si ha che z 0 = i. Osserviamo che z 0 = e α = arg z0 = π. Abbiamo quindi ) ) ) i = ) α + kπ α + kπ + isin = 8 π 6 + k π ) + isin π 6 + k π ) ) Le soluzioni si vedono evidenziate in figura. 7

8 iii) Posto z 0 = 0 + i, si ha che z 0 = 0 e α = arg z 0 = arctan 0. Pertanto 0 + i = 0) 8 α + k π ) α + isin + k π ) ) Per la rappresentazione grafica conviene osservare che 0 8. e α = arctan , da cui α 0 e una delle radici, per k = 0, è 0 + i. 8

2 + 4i 3. = i. = 1 z 2 1 i (iii) Rez + Imz = 2. = i z = i.

2 + 4i 3. = i. = 1 z 2 1 i (iii) Rez + Imz = 2. = i z = i. Esercizio 1 Esprimete in forma algebrica i seguenti numeri complessi : (i) (5 i)( i) (ii) + i (iii) i (iv) 1 + i i. (i) (5 i)( i) = (15 ) + i( 5 6) = 1 11i; (ii) + i = = + i; (iii) i = i + i + i = 6 +

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi:

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi: Esercizi sui numeri complessi Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1 Esercitazione 1. Trovare parte reale e immaginaria dei numeri complessi: 3 + i 5 4i e Soluzione: 3 + i

Dettagli

Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Ottobre 2012 Esercizi

Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Ottobre 2012 Esercizi Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria (Docente: Federico Lastaria) Ottobre 0 Esercizi Indice Esercizi e complementi. Numeri complessi...................................

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Argomento 14 Soluzioni degli esercizi

Argomento 14 Soluzioni degli esercizi Argomento Soluzioni degli esercizi SUGGERIMENTI ESERCIZIO 0 Porre x + = z ESERCIZIO Le equazioni di secondo grado in z si risolvono sostanzialmente come si suole fare nel campo reale, senza restrizioni

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Numeri complessi. Esercizi

Numeri complessi. Esercizi Numeri complessi. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Indice Esercizi isposte e suggerimenti. 7 Esercizi Esercizio.. Scrivere in forma algebrica (x + iy) i seguenti numeri complessi:

Dettagli

1. Rappresentate il grafico delle funzioni. 1 2 x + 1. (i) 3x + 1 (ii) 3x 2 (iii) 2x + 1 (iv) delle rette in questione.

1. Rappresentate il grafico delle funzioni. 1 2 x + 1. (i) 3x + 1 (ii) 3x 2 (iii) 2x + 1 (iv) delle rette in questione. Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria Ambientale Esercizi di Analisi Matematica 1 - Primo Foglio - 16 settembre 2015 Soluzioni 1. Rappresentate il grafico delle funzioni

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1) Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa 1) Marco Bramanti Politecnico di Milano November 7, 2016 1 Funzioni olomorfe e campi di

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

[FE] Funzioni elementari

[FE] Funzioni elementari [FE] Funzioni elementari 1 Problema. Trovare tutte le soluzioni dell equazione sin z =. Disegnare accuratamente sul piano complesso le soluzioni che si trovano all interno del rettangolo di vertici: (

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x.

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x. Macerata 6 febbraio 05 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: x y x y + + + 4 = 0 Per la presenza del

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi Esercitazione sui numeri complessi Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno Ottobre 0. Come tali sono ben lungi dall essere esenti da errori, invito quindi chi ne

Dettagli

I numeri reali x e y sono detti parte reale e parte immaginaria del numero complesso x + iy esiscrive Re (x + iy) =x e Im (x + iy) =y.

I numeri reali x e y sono detti parte reale e parte immaginaria del numero complesso x + iy esiscrive Re (x + iy) =x e Im (x + iy) =y. Numeri complessi Chiamiamo numero complesso ogni scrittura del tipo x + iy con x, y R,dove i è un simbolo, detto unità immaginaria. Il loro insieme si denota con C. I numeri reali x e y sono detti parte

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

Risoluzione del compito n. 6 (Settembre 2018/1)

Risoluzione del compito n. 6 (Settembre 2018/1) Risoluzione del compito n. (Settembre 2018/1 PROBLEMA 1 Trovate tutte le soluzioni z C del sistema { z +1 = z 3 z +1 = z 2i. Non c è alcuna difficoltà a risolvere algebricamente: scrivendo z = z + iy la

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

ESERCIZI SUI NUMERI COMPLESSI TRATTI DA TEMI D ESAME

ESERCIZI SUI NUMERI COMPLESSI TRATTI DA TEMI D ESAME 1 ESERCIZI SUI NUMERI COMPLESSI TRATTI DA TEMI D ESAME a cura di Michele Scaglia FORMA CARTESIANA (O ALGEBRICA) DI UN NUMERO COMPLESSO Dalla teoria sappiamo che un numero complesso z può essere pensato

Dettagli

DEFINIZIONE E UNA CLASSIFICAZIONE PER LE FUNZIONI n

DEFINIZIONE E UNA CLASSIFICAZIONE PER LE FUNZIONI n CAPITOLO : FUNZIONI DEFINIZIONE E UNA CLASSIFICAZIONE PER LE FUNZIONI n m Siano m, n { 1,, } Definiamo funzione, da R a R, una azione, n denominata f, che ad ogni punto P di R, ovvero di un suo sottoinsieme

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio.

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio. Analisi e Geometria Terzo appello 4 settembre 207 Compito F Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Soluzioni del tutorato di AC310

Soluzioni del tutorato di AC310 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Soluzioni del tutorato di AC310 A.A. 01-013 - Docente: Prof. Pierpaolo Esposito Tutori: Dario Giannini e Giulia Salustri Tutorato 1 9 Ottobre

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 2005 - SESSIONE SUPPLETIVA QUESITO 1 È dato un trapezio rettangolo, in cui le bisettrici degli angoli adiacenti al lato obliquo si intersecano in un punto del lato perpendicolare

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola Premessa: Prepararsi al test per l ammissione all università NON significa provare e riprovare i quesiti che si trovano sui vari siti o libretti ma: fare un primo generale ripasso di ogni argomento citato

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura). Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

QUESTIONARIO FINALE DI AUTOVALUTAZIONE. a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi

QUESTIONARIO FINALE DI AUTOVALUTAZIONE. a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi QUESTIONARIO FINALE DI AUTOVALUTAZIONE a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 2006-2007 1 1) L espressione ( 2 log x)( 2 log 2 2 x) è definita

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 7 Novembre 016 Disequazioni irrazionali Risolvere le seguenti disequazioni 1 3x + 1 < x + 7 La disequazione é equivalente al seguente

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Numeri complessi. Esercizi.

Numeri complessi. Esercizi. Numeri complessi. Esercizi. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Marzo 014. Indice 1 Numeri complessi 1.1 Test di autovalutazione............................... 1. Test di

Dettagli

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A del 13 febbraio 007 COMPITO A 1. Dire per quali valori del parametro reale λ, il seguente sistema lineare x + y = 1 x + y = x y = λ ammette soluzioni e trovarle.. Siano date le rette r : x + 3y + 3 = 0

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

Capitolo 8. - Soluzioni

Capitolo 8. - Soluzioni Capitolo 8. - Soluzioni 8. Basta applicare la formula di passaggio da un sistema di misura all altro. a) π 6 ; b) π; c) π; d) π 8 ; e) π ; f) π; g) 5 π; h) π 5 5 ; i) 8π; j) 8 π; k) 55 8 π; l) ; m) 6 ;

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti 2 settembre 28 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

lim x 2e = 2 x lim (1 x)e 2 x. lim 1 = nessun asintoto obliquo per x +.

lim x 2e = 2 x lim (1 x)e 2 x. lim 1 = nessun asintoto obliquo per x +. ANNO SCOLASTICO - 3 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO SPERIMENTALE Risoluzione Problema Determiniamo le caratteristiche valide per tutte le funzioni

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Osservazioni generali

Osservazioni generali Osservazioni generali Innanzitutto Non si può dividere per. Per i numeri complessi Quando si risolve z 3 = az con a dato, ricordarsi di stare attento per che cosa si divide. Infatti non si può dividere

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo:

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: SOLUZIONI COMPITO A Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: z = i + i + i 3 In forma algebrica, otteniamo: = i + 1 +

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza Liceo Falchi Montopoli in Val d Arno - Classe a I - Francesco Daddi - 1 dicembre 009 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

CdL in Ingegneria Industriale (A-E e F-O)

CdL in Ingegneria Industriale (A-E e F-O) CdL in Ingegneria Industriale (A-E e F-O) Prova scritta di Algebra lineare e Geometria- Febbraio 06 Durata della prova: tre ore. È vietato uscire dall aula prima di aver consegnato definitivamente il compito.

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Le disequazioni di primo grado. Prof. Walter Pugliese

Le disequazioni di primo grado. Prof. Walter Pugliese Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e

Dettagli