Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A-C - Classe A1 (Prof. Franco Meddi) Mercoledì 23 maggio 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A-C - Classe A1 (Prof. Franco Meddi) Mercoledì 23 maggio 2018"

Transcript

1 Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A-C - Classe A1 (Prof. Franco Meddi) Mercoledì 23 maggio

2 Viene organizzata una lotteria nella quale la probabilità di acquistare un 1 biglietto vincente è pari a 0,02. Acquistando 5 biglietti scelti a caso, si chiede di calcolare le seguenti probabilità: a) di avere 0 biglietti vincenti; b) di avere 1 biglietto vincente; c) di avere 2 biglietti vincenti. Si suggerisce di utilizzare la distribuzione di Bernoulli. Facoltativamente, confrontare con le predizioni ricavabili dall uso della distribuzione di Poisson. 2% 2

3 1 5 x 0,02 0,02 = é abbastanza bassa... tuttavia risultano differenze al livello della terza cifra decimale per via del basso valore di N (N=5) 3

4 Sappiamo che la puntura di un particolare insetto può portare 2 conseguenze tossiche gravi accompagnate da lunghe degenze, con frequenza tipica di 1 caso su 5000 individui adulti punti. Prendendo un campione casuale di 800 persone adulte punte da questo insetto, si chiede di calcolare le probabilità seguenti: a) 0 casi con conseguenze tossiche gravi; b) 1 caso con conseguenze tossiche gravi; c) 2 casi con conseguenze tossiche gravi. Si suggerisce di utilizzare la distribuzione di Bernoulli. Facoltativamente, confrontare con le predizioni ricavabili dall uso della distribuzione di Poisson. 85% = 2x = 14% 1 1.1% 4

5 2 N < n > = N p 1 1 1! 0,1363 = 14% 1.1% 5

6 2... Confrontando questo esercizio (2) con il precedente (1), si vede che l approssimazione di Bernoulli con Poisson deve ora essere migliore. Infatti : - La probabilità p è ridotta di 2 ordini di grandezza ( 2x10-2 / 2x10-4 =100) - La numerosità N del campione è anch essa aumentata di 2 ordini di grandezza (800 / 5 = 160). 6

7 3 In un libro stampato, il numero medio di errori in una singola pagina è pari a 0,1. Calcolare la probabilità di trovare almeno 3 errori di stampa su di una pagina di questo libro aperta a caso. Si suggerisce di utilizzare la distribuzione di Poisson. <n> = 0,10 = 1.5 x

8 4 Un campione di 100 misure ripetute di una medesima grandezza viene riportato in un istogramma qui riprodotto. Si chiede di effettuare un test del 2 per quantificare la probabilità che il campione sia compatibile con una distribuzione di tipo uniforme con supporto nell intervallo stesso. 8

9 4 Sommario 9

10 4 n bin = 5 ; n vincoli = 3 = 1 ( condizione di normalizzazione ) + +2 ( a=min(x) e b=max(x) ) ,85 5,7 2 5,8% 10

11 Viene utilizzato un classico sistema ad ultrasuoni per la misura 5 della distanza D di un oggetto da un sonar. La misura del tempo t intercorso tra emissione-riflessione-ricezione di un pacchetto di ultrasuoni è: t = (20.00 ± 0.01)ms. Misuro la temperatura dell aria che risulta essere: T = (20 ± 1) C. La velocità del suono in aria in funzione della temperatura, nel range tra -10 C e +30 C, segue la seguente parametrizzazione lineare in T: v(t) = m1 + m2 x T con m1 = ( ± 0.037)m/s m2 = ( ± )m/s/ C Determinare, oltre alla migliore stima della distanza D, anche l incertezza associata a D e riportare il risultato in forma standard: D ± DD Assumendo tutte le incertezze date e l incertezza ricavata su D di tipo massimo, si ricorda di utilizzare la propagazione lineare e di utilizzare il corretto numero convenzionale di cifre significative. Si utilizzino unità di misura del Sistema Internazionale (SI). 11

12 5 v [m/s] Data_vsuono-vs-Taria_ v(t) = m1 + m2*t m1 = (331,476 ± 0,037) m/s m2 = (0,5947 ± 0,0022) m/s/ C N = 9 s fit = 0,087 m/s y = m1 + m2 * M0 Value Error m m Chisq NA R NA T [ C] 12

13 5 = 0, m 4 4 3,434 ± 0,008 (0.008 / 3,434 = = 0,0023 = 2,3 x 10-3 ) 13

14 5...alternativamente... 14

15 5...alternativamente... 15

16 Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A-C - Classe A2 (Prof. Franco Meddi) Venerdì 25 maggio

17 Sappiamo che il 5% dei circuiti integrati forniti da una ditta sono 1 difettosi. Avendo a disposizione 4 di questi circuiti integrati, scelti a caso, calcolare le seguenti probabilità: a) 0 circuiti integrati difettosi; b) 1 circuito integrato difettoso; c) meno di 2 circuiti integrati difettosi. Si suggerisce di utilizzare la distribuzione di Bernoulli. Facoltativamente, confrontare con le predizioni ricavabili dall uso della distribuzione di Poisson. = = 81% 17% 99% 17

18 1... Invece di: 81% 17% 99% (solo p = 0,05)... risultano differenze al livello della terza cifra decimale per via del basso valore di N (N=4) 18

19 Sappiamo che la probabilità che un singolo apparato elettronico 2 manifesti malfunzionamento è pari a Si chiede di calcolare su 16 apparati dello stesso tipo le probabilità seguenti: a) nessun guasto; b) si guastano al più 2 di questi apparati; c) si guastano almeno 2 di questi apparati. Si suggerisce di utilizzare la distribuzione di Bernoulli.... Gli eventi non sono sufficientemente rari (p=5%) per utilizzare la distribuzione di Poisson al posto della distribuzione di Bernoulli 19

20 E noto che, in zone prive di strutture fognarie, il rischio di 3 infezione da colera è di 2 casi su 1000 individui. Si chiede di calcolare per un campione casuale di 300 persone le seguenti probabilità: a) nessun caso di colera; b) non più di 1 caso di colera; c) esattamente 2 casi di colera. Si suggerisce di utilizzare la distribuzione di Bernoulli. Facoltativamente, confrontare con le predizioni ricavabili dall uso della distribuzione di Poisson.... Gli eventi sono sufficientemente rari (p=0,002) per utilizzare Poisson al posto di Bernoulli... 20

21 4 Un campione di 100 misure ripetute di una medesima grandezza viene riportato in un istogramma qui riprodotto. Si chiede di effettuare un test del 2 per quantificare la probabilità che il campione sia compatibile con una distribuzione di tipo uniforme con supporto nell intervallo dato. 21

22 4 Sommario 22

23 4 n bin = 6 ; n vincoli = 3 = 1 ( condizione di normalizzazione ) +2 ( a=min(x) e b=max(x) ) n = 6 3 = 3 2 / n = 4,64 / 3 1,55 P( 2 > 4,64 ; n = 3) = 20% n = 6 1 = 5 2 / n = 4,64 / 5 0,93 P( 2 > 4,64 ; n = 5) = 46% 23

24 5 con Valutare con quale incertezza sarà possibile conoscere la posizione x(t) all istante t = 1s di un punto materiale in caduta libera secondo la legge oraria: x(t) = x(0) + v(0)t + (1/2)gt 2 x(0) = 0m v(0) = 0m/s g = m/s 2 assumendo di misurare il tempo t, la posizione iniziale x(0), la velocità iniziale v(0) e l accelerazione di gravità g, rispettivamente con incertezze: Dt = 1ms Dx(0) = 1mm Dv(0) = 1mm/s Dg = m/s 2 Infine, si scriva il risultato nella forma standard x(t) ± Dx(t) Assumendo tutte le incertezze fornite e l incertezza ricavata su x(t) con propagazione di tipo lineare, si utilizzi il corretto numero convenzionale di cifre significative. Si utilizzino unità di misura del Sistema Internazionale (SI). 24

25 5 25

26 5 26

2 Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A C (Prof. F. Meddi) 5/6/2012

2 Compito di Esonero del corso di Laboratorio di Meccanica A.A Canale A C (Prof. F. Meddi) 5/6/2012 ompito di Esonero del corso di Laboratorio di Meccanica.. 0 0 anale Prof. F. Meddi 5/6/0 Fila, esercizio N. : ssumere di avere misurato varie volte in maniera diretta le tre grandezze fisiche:, e, determinando

Dettagli

Laboratorio di Meccanica (can C) A.A. 2014/15

Laboratorio di Meccanica (can C) A.A. 2014/15 Laboratorio di Meccanica (can C) A.A. 2014/15 Diario Tipo: PII: prova in itinere E: esercizi V: vacanza Lo scorso anno N Data Tipo Argomento N Data Tipo Argomento 1W No Lab 1W No Lab 1 mercoledì 4 marzo

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A.2014-2015 Prof. Franco Meddi V.E.F. G. Marconi 3-zo piano (M - 324) Tel.: 06 49914 416 franco.meddi@roma1.infn.it http://www.roma1.infn.it/~meddif/laboratoriomeccanica_aa2014-2015.htm

Dettagli

Distribuzione Normale. Dott. Claudio Verona

Distribuzione Normale. Dott. Claudio Verona Distribuzione Normale Dott. Claudio Verona Rappresentazione di valori ottenuti da misure ripetute Il primo problema che si riscontra nelle misure ripetute più volte è trovare un metodo conveniente per

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I VERIFICA DELLE LEGGI DEL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Scopo dell esperienza Analisi del moto

Dettagli

Distribuzione Normale. Dott. Claudio Verona

Distribuzione Normale. Dott. Claudio Verona Distribuzione Normale Dott. Claudio Verona Rappresentazione di valori ottenuti da misure ripetute Il primo problema che si riscontra nelle misure ripetute più volte è trovare un metodo conveniente per

Dettagli

Calcolo dell incertezza combinata estesa

Calcolo dell incertezza combinata estesa Nei risultati riportare solo le cifre significative!!!!!!! Esempio di stesura della relazione III (Tutta a relazione va scritta usando l impersonale. Si è Fatto è stato fatto ecc.) Titolo Scopo Calcolo

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2017/2018 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Marco Pietro Longhi Probabilità e Statistica

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai necessari chiarimenti forniti a lezione. 1 MISURA DI UNA

Dettagli

Laboratorio di Fisica I Anno Accademico

Laboratorio di Fisica I Anno Accademico Laboratorio di Fisica I Anno Accademico 018-019 Relazione terza esperienza di Laboratorio Giorgio Campione Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico

Dettagli

Note su esperienza di misura della densita di un solido

Note su esperienza di misura della densita di un solido Note su esperienza di misura della densita di un solido 1 Distribuzione di GAUSS Distribuzione Piatta D P(entro ± s G ) = 68% 2 Parallelepipedo Spigoli: a, b, c Volume = V = a b c Massa = M Densità = r

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I MISURA DEL PERIODO DI OSCILLAZIONE DI UN PENDOLO SEMPLICE E STIMA DEL VALORE DI g Scopo dell esperienza

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Intervalli di confidenza Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2018/2019 Marco Pietro Longhi Prob. e Stat. 1

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Appunti di statistica ed analisi dei dati

Appunti di statistica ed analisi dei dati Appunti di statistica ed analisi dei dati Indice generale Appunti di statistica ed analisi dei dati...1 Analisi dei dati...1 Calcolo della miglior stima di una serie di misure...3 Come si calcola μ...3

Dettagli

Laboratorio di Meccanica A.A Canale A Prof. F. Meddi (28 Aprile 2011)

Laboratorio di Meccanica A.A Canale A Prof. F. Meddi (28 Aprile 2011) Testo e soluzioni del 1-mo 1 Compito di Esonero del corso di Laboratorio di Meccanica A.A. 010-011 011 Canale A Prof. F. Meddi (8 Aprile 011) 1 Esercizio N.1 Considerando che m, t e v sono grandezze fisiche

Dettagli

Propagazione delle incertezze statistiche. Dott. Claudio Verona

Propagazione delle incertezze statistiche. Dott. Claudio Verona Propagazione delle incertezze statistiche Dott. Claudio Verona Propagazione delle incertezze La maggior parte delle grandezze fisiche di solito non possono essere misurate da una misura diretta, ma viene

Dettagli

Il metodo scientifico

Il metodo scientifico La Fisica è una scienza grazie a Galileo che a suo fondamento pose il metodo scientifico 1 Il metodo scientifico La Natura è complessa: non basta osservarla per capirla Intuizione di Galileo: bisogna porre

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Prova intercorso di laboratorio di Fisica I AA Matricole Pari 29 mar 17

Prova intercorso di laboratorio di Fisica I AA Matricole Pari 29 mar 17 Prova intercorso di laboratorio di Fisica I AA 2016 2017 Matricole Pari 29 mar 17 1. Quale e' la probabilita' di estrarre o un asso o una carta di denari, da un mazzo di 40 carte? Risposta: P= P(asso)+P(denari)

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I MISURA DELLA COSTANTE ELASTICA DI UNA MOLLA E VERIFICA DELLA LEGGE DI HOOKE Scopo dell esperienza Misura

Dettagli

Propagazione delle incertezze statistiche. Dott. Claudio Verona

Propagazione delle incertezze statistiche. Dott. Claudio Verona Propagazione delle incertezze statistiche Dott. Claudio Verona Propagazione delle incertezze La maggior parte delle grandezze fisiche di solito non possono essere misurate da una misura diretta, ma viene

Dettagli

Prova intercorso di laboratorio di Fisica I AA Matricole Pari 07-apr-16. Esercizi preparatori tipici

Prova intercorso di laboratorio di Fisica I AA Matricole Pari 07-apr-16. Esercizi preparatori tipici Prova intercorso di laboratorio di Fisica I AA 2015-2016 Matricole Pari 07-apr-16 Esercizi preparatori tipici 1. Quale e' la probabilita' di avere almeno una testa, lanciando 3 monete? Risposta: P= 7/8

Dettagli

Con questi dati, effettuando una regressione lineare con il metodo dei minimi quadrati, otteniamo:

Con questi dati, effettuando una regressione lineare con il metodo dei minimi quadrati, otteniamo: ESPERIMENTAZIONI DI FISICA I - Appello d esame del 1/09/019 Quesito A (possibilità di svolgerlo con l ausilio di strumenti informatici) Si vuole fare una verifica sperimentale del valore numerico di π

Dettagli

Tutorato di Chimica Analitica 2016/2017

Tutorato di Chimica Analitica 2016/2017 Tutorato di Chimica Analitica 2016/2017 Friendly reminder La notazione scientifica Modo per indicare un risultato con numerose cifre decimali come prodotto di una potenza di 10 esempio Cifre significative

Dettagli

Facciamo 1 cicli di 25 misure da una popolazione per scatola di resistenze

Facciamo 1 cicli di 25 misure da una popolazione per scatola di resistenze Si supponga di voler verificare che due forniture di resistenze di valore nominale dichiarato (per esempio sia = 470 ) sia affidabile. Si supponga che ogni fornitura sia normalmente distribuita con deviazione

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

7 - Distribuzione Poissoniana

7 - Distribuzione Poissoniana 7 - Distribuzione Poissoniana Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) 0.7 Poisson, λ=0.5 Gaussiana, µ=λ=0.5, σ= 0.6 0.5 0.4 0.3 0.2 0.1 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 n = numero

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A PROVA SCRITTA DI STATISTICA (COD. 047 - COD. 403-37-377) 7 luglio 200 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A Esercizio (9 punti) Supponiamo di aver osservato la seguente

Dettagli

STIME STATISTICHE. Consideriamo il caso della misura di una grandezza fisica che sia affetta da errori casuali. p. 2/2

STIME STATISTICHE. Consideriamo il caso della misura di una grandezza fisica che sia affetta da errori casuali. p. 2/2 p. 1/1 INFORMAZIONI Prossime lezioni Giorno Ora Dove 10/02 14:30 P50 11/02 14:30 Laboratorio (via Loredan) 17/02 14:30 P50 23/02 14:30 P50 25/02 14:30 Aula informatica (6-7 gruppi) 02/03 14:30 P50 04/03

Dettagli

Osservazioni e Misura. Teoria degli errori

Osservazioni e Misura. Teoria degli errori Osservazioni e Misura ella misura di una grandezza fisica gli errori sono inevitabili. Una misura non ha significato se non viene stimato l errore. Teoria degli errori La teoria degli errori cerca di trovare

Dettagli

Errori sistematici e casuali

Errori sistematici e casuali Errori sistematici e casuali Errori Casuali Tempo di reazione nel far partire o fermare l orologio: Può essere sia in eccesso che in difetto (ad esempio partenza e arrivo), quindi l errore può avere segno

Dettagli

Fisica I per chimici: Elementi di statistica

Fisica I per chimici: Elementi di statistica Fisica I per chimici: Elementi di statistica Docente: Lilia Boeri Aula: La Ginestra, VEC Orario: Merc-Ven, 11-13 https://sites.google.com/site/fisicaxchimici/home Mi presento: Informazioni utili per il

Dettagli

IL PALLINOMETRO SCOPO

IL PALLINOMETRO SCOPO IL PALLINOMETRO SCOPO Verifica del fatto che gli errori casuali nella misura di una grandezza fisica ripetuta molte volte nelle stesse condizioni sperimentali seguono la distribuzione normale di Gauss.

Dettagli

Una particella si muove lungo l asse x seguendo la seguente legge oraria

Una particella si muove lungo l asse x seguendo la seguente legge oraria 1 Esercizio Una particella si muove lungo l asse x seguendo la seguente legge oraria 1. Determinare le unità di misura delle costanti α e b. Si supponga ora x 0 1 m, α 1 m/s 2 e b 1 m/s. x(t) x 0 + α t

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

IL PALLINOMETRO SCOPO

IL PALLINOMETRO SCOPO IL PALLINOMETRO SCOPO Verifica del fatto che gli errori casuali nella misura di una grandezza fisica ripetuta molte volte nelle stesse condizioni sperimentali seguono la distribuzione normale di Gauss.

Dettagli

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2.

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2. Compito di Fisica Classe 1C 9/10/010 Alunno ispondi alle seguenti domande: 1) Cosa significa misurare isurare vuol dire confrontare una grandezza con un altra grandezza omogenea scelta come unità di misura.

Dettagli

ESPERIENZA 3 Misura dell'accelerazione di gravità g con carrello su piano inclinato

ESPERIENZA 3 Misura dell'accelerazione di gravità g con carrello su piano inclinato Laboratorio di Meccanica - Canale B Docente: Fabio Bellini ESPERIENZA 3 Misura dell'accelerazione di gravità g con carrello su piano inclinato - CLASSE A1: Consegna entro 18 Aprile - CLASSE A2: Consegna

Dettagli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli 3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli Esercizio 1: Si intende misurare la densità di un fluido tramite misure di massa e di volume. Lo si

Dettagli

Laboratorio di Fisica per Chimici

Laboratorio di Fisica per Chimici Laboratorio di Fisica per Chimici 13 marzo 2015 Dott. Marco Felici Ufficio: Vecchio Edificio di Fisica (Ed. Marconi)-Stanza 349 (3 piano); e-mail: marco.felici@roma1.infn.it. Telefono: 06-49914382; Sito

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informatiche per la chimica Dr. Sergio Brutti Metodologie di analisi dei dati 2 Grandezze fisiche diverse Stima dell incertezza di misure indirette Misura diretta A Trattazione matematica Misura

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Fisica Generale Misure di grandezze fisiche e incertezze di misura Lezione 2 Facoltà di Ingegneria Livio Lanceri

Fisica Generale Misure di grandezze fisiche e incertezze di misura Lezione 2 Facoltà di Ingegneria Livio Lanceri Fisica Generale Misure di grandezze fisiche e incertezze di misura Lezione 2 Facoltà di Ingegneria Livio Lanceri Misura ed errori di misura Tutte le misure sono affette da incertezze ( errori ) Una misura

Dettagli

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito:

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: f(x) = K () dalla proprietà di chiusura: f x dx = 1 *) segue f(x)

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL DICEMBRE 2017 GRUPPO N.3

1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL DICEMBRE 2017 GRUPPO N.3 1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL 14-18 DICEMBRE 2017 GRUPPO N.3 COMPONENTI DEL GRUPPO: 1. Castronovo Pietro 2. Giuffrè Jasmine 3. Nicoletti Gabriele 4. Palladino Pietro 5. Pellicane Francesco

Dettagli

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana)

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) 5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) Esercizio 1: Una variabile casuale e caratterizzata da una distribuzione uniforme tra 0 e 10. Calcolare - a) la probabilità

Dettagli

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande 1) Per ciascuno dei due casi determinare: portata e sensibilità dello strumento di misura; grandezza fisica misurata, valore della misura, errore assoluto, errore relativo ed errore percentuale; quindi

Dettagli

Elaborazione dei dati sperimentali. Problemi di Fisica

Elaborazione dei dati sperimentali. Problemi di Fisica Problemi di Fisica Elaborazione dei dati sperimentali Nella seguente tabella riportiamo alcune regole per esprimere ualunue numero mediante una potenza di 0: 00000000 = 0 9 456789 = 45,6789 0 4 3, = 0,3

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Teoria dei Fenomeni Aleatori 1 AA 01/13 Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x t x q t Tempo Discreto Continuo 0

Dettagli

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A.2015-2016 Prof. Franco Meddi V.E.F. G. Marconi 3-zo piano (M - 324) Tel.: 06 49914 416 franco.meddi@roma1.infn.it http://www.roma1.infn.it/~meddif/laboratoriomeccanica_aa2015-2016.htm

Dettagli

SECONDA LEZIONE: interazione della radiazione con la materia misure sperimentali e loro statistica. Stati di aggregazione della materia

SECONDA LEZIONE: interazione della radiazione con la materia misure sperimentali e loro statistica. Stati di aggregazione della materia SECONDA LEZIONE: interazione della radiazione con la materia misure sperimentali e loro statistica Stati di aggregazione della materia Stati o fasi della materia: Gas Liquido Solido ------------------------------

Dettagli

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo Significato probabilistico di σ: su 1 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo x σ, x + σ e 99.7 nell intervallo x 3 σ, x + 3 Se si considerano campioni

Dettagli

INCERTEZZA DI MISURA SECONDO NORME CEI

INCERTEZZA DI MISURA SECONDO NORME CEI CORSO DI FORMAZIONE AMBIENTALE TECNICHE DI MISURA DEI CAMPI ELETTROMAGNETICI IN ALTA E BASSA FREQUENZA INCERTEZZA DI MISURA SECONDO NORME CEI Ing. Valeria Canè Servizio Agenti Fisici 1 UNA MISURA E un

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

1.1 Obiettivi della statistica Struttura del testo 2

1.1 Obiettivi della statistica Struttura del testo 2 Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza

Dettagli

Indice Premessa Cenni storici delle misure

Indice Premessa Cenni storici delle misure Indice Premessa................................... 5 1 Cenni storici delle misure...................... 11 1.1 Il numero come misura...................... 13 1.2 I primi campioni di lunghezza..................

Dettagli

COGNOME NOME Matr...

COGNOME NOME Matr... COMPITONUMERO1 COGNOME NOME Matr... Ignorare il fatto che dati non sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato

Dettagli

Fisica Generale Prof. L.Lanceri Misure di grandezze fisiche e incertezze di misura Lezione 1

Fisica Generale Prof. L.Lanceri Misure di grandezze fisiche e incertezze di misura Lezione 1 Fisica Generale Prof. L.Lanceri Misure di grandezze fisiche e incertezze di misura Lezione 1 Grandezze Fisiche e Sistemi di Unità di misura Grandezze fisiche Definizione operativa! Scelta di un campione

Dettagli

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 Gruppo 11: Bilardello Naima, Calvaruso Paolo, Daidone Fabio, Marino Martino, Mortillaro Vincenzo, Napoli Leonardo Titolo: Misura del periodo di un oscillatore

Dettagli

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96.

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96. Problema A Un pendolo e costituito da una massa di dimensioni trascurabili appesa a un filo considerato in estensibile, di massa trascurabile, lunghezza L, e fissato a un estremo. L Il periodo di oscillazione

Dettagli

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = +

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = + ESERCIZIO 6.1 Si considerino i 0 campioni di ampiezza n = estratti da una popolazione X di N = 5 elementi distribuiti normalmente, con media µ = 13,6 e σ = 8,33. A partire dalle 0 determinazioni della

Dettagli

La fisica al Mazzotti 5.4

La fisica al Mazzotti 5.4 La fisica al Mazzotti 5.4 Misure indirette Propagazione degli errori 3 Misure dirette Quelle che si fanno con grandezze fisiche misurabili direttamente Esempio: lunghezza, temperatura, massa Misure indirette

Dettagli

BIN = 15 um l [um] Minimum um. Data_31misure_ l [um] Maximum Points 102, , um 1.3 um

BIN = 15 um l [um] Minimum um. Data_31misure_ l [um] Maximum Points 102, , um 1.3 um 1 2 Data_31misure_070318 BIN = 15 um Minimum 80 Maximum Sum 120 3176,7 Points Mean Median 31 102,47419 102,9 102.5 um RMS Std Deviation Variance Std Error 102,7225 7,2559846 52,649312 1,3032133 7.3 um

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Esercitazione di Statistica Distribuzioni (Uniforme discreta e continua/ Binomiale/ Poisson) 18/11/2015

Esercitazione di Statistica Distribuzioni (Uniforme discreta e continua/ Binomiale/ Poisson) 18/11/2015 Esercitazione di Statistica Distribuzioni (Uniforme discreta e continua/ Binomiale/ Poisson) 18/11/2015 Esercizio 1 Il responsabile delle risorse umane di un azienda ha constatato che vi è un turn-over

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Distribuzione Gaussiana

Distribuzione Gaussiana Nella maggioranza dei casi (ma non in tutti) facendo un istogramma delle misure acquisite si ottiene una curva a campana detta normale o Gaussiana. G,, G,, d 1 e 2 1 Distribuzione Gaussiana 1 2 = Valor

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Importanza delle incertezze nelle misure fisiche

Importanza delle incertezze nelle misure fisiche Importanza delle incertezze nelle misure fisiche La parola errore non significa equivoco o sbaglio Essa assume il significato di incertezza da associare alla misura Nessuna grandezza fisica può essere

Dettagli

Esercizi di riepilogo

Esercizi di riepilogo Esercizi di riepilogo Es1: Scommesse al casinò Tizio e Caio si alternano al tavolo di un casinò. Tizio gioca negli istanti di tempo dispari, mentre Caio in quelli pari Ad ogni istante di tempo, il guadagno

Dettagli

Tecniche di sondaggio

Tecniche di sondaggio SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale Tecniche di sondaggio 24/1/2006 Nomenclatura Indicheremo con P una popolazione, con N la sua numerosità, con k la sua etichetta e con

Dettagli

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176 INDICE i Statistica ed analisi dei dati 1 1 Propagazione degli errori. Parte I 5 1.1 Terminologia 5 1.2 Propagazione dell incertezza massima (errore massimo) 7 1.2.1 Somma 8 1.2.2 Differenza 9 1.2.3 Prodotto

Dettagli

BENVENUTI al Corso di Laboratorio di Fisica 1 Gruppo 1 (Matricole pari) prof. Giovanni Chiefari ( ( 1H06, )

BENVENUTI al Corso di Laboratorio di Fisica 1 Gruppo 1 (Matricole pari) prof. Giovanni Chiefari ( ( 1H06, ) BENVENUTI al Corso di Laboratorio di Fisica 1 Gruppo 1 (Matricole pari) tenuto nell a.a. 2012-2013 dal prof. Giovanni Chiefari ( giovanni.chiefari@na.infn.it) ( 1H06, 081-676181) insieme con la dott.ssa

Dettagli

Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre 2013

Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre 2013 DIPARTIMENTO DIPARTIMENTO DI DI FISICA FISICA Corso Corso di di Laurea Laurea Triennale Triennale in in Fisica Fisica Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre

Dettagli

La misura si fa utilizzando uno strumento, ogni strumento ha associata un incertezza (non esistono stumenti con

La misura si fa utilizzando uno strumento, ogni strumento ha associata un incertezza (non esistono stumenti con Relazioni di laboratorio brevi (max 1-2 pag) da consegnare a mano o via mail (a bettotti@science.unitn.it e ascenzi@science.unitn.it) in formato pdf (preferito) o doc (ma leggibile da Word 2003) 1 la prima

Dettagli

p. 1/2 STIME STATISTICHE Consideriamo il caso della misura di una grandezza fisica che sia affetta da errori casuali.

p. 1/2 STIME STATISTICHE Consideriamo il caso della misura di una grandezza fisica che sia affetta da errori casuali. p. 1/2 STIME STATISTICHE Consideriamo il caso della misura di una grandezza fisica che sia affetta da errori casuali. p. 1/2 STIME STATISTICHE Consideriamo il caso della misura di una grandezza fisica

Dettagli

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI

Dettagli

COGNOME.NOME...MATR..

COGNOME.NOME...MATR.. STATISTICA 29.01.15 - PROVA GENERALE (STANDARD) Modalità B (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità

Dettagli

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A.2018-2019 Prof. Franco Meddi V.E.F. G. Marconi 3-zo piano (M - 324) Tel.: 06 49914 416 franco.meddi@roma1.infn.it http://www.roma1.infn.it/~meddif/laboratoriomeccanica_aa2018-2019.htm

Dettagli

Problema 1. Cognome, Nome: Facoltà di Economia Statistica Esame 1-20/01/2010: A. Matricola: Corso:

Problema 1. Cognome, Nome: Facoltà di Economia Statistica Esame 1-20/01/2010: A. Matricola: Corso: Facoltà di Economia Statistica Esame 1-20/01/2010: A Cognome, Nome: Matricola: Corso: Problema 1. Su 10 imprese è stato rilevato l utile netto dell ultimo triennio espresso in milioni di euro. Il risultato

Dettagli

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A

LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A LABORATORIO DI MECCANICA Corso di Laurea in Fisica 12 CFU A.A.2017-2018 Prof. Franco Meddi V.E.F. G. Marconi 3-zo piano (M - 324) Tel.: 06 49914 416 franco.meddi@roma1.infn.it http://www.roma1.infn.it/~meddif/laboratoriomeccanica_aa2017-2018.htm

Dettagli

PROGRAMMA DI STATISTICA BITETTO-BOGLI aa. 2018/2019 CON DETTAGLIO ARGOMENTI DA STUDIARE E LEGGERE * SUI LIBRI ADOTTATI

PROGRAMMA DI STATISTICA BITETTO-BOGLI aa. 2018/2019 CON DETTAGLIO ARGOMENTI DA STUDIARE E LEGGERE * SUI LIBRI ADOTTATI 1 PROGRAMMA DI STATISTICA BITETTO-BOGLI aa. 2018/2019 CON DETTAGLIO ARGOMENTI DA STUDIARE E LEGGERE * SUI LIBRI ADOTTATI In merito al programma del corso B di statistica già pubblicato con i relativi riferimenti

Dettagli

AFFIDABILITÀ DEI SISTEMI

AFFIDABILITÀ DEI SISTEMI AFFIDABILITÀ DEI SISTEMI L affidabilità vera di un sistema non è mai nota esattamente, però la statistica e il calcolo delle probabilità ci offrono lo strumento per stimarla. La probabilità di un sistema

Dettagli

SOLUZIONI PROVA SCRITTA DI STATISTICA (cod. 4038, 5047, 371, 377) 8 settembre 2005

SOLUZIONI PROVA SCRITTA DI STATISTICA (cod. 4038, 5047, 371, 377) 8 settembre 2005 SOLUZIONI PROVA SCRITTA DI STATISTICA cod. 4038, 5047, 371, 377) 8 settembre 2005 MODALITÀ B APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE Esercizio 1. 7 punti) Su un collettivo di 13 nuclei

Dettagli

Valutazione incertezza di categoria B

Valutazione incertezza di categoria B Valutazione incertezza di categoria B La valutazione consiste nell assegnare alla grandezza x uno scarto tipo σ in base alle informazioni disponibili Le informazioni riguardano: ) Gli estremi dell intervallo

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 10 giugno 2015 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 10 giugno 2015 SOLUZIONI Esperimentazioni di Fisica 1 Prova scritta del 10 giugno 2015 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 8 10/06/2015 1. (12 Punti) Quesito La forza che si esercita tra due conduttori percorsi,

Dettagli

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie Problema n. 1: Un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un accelerazione costante nei primi 16 m e poi un velocità costante nei rimanenti 84 m. Si

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

La relazione è sostanzialmente la sintesi di questi punti

La relazione è sostanzialmente la sintesi di questi punti Nota iniziale Per una compilazione corretta della scheda è fondamentale riportare e rispondere correttamente alle domande poste nelle varie sezioni. La domanda e la sua relativa risposta devono essere

Dettagli

PER FARE L ESPERIENZA

PER FARE L ESPERIENZA LA CONSERVAZIONE DELL ENERGIA MECCANICA Verifica che l energia meccanica (energia cinetica più energia potenziale) di un carrello in moto su un piano inclinato si conserva. LA FISICA DELL ESPERIMENTO Un

Dettagli

Fisica Generale Prof. L.Lanceri Settimana 2 Lezione 2 Grandezze Fisiche e Misura

Fisica Generale Prof. L.Lanceri Settimana 2 Lezione 2 Grandezze Fisiche e Misura Fisica Generale Prof. L.Lanceri Settimana Lezione Grandezze Fisiche e Misura Grandezze Fisiche e Sistemi di Unità di misura Grandezze fisiche Definizione operativa! Scelta di un campione e dei suoi (sotto)

Dettagli