Errata-Corrige al volume

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Errata-Corrige al volume"

Transcript

1 1 Errata-Corrige al volume M. Giaquinta, G. Modica, Note di Metodi Matematici per Ingegneria Informatica, Edizione 2007, Pitagora editrice, Bologna Malgrado le migliori intenzioni degli autori, il volume contiene imprecisioni ed errori. Qui di seguito sono elencati gli errori noti agli autori ad oggi e le correzioni da apportare al volume in oggetto. Saremo grati a quanti vorranno comunicarci ulteriori errori, imprecisioni o anche critiche agli indirizzi giaquinta@sns.it giuseppe.modica@unifi.it. Pisa e Firenze, 1 novembre 2012 Mariano Giaquinta Giuseppe Modica Pagina Errore 4 12 x 1 x 2.. x n Correzione x 1 x n x aventi avente 12 7,9,10 X R n n (3 volte) k 12 4 (x 1, x 2,..., x n ) (x 1, x 2,..., x n ) 12 4 (y 1, y 2,..., y n ) (y 1, y 2,..., y n ) x X x R n 20 6 le cui la cui 21 9,10 ϕ (5 volte) l Mostrare, mostrare z X di z X 27 6 e 1 := e 1 :=

2 e i, i = 1,...,n e j, j = 1,...,k n i=1 (2 volte) k i= ,n...,k (e 1, e 2,..., e n ) (e 1, e 2,..., e k ) 29 8 = n = n := dimx Sia X è uno Sia X uno 29 8 F := L(x)x F := L(x)x 32 7 n dimkerl dimx dimkerl 34 7 poiezione proiezione 34 6 dunqe dunque 34 3 di decompone si decompone L(y) := y w L. L(y) = y w L y X (x n w)..., (x m w) B = SAS 1 B = S 1 AS E d uso chiamare molteplicità di un autovalore la sua molteplicità algebrica autovalore... di A M n,n (K) autovalore di A M n,n (K) 42 6 A è simile ogni matrice associata ad A è simile Segue dalla... che Segue che quindi n k=1 dimv λ i = n. quindi dalla Proposizione n k=1 dimv λ i = n. 5.3 che 44 2 vettoriale... finita. vettoriale di dimensione n su K dimensione finita. dimensione n λ i, i = 1,...,n λ i, i = 1,...,k 45 2 [ e 1 1,1,e2 1,1,...,e1 1,2,e2 1,2,...,e1 2,1,e2 2,1,... ] [ e 1 1,1 e2 1,1... e1 1,2 e2 1,2... e1 2,1 e2 2,1... ] 47 9 x y y se e solo se (x P(x) P(z)) = 0 se e solo se x X (x P(x) P(z)) = autoggiunto autoaggiunto 51 4 (ii) Proposizione (iii) Proposizione (i) Essendo Essendo alla restrizioni alle restrizioni bxy +2bxy Se λ i Se λ j a u i a u j autoaggiunto sullo autoaggiunto e semidefinito positivo sullo 62 8 e siano µ 1, µ 2,..., µ n e µ 1, µ 2,..., µ n 64 8 x ǫ A y 2 x ǫ A y 67 2 complessa e complessa in z 0 e 68 2 λw λw w C 69 6 w 1 a w 2 w 1 e w Esercizio...z 2, Esercizio (La funzione z z 2 ) (2 volte) b a 76 6 un curva una curva

3 (9.2) (9.3) le successione le successioni 80 7 x 2k+1 2k+1 dt+ x 2k+1 2k k 2 k h n (r t 89 8 assoutamente assolutamente dal bordo di B dal bordo B di B per ogni intero n per ogni intero n B(z 0,ρ) B(z 0,r) w j w j palti lati 109 1,3 s n (w)dw s n (w) 1 w dw antioriario antiorario Se Siano è tale che tali che Sono stime. Sono stime f k=j k! (z z 0 ) j f (j) j=k j! (z z 0 ) j H(Ω)) H(Ω) H(Ω\{z 0 } se H(Ω\{z 0 }) se indentità identità una aperto un aperto h m (z) := g m (z) := f(z f(z) dx dx = y n il secondo y n è il secondo p j (2 volte) m j laprocedura la procedura δ hk δ h [n/2] k= [n/2] n k= n ) n [n/2] k=0 [n/2] k= logaritmmo logaritmo La Sezione 23.g è segnata da vari errori ed imprecisioni. Qui di seguito riportiamo la sua sostituzione. 23.g. Un sistema di ODE: piccole oscillazioni Siano dati N punti materiali x 1, x 2,..., x N in R 3 aventi masse rispettivamente m 1, m 2,..., m N non nulle. e si supponga che le suddette masse interagiscano fra loro con forze soddisfacenti la legge di Hooke. Indichiamo con x i (t) la legge oraria del moto dell i-esimo punto. La forza di richiamo esercitata dalla massa in x j su x i è dunque proporzionale al vettore x j x i f ij := k ij (x j x i ), j i, k ij 0.

4 4 Si pone k ij = 0 se non c è alcuna forza di richiamo diretta tra i e j. Per il principio di azione e reazione, la forza esercitata da x i su x j è uguale e opposta, f ji = f ij e le costanti elastiche k ij, i j, soddisfano la relazione di simmetria k ij = k ji. La forza totale agente sulla massa in x i è la somma delle forze esercitate dagli altri punti, i.e., f i = j i k ij (x j x i ) = ( k ij x j k ij )x i := j i j i n k ij x j se si ha cura di porre k ii := j i k ij. Le equazioni della dinamica danno quindi luogo ad un sistema di 3N equazioni accoppiate m i x i = f i = k ij x j, i = 1,...,N. Tuttavia, l accoppiamento è tale che la j-esima componente della forza dipende solo dalle coordinate j-esime dei punti materiali. Il sistema si divide dunque in 3 sistemi di N equazioni del secondo ordine, uno per coordinata m i (x 1 i) (t) = k ij x 1 j(t), m i (x 2 i ) (t) = k ij x 2 j (t), m i (x 3 i ) (t) = k ij x 3 j (t), i = 1,...,N, i = 1,...,N, i = 1,...,N. Siano M := diag(m 1, m 2,..., m N ), K := (k ij ) M N,N (R) la matrice simmetrica delle costanti elastiche (dove si è posto per ogni i, k ii := j i k ij) e sia X(t) = X j (t) R N il vettore colonna delle j-esime coordinate dei moti dei punti x 1,...,x N X(t) = X j (t) := (x j 1 (t),...,xj N (t))t, x i (t) =: (x 1 i(t),x 2 i(t),x 3 i(t)). Allora X(t) verifica il sistema di N equazioni X (t) = M 1 KX(t). e quindi la mappa a valori matrici N 3 data da t X(t) := [X 1 (t) X 2 (t) X 3 (t)] verifica il sistema X (t) = M 1 KX(t) t R. La matrice M 1 K non è in generale simmetrica (pur essendolo le matrici M e K). Tuttavia si osserva quanto segue. La mappa bilineare (x,y) (x y) = Mx y := N i=1 m ix i y i è un prodotto scalare su R N, la cui matrice di Gram è M.

5 5 Le colonne di M 1/2, 1/ m M 1/2 0 1/ m = / m N formano una base di R N ortonormale per il prodotto scalare ( ). La mappa x M 1 Kx è autoaggiunta per il prodotto scalare ( ). Infatti x,y R N (M 1 Kx y) = Kx y = x Ky = x MM 1 Ky = Mx M 1 Ky = (x M 1 Ky). Equivalentemente, la matrice M 1/2 (M 1 K)M 1/2 = M 1/2 KM 1/2 è simmetrica; infatti, (M 1/2 KM 1/2 ) ij = k ij 1 mi mj In particolare, M 1 K ha N autovalori reali λ 1, λ 2,..., λ N se contati con la loro molteplicità. Gli autovalori della matrice M 1 K sono tutti non positivi. Infatti si osserva che la matrice M 1 K è una Q-matrice: per i j e (M 1 K) i j = N h=1 1 m i δ ih K h j == 1 m i k ij 0 (M 1 K) i j = 1 N k ij = 0. m i Pertanto, cfr. Lemma 23.19, tutti gli autovalori di M 1 K sono contenuti in un cerchio chiuso B( q,q) con q 0, in particolare sono non positivi. PoichéM 1 Kèautoaggiuntaconautovaloriλ 1, λ 2,..., λ N tuttinonpositivi,inumeri λ 1,..., λ N sono i valori singolari della matrice M 1 K. Si possono pertanto calcolare concretamente con l algoritmo di decomposizione secondo i valori singolari. 0 è un autovalore di M 1 K e (1,1,...,1) T è un suo autovettore. Infatti (M 1 K(1,1,...,1) T ) i = (M 1 K) i j = 0. Si può dimostrare che se i punti sono tra loro connessi, o, come si dice, se la matrice K è irriducibile, allora 0 è un autovalore di molteplicità 1, e tutti gli altri autovalori sono strettamente negativi λ N λ N 1 λ 2 < λ 1 = 0. Pertanto dal teorema spettrale, esiste una base u 1, u 2,..., u N di R N ortonormale per il prodotto scalare ( ) formata da autovettori di M 1 K. Se λ s denota l autovalore relativo a u s e S := [u 1 u N ] è la matrice che ha in colonna s le coordinate di u s, allora M 1 K = Sdiag(λ 1, λ 2,..., λ N )S 1 e quindi la mappa a valori matrici N 3 definita da

6 6 verifica t Y(t) := S 1 X(t) Y (t) = S 1 X (t) = diag(λ 1, λ 2,..., λ N )Y(t) Per ogni s = 1,...,N, indichiamo con y s (t) R 3 il punto avente come coordinate la riga s-esima della matrice Y. Allora (y s ) (t) = λ s y s (t) i.e., le coordinate di y s sono tutte soluzioni dell equazione y (t) = λ s y(t) i.e., si muovono o di moto rettilineo uniforme se λ s = 0 o con moto armonico semplice di periodo λs se λ s < 0. Pertanto, per ogni s = 1,...n se λ s = 0, la curva t y s (t) è un moto rettilineo uniforme. In particolare, se si prende come autovettore di norma 1 relativo all autovalore nullo il vettore u 1 := 1 M (1,,1)T con M := N i=1 m i, allora il punto y 1 (t) = 1 m i x i (t), M i.e., il baricentro del sistema, si muove di moto rettilineo uniforme. se λ s < 0, allora y s (t) = cos(ω s t)y(0)+ sin(ω s)t ω s (y s ) (0) i=1 dove ω s := λ s. La traiettoria descritta da y s (t) è un ellisse centrata in 0 nel piano generato da y s (0) e (y s ) (0). I numeri λs ν s := 2π, λ s < 0, si chiamano frequenze proprie del sistema. Infine, ciascun punto x i descrive un moto che è una combinazione lineare dei moti dei punti y i essendo X(t) = SY(t) Lemma. Sia A una matrice N N a coefficienti complessi. Per ogni i = 1,...N siano x i := A i i e r i := j i Ai j e indichiamo con B i la palla chiusa di centro x i e raggio r i, B i := {z C z x i r i }. Allora gli autovalori di A appartengono a i=1,...,n B i. Dimostrazione. Sia λ C un autovalore di A e sia z = (z 1, z 2,..., z N ) C N un autovettore non nullo relativo all autovalore λ, Az = λz. Sia h = h(λ) l indice tale che z h = max i z i. Allora λ x h z h = (Az) h A h h zh = j ha h j zj ( A h j )max z i r h z h. i j h Pertanto λ x h r h, i.e., λ B h.

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Autovalori e autovettori Matrici associate a applicazioni lineari Endomorfismi semplici e matrici diagonalizzabili Prodotti scalari e Teorema Spettrale nel caso generale 2 2006 Politecnico di Torino 1

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 15/11/11

Geometria 1 a.a. 2011/12 Esonero del 15/11/11 Geometria a.a. 0/ Esonero del 5// () Determinare una base ortonormale del piano π di R 3 di equazione x + y z 0 (rispetto al prodotto scalare standard di R 3 ). Soluzioni. È sufficiente determinare una

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli

Geometria I. Soluzioni della prova scritta del 19 settembre 2016

Geometria I. Soluzioni della prova scritta del 19 settembre 2016 Geometria I Soluzioni della prova scritta del 9 settembre 6 Esercizio Consideriamo una forma bilineare simmetrica g : V V R su uno spazio vettoriale reale V di dimensione finita, una sua base B e la matrice

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

Ferruccio Orecchia. esercizi di GEOMETRIA 1

Ferruccio Orecchia. esercizi di GEOMETRIA 1 A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978

Dettagli

Capitolo 7. Il corpo rigido. 7.1 Il corpo rigido

Capitolo 7. Il corpo rigido. 7.1 Il corpo rigido Capitolo 7 Il corpo rigido 7.1 Il corpo rigido Uncorpo rigido discreto, denotato con C, è unsistema di N punti materiali P 1,...,P N che mantengono invariate le loro distanze mutue durante il moto. Fissato

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

Analisi e Geometria 2 Docente: 16 luglio 2015

Analisi e Geometria 2 Docente: 16 luglio 2015 Es. Es. 2 Es. 3 Es.4 Totale Analisi e Geometria 2 Docente: 6 luglio 25 Cognome: Nome: Matricola: Ogni risposta deve essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

Forme bilineari e prodotti scalari

Forme bilineari e prodotti scalari Forme bilineari e prodotti scalari Il prodotto scalare standard di R n può anche essere scritto come un prodotto riga per colonna u, v R n = u t Iv dove I è la matrice identità. Possiamo generalizzare

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI 1. Piccole oscillazioni Si consideri un sistema meccanico conservativo di energia potenziale U : R n R, M R(t) = U (R(t)), (1.1) R dove M è la matrice

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

{Geometria per [Fisica e (Fisica e Astrofisica)]}

{Geometria per [Fisica e (Fisica e Astrofisica)]} {Geometria per [Fisica e (Fisica e Astrofisica)]} Foglio 9 - Soluzioni Esercizio (facoltativo) Un quadrato magico reale di ordine n è una matrice di M n n (R) tale che sommando gli elementi di ogni sua

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Algebra Lineare - Autunno 2008

Algebra Lineare - Autunno 2008 Algebra Lineare - Autunno 2008 Kieran O Grady 1 29 Settembre: Vettori geometrici Segmenti orientati ed equipollenza. Vettori geometrici. Somma e prodotto per uno scalare: definizione e proprietà algebriche.

Dettagli

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica:

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica: Corso di laurea in Chimica Industriale Matematica II A.A. 2015/2016 Argomenti delle lezioni Giovedí 3 marzo - 2 ore. Richiami sulle equazioni e sui metodi utilizzati nel risolverle. Equazioni differenziali.

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria 9- Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Prodotto scalare e matrici simmetriche. Il prodotto scalare consente di introdurre in uno spazio vettoriale

Dettagli

Matrici delle differenze finite

Matrici delle differenze finite Capitolo 8 Matrici delle differenze finite Si riportano in questo capitolo alcuni risultati e proprietà delle matrici delle differenze finite ovvero delle matrici che intervengono nel metodo delle differenze

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

2.10 Equilibri e stabilità

2.10 Equilibri e stabilità 54 CPITOLO. MECCNIC LGRNGIN.10 Equilibri e stabilità Considero le equazioni di Lagrange d T T (q, q) (q, q) = Q(q, q), dt q q per vincoli fissi, cioè T = T = 1 q (q) q, e per forze non dipendenti da t.

Dettagli

11 Piccole oscillazioni attorno a posizioni stabili

11 Piccole oscillazioni attorno a posizioni stabili 11 Piccole oscillazioni attorno a posizioni stabili Consideriamo un sistema con l gradi di libertà descrivibile mediante le coordinate lagrangiane (q 1,..., q l ). Supponiamo che i vincoli siano lisci

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare Errata corrige p. 9 esercizio 5. Modificare testo dell esercizio come segue: Dati una retta r e un punto P, esistono infiniti piani per P paralleli a r: si tratta dei piani che contengono la retta s per

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Teorema sulla condizione affinchè φ(t) = e λt sia una soluzione di un equazione differenziale lineare d ordine n a coefficienti costanti. Siano a 1, a

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

6. Spazi euclidei ed hermitiani

6. Spazi euclidei ed hermitiani 6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti

Dettagli

Algebra lineare e geometria AA Soluzioni della simulazione

Algebra lineare e geometria AA Soluzioni della simulazione Algebra lineare e geometria AA. 2018-2019 Soluzioni della simulazione QUIZ Q1. Sia A R nn una matrice che ammette l autovalore λ 0 con molteplicità algebrica k. Quale delle seguenti affermazioni è vera?

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

5. Richiami: R n come spazio euclideo

5. Richiami: R n come spazio euclideo 5. Richiami: R n come spazio euclideo 5.a Prodotto scalare Dati due vettori in R n, si misurano le rispettive lunghezze e l angolo (senza il segno) fra essi mediante il prodotto scalare. Il prodotto scalare

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2014/15 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 26 novembre 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0.

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0. Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio 2013 1. Si considerino i seguenti sottospazi vettoriali di M 2 (R): ( ) ( ) 0 1 0 1 U =,, 1 0 1 0 ( ) a b V = c d } M 2 (R) a + 2b d = 0. (a) Si determinino

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2009/2010 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Calcolo degli Autovalori. Avviso. Spettro di una matrice. Polinomio caratteristico. Data la matrice A:

Calcolo degli Autovalori. Avviso. Spettro di una matrice. Polinomio caratteristico. Data la matrice A: M. Annunziato, DMI Università di Salerno - documento provvisorio p. 3/9 M. Annunziato, DMI Università di Salerno - documento provvisorio p. 4/9 Avviso I contenuti di queste slide non sono esaustivi ai

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

COGNOME: NOME: MATR.: 1. Si consideri la serie di Fourier data da n 2

COGNOME: NOME: MATR.: 1. Si consideri la serie di Fourier data da n 2 COGNOME: NOME: MATR.: Ingegneria Aerospaziale. Analisi Matematica 2. Compito del 16 febbraio 2019 - PARTE A 1. Si consideri la serie di Fourier data da n 2 sin(2nt). Diamo per buono che esiste il limite

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32 GRAFICA E COMPUTER 19 giugno 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 () PLS-Grafica 19 giugno 2013 1 / 32 Equazioni differenziali modellizzano fenomeni (fisici e non) che variano nel tempo partendo da dati noti,

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

PROVA SCRITTA DI GEOMETRIA (C.L. Fisica)

PROVA SCRITTA DI GEOMETRIA (C.L. Fisica) 19 Dicembre 2003! k k k$ 1) Data la matrice A= # 0 k 1& " 0 1 1% a) Dire per quali valori del parametro k la matrice è invertibile, discutere il sistema AX = b,! x$! 1$ dove X= # y& mentre b == # 1&. "

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Esercizi di preparazione alla PFB

Esercizi di preparazione alla PFB Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercizi di preparazione alla PFB A.A. 0-03 - Docenti: A. Bruno e G. Gentile Tutori: Sara Lamboglia e Maria Chiara Timpone Parte : Analisi

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Applicazioni bilineari e matrici.

Applicazioni bilineari e matrici. Il caso reale Applicazioni bilineari e matrici Sia g un prodotto scalare su R n Ricordo che un prodotto scalare su R n è un applicazione g : R n R n R che soddisfa le seguenti condizioni: Per ogni v ;

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Si svolgano cortesemente i seguenti esercizi Esercizio (6 punti) Si calcoli l integrale Metodi Matematici per la Fisica Prova scritta - dicembre 03 I = sen (x) cosh 3 (x) Possiamo riscrivere l integrale

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2),

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2), Università degli Studi di Bergamo Facoltà di Ingegneria Matematica II Ingegneria Edile Appello del 1 settembre 7 Cognome e Nome Matr. 1.1. Si considerino nello spaio tridimensionale R 3 i tre punti A (3,

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 4 settembre 014 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 5 Forme quadratiche inr n M. Ciampa Ingegneria Elettrica, a.a. 2009/2010 Capitolo 5 Forme quadratiche inr n In questo capitolo si definisce la

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

AUTOVALORI E AUTOVETTORI

AUTOVALORI E AUTOVETTORI Capitolo 4 AUTOVALORI E AUTOVETTORI Abbiamo visto nel paragrafo 2.17 che la matrice associata ad una applicazione lineare f : R n R m dipende dalle basi scelte in R n e R m. Un problema interessante che

Dettagli

Anno Accademico 2016/2017

Anno Accademico 2016/2017 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2016/2017 Scuola di Scienze Corsi di Laurea o di Diploma Triennale in Matematica (nuovo ordinamento) Insegnamento Geometria I Docente

Dettagli

Facoltà di Anno Accademico 2018/19 Registro lezioni del docente PINTUS NICOLA

Facoltà di Anno Accademico 2018/19 Registro lezioni del docente PINTUS NICOLA Facoltà di Anno Accademico 2018/19 Registro lezioni del docente PINTUS NICOLA Attività didattica GEOMETRIA E ALGEBRA [IN/0079] Partizionamento: Periodo di svolgimento: Docente titolare del corso: PINTUS

Dettagli

3 Soluzione di sistemi lineari

3 Soluzione di sistemi lineari 3 Soluzione di sistemi lineari Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le matrici e alcune strutture particolari di matrici nonchè alcuni concetti fondamentali quali

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. -7 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2007

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2007 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 3 Ottobre 2007 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To)

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To) CdL in ngegneria nformatica (G-Q) CdL in ngegneria Meccanica (Lo-To) Prova scritta di Algebra Lineare e Geometria del giorno 27 Gennaio 2010 Usare solo carta fornita dal Dipartimento di Matematica e nformatica,

Dettagli

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1 Soluzione della prova scritta di di Algebra lineare del 0 giugno 05 Esercizio (a) La matrice A che rappresenta f rispetto alle basi assegnate è la seguente: A = 0 0 0 (b) Applicando il metodo di Gauss

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che Autovalori ed autovettori [Abate, 131] Sia f : V V un endomorfismo e λ R Se esiste v V non nullo tale che f(v) = λv, diremo che λ è un autovalore di f e che v è un autovettore di f associato a λ Lezioni

Dettagli