IIID Matematica Aprile ) Cosa significa dire che una funzione reale di variabile reale è continua?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IIID Matematica Aprile ) Cosa significa dire che una funzione reale di variabile reale è continua?"

Transcript

1 1) Cosa significa dire che una funzione reale di variabile reale è continua? 2) Dire se la funzione f(x) = x x 2 5 è a continua per x = 5 ; b continua per x = 3 ; c continua per x = π 2 ; 3) Cosa si intente per dominio di una funzione reale di variabile reale? 4) Nella figura è rappresentato il grafico della funzione f(x) = 2 (x 2) x 2 4 ; quali sono i iti per x ; 5) Dire se il x 1 + x 2 +4x 5 è una forma indeterminata e come si può aggirare ; descrivere il procedimento senza risolvere il ite Risposta: si scompone in fattori il numeratore, si semplifica la frazione algebrica e infine si risolve il ite Svolgimento x 2 + 4x 5 x 1 = (x + 5)(x 1) (x 1) = (x + 5)(x 1) (x 1) = (x + 5) Pagina 1

2 Quindi (x + 5) = 6 x 1 + 6) Calcolare x2 4x+5 x 2 7) Calcolare x + 3x 2 x 3 3x 3 2 Svolgimento: 3x 2 x 3 = x3 ( x 2 2 ) 3x 3 2 x 3 (3 2 x 2) 3 3 = x3( x 2 2 ) = ( x 3 (3 2 x 2) 3 x 2 2 ) (3 2 x 2) quindi x + 3x 2 x 3 3x 3 2 = x + ( 3 x 2 2 ) (3 2 x 2 ) = ( 3 2 ) + = (3 2 ) + (0 2 ) (3 0) = 2 3 8) Calcolare x 1 x 1 2x 3x Svolgimento1: si moltiplicano numeratore e denominatore per la stessa quantità ( 1 x + 1 2x ) Moltiplicare numeratore e denominatore di una frazione per la stessa quantità significa moltiplicare la frazione per 1, quindi non cambiarla; ma utilizzare la moltiplicazione del numeratore o del numeratore per tentare di superare la forma indeterminata In questo esercizio al numeratore comparirà una somma per una differenza che potrà essere scritta come prodotto notevole, ecco come ( 1 x 1 2x )( 1 x + 1 2x ) = ( 1 x ) 2 ( 1 2x ) 2 = Pagina 2

3 = (1 x) (1 2x) = x Ritornando alla frazione dell esercizio ( 1 x 1 2x ) 3x = ( 1 x 1 2x )( 1 x + 1 2x ) 3x( 1 x + 1 2x ) = (1 x ) (1 2x) 3x( 1 x + 1 2x ) = x = x 3x( 1 x + 1 2x ) 3x( 1 x + 1 2x ) = 1 3( 1 x + 1 2x ) quindi x 1 x 1 2x 3x = x 1 3( 1 x + 1 2x = 1 = 1 = 0 ) 3( ) 9) Dire se la funzione f(x) = (spiega la risposta) 1 x 2 ha come asintoto verticale la retta x=2 10) Calcolare x 1 + x 2 4x+5 11) Calcolare x + 5x 3 7x 2x ) Calcolare x 3x 2 11 x 2 +7 x ) Dire se la funzione f(x) = x 8 x+2 y=1 Spiega la risposta ha come asintoto orizzontale la retta 14) Calcolare x 2 x x 3 Pagina 3

4 15) Calcolare x 7x x2 +3x4 x 2 x x 16) Calcolare 2 7 2x 2 +1 x 2 x ) Dire se la funzione f(x) = x+5 x=1 Spiega la risposta ha come asintoto verticale la retta 18) Calcolare x 1 x 2 +1 () 2 19) Calcolare x2 30 x 5 x 2 7x+10 x+1 3x 7 20) Calcolare x 4 x 4 21) Dire se la funzione f(x) = 3x2 x 2 1 y=3 Spiega la risposta ha come asintoto orizzontale la retta 22) Calcolare x 1 x2 3x+2 5x 2 7x+2 23) Calcolare x 2 x 2 2 x 2 5x 24) Calcolare x 2 +5 x 1 25) Dire se la funzione f(x) = x+5 x 2 1 y=0 Spiega la risposta ha come asintoto orizzontale la retta 26) Calcolare x + 5 x 2 Pagina 4

5 27) Calcolare x 7 x 2 8x+7 x 2 6x 7 3x+1 x+3 28) Calcolare x 1 29) Dire se la funzione f(x) = x+5 x 2 1 x=1 Spiega la risposta ha come asintoto verticale la retta 30) Calcolare senx x 0 x Soluzione senx x 0 x = 1 Link per la spiegazione 31) Calcolare i seguenti iti a cosx+ex x 0 x 2 +4 b 1 cos2 x x 0 sen 2 x c x 2x 3x 3 7x 2 +9x 3 1 d x 1 3x+1 2 x+6 7 e 1 cos2 x x 0 x 2 Pagina 5

6 Indicazioni per lo svolgimento dell esercizio b) Si usa la relazione fondamentale della goniometria sen 2 x + cos 2 x = 1 scritta come sen 2 x = 1 cos 2 x Indicazioni per lo svolgimento dell esercizio e) Usare il ite notevole dell esercizio 30) 32) Dire se la retta f(x) = 5 3 è un asintoto orizzontale per la funzione f(x) = 5x 3x 2 3x 2 11x 1 33) Dire se la retta f(x) = 2 2 f(x) = 5x2 3+ 2x 4 2x 4 11x 2 1 è un asintoto orizzontale per la funzione 34) Dire se la retta x = 3 è un asintoto verticale per la funzione x f(x) = x 2 3 Pagina 6

7 35) Calcolare Soluzione: 36) Calcolare sen(4x) x 0 x Soluzione: senx Si deve utilizzare il ite notevole x 0 x sen(4x) x 0 x = 1 Si moltiplicano numeratore e denominatore per 4 x 0 4sen(4x) 4x 4sen(4x) = = 4 sen(4x) x 0 (4x) x 0 (4x) Pagina 7

8 Si applica uno dei teoremi sui iti, il ite di un prodotto è uguale al prodotto dei iti 4 sen(4x) = 4 ( x 0 (4x) sen(4x) x 0 (4x) ) = 4 1 = 4 sen3x 37) x 0 sen6x [ 1 2 ] Anche per risolvere questo ite si deve utilizzare il ite notevole senx x 0 x = 1 38) 39) 2+2x 40) 2 x + 2+x x ) x 0 x 1 3x+7x 42) 4 [ 7 ] x + 5 3x ) x 5 3x 2 +14x 5 x [2] 44) x 2 2x x 2 Pagina 8

9 Premessa: per risolvere i iti che seguono può essere necessario sostituire alla x + o - e applicare le proprietà delle potenze, ad esempio 1 x ex = e = e + = 1 = 0, questo ite è valido per tutte le funzioni esponenziali nelle quali la base è >0 come f(x)=e x ( vedi grafico) 45) 46) 47) 48) Soluzione del numero 47) Si dividono numeratore e denominatore per il termine di grado massimo del denominatore e 2x x e 3x +2 e 2x e 2x 1 e 2x = x e 3x +2 e 2x e 2x 1 e 2x = x e 3x e 2x+ 2 e 2x e 2x e 2x 1 e 2x = x e x + 2 e 2x 1 1 e 2x x e x + 2 e 2x 1 1 e 2x 2 = e + e = + e = = 1 = Pagina 9

10 49) Calcolare: Soluzione: se si sostituisce zero alla x, si ottiene la forma indeterminata ; moltiplicando numeratore e denominatore per x si ottiene 50) Calcolare x 2 + x2 4 x 2 4x+4 Soluzione: se si sostituisce 2 alla x, si ottiene la forma indeterminata 0 0 ; si prova a scomporre in fattori numeratore e denominatore per provare ad einare la forma indeterminata: x 2 + (x 2)(x+2) (x 2) 2 = x 2 + (x 2)(x+2) (x 2) 2 ; si semplifica e si ottiene (x + 2) x 2 + (x 2) quindi si ricalcola il ite e si ottiene 4 0 che da come risultato o + a seconda che il ite sia per x 2 + (x che tende a 2 da destra) o x 2 (x che tende a 2 da sinistra); in questo caso x 2 + [teorema della permanenza del segno: per determinare il risultato è sufficiente studiare il segno del Pagina 10

11 denominatore in un intorno destro di x = 2, (è un ite destro): in tale intorno il segno del denominatore è positivo ] perciò (x 2)(x + 2) x 2 + (x 2) 2 = + Possiamo controllare questo risultato osservando il grafico della funzione f(x) = x2 4 x 2 4x + 4 Si vede chiaramente che man mano che il valore di x si avvicina a due da destra la funzione tende a diventare + La retta x = 2 è un asintoto verticale per questa funzione 51) x ± x 2 4 x 2 4x+4 [1] (osserva il grafico precedente) La retta y = 1 è un asintoto orizzontale per la funzione f(x) = x2 4 x 2 4x+4 Pagina 11

12 5 9+8x 52) x 2 x 2 3x+2 Soluzione È una forma indeterminata 0 0 ; scomponiamo in fattori il denominatore e moltiplichiamo numeratore e denominatore per ( x) (5 9+8x)(5+ 9+8x) x 2 (x 2 3x+2)(5+ 9+8x) (5 9+8x)(5+ 9+8x) = x 2 ()(x 2)(5+ 9+8x) = x 2 (16 8x) ()(x 2)(5+ 9+8x) = x 2 8(x 2) ()(x 2)(5+ 9+8x) = = x 2 8(x 2) ()(x 2)(5+ 9+8x) = x 2 8 ()(5+ 9+8x) = ) x 2 + 3x2 4x 4 4 x 2 [-2] 54) x 3 2x+6 x 2 +x 6 [ 2 5 ] 55) 5x2 +10x+2 x 4 + 3x+12 [+ ] 56) x2 3x+4 x 1 4x 2 x 3 [ ] 57) 3x x2 x 4 + 2x+2 [ ] 58) x 5 + x+5 x 2 +x 20 [ 1 9 ] Pagina 12

13 100 x 59) 2 x x [20 3 ] 60) x 6 + x x 2 [ 2 3 ] 61) Cosa significa dire che logx = x ) Qual è il ite di x logx (2x 3)(3x+5)(4x 6) 63) Calcolare il x + 3x 3 + senx 64) Qual è il ite di x 0 x? 65) Calcolare 2x2 3x 4 x x x 3 66) Calcolare x 7 x ) Calcolare Pagina 13

14 68) Calcolare i iti seguenti x a 2 2x x 5x 3 b x 3 1 x +1 3 x+3 69) Determinare gli asintoti verticali e orizzontali della funzione f(x) = 2x2 x 6 x 2 +2x 8 70) Determinare gli asintoti verticali e orizzontali della funzione f(x) = 3x+2 x ) Determinare gli asintoti verticali e orizzontali della funzione f(x) = x 2 x Pagina 14

15 72) Calcolare a) x (x3 + 2x 2 3) h) (x 3 2x 6 + 4) x 2x 6 7 x 3 b) i) c) l) d) m) e) n) f) o) g) p) 73) Cos è un asintoto? 74) La funzione f(x) = 3x+1 a) Verticali? b) Orizzontali? Spiega le risposte date x 3 ha asintoti Pagina 15

16 75) Calcolare x senx 76) Calcolare x 0 x tgx 77) Dire quale tra le funzioni seguenti qual è quella rappresentata nel grafico c f(x) = x 3 x 2 1 d f(x) = e f(x) = x 2 x x 2 x f f(x) = x 2 x 2 1 Spiega la risposta data Pagina 16

17 78) Trova i punti di discontinuità e gli asintoti orizzontali e verticali della 2x+3 funzione f(x) = x 2 2x 3 79) Trova i punti di discontinuità della funzione e gli asintoti orizzontali e 3x+3 verticali della funzione f(x) = x 2 x 4 80) Trova gli asintoti verticali e orizzontali della funzione f(x) = 2 x (funzione esponenziale) 81) Calcolare 3 x 4 ± x 4 (Calcolare separatamente i due iti, quindi verificare il risultato ottenuto osservando il grafico della funzione) 82) Calcolare x + x2 + x x ; 83) Calcolare x 3x+2 x ) Calcolare 4 x2 x ± cos 85) Calcolare 2 x sen 2 x x π 1 tgx 4 1 cotgx 86) Calcolare x π 1 tgx 4 87) Calcolare x + cosx 88) Calcolare x π tgx 2 Pagina 17

18 89) Calcolare x log a x 90) Calcolare x 0 + log a x (distinguere i due casi: a>1 e a<1) 91) Calcolare x 5 x 2 +13x+40 x 2 3x 40 92) Calcolare x 3x4 +5 5x ) Calcolare x + 5x x 6 3x+1 x 94) Calcolare 2 7 x+5 x 4 x 4 95) Calcolare x 0 sen2 x 1 cosx Indicazione: si sostituisce sen 2 x = 1 cos 2 x =(1 cosx)(1 + cosx) = 96) Determinare, se esistono, gli asintoti orizzontali e verticali della funzione f(x) = 9+x2 x 2 1 ; spiega il procedimento Pagina 18

19 97) Quale funzione è rappresentata nel grafico che segue? [A] f(x) = x2 +9 [B] f(x) = 9 x2 [C] f(x) = x2 9 1 x 2 Spiega la scelta [D] f(x) = 9 x2 Pagina 19

20 98) Calcolare 2x2 9x+7 x 1 3x 2 x 2 99) Calcolare 6x5 +2x2 5x x 5x x 100) Calcolare 4 5x x 5x x 101) Calcolare 2 1 x 2 +3 x 2 x 2 cos 102) Calcolare x 0 senx 103) Determinare, se esistono, gli asintoti orizzontali e verticali della funzione f(x) = 5x2 +1 x 7 ; spiega il procedimento Pagina 20

21 104) Quale funzione è rappresentata nel grafico? [A] f(x) = 9 x 2 [B] f(x) = 9 x2 [C] f(x) = x2 9 Spiega la scelta [D] f(x) = 9 x2 Pagina 21

22 105) Calcolare x x 2 1 5x 2 +14x 4 106) Calcolare 6x5 +2x2 5x x 5x x 107) Calcolare 4 5x x 3x 2 2x 108) Calcolare 2 +1 x 2 +1 x 0 x 109) Calcolare x π 2 cos 2 x 1 senx 110) Determinare, se esistono, gli asintoti orizzontali e verticali della funzione f(x) = 2x 3 5x 2 +1 ; spiega il procedimento Pagina 22

23 111) Quale funzione è rappresentata nel grafico che segue? (2 punti) [A] f(x) = 9 x 2 [B] f(x) = 9 x2 [C] f(x) = x2 9 1 x 2 Spiega la scelta [D] f(x) = 9 x2 Pagina 23

24 112) Calcolare x 3 2 2x 2 11x+12 2x 2 x 4 113) Calcolare 6x2 +2x2 5x x 5x 4 +4x 21 2x 114) Calcolare 2 x x 2x 7 2x 115) Calcolare 2 7 x 2 3 x 2 x 2 116) Calcolare x π 2 sen cosx 117) Determinare, se esistono, gli asintoti orizzontali e verticali della funzione f(x) = x ; spiega il procedimento Pagina 24

25 118) Quale funzione è rappresentata nel grafico che segue? [A] f(x) = 9 x 2 [B] f(x) = 9 x2 [C] f(x) = x2 9 1 x 2 Spiega la scelta [D] f(x) = 9 x2 Pagina 25

Limiti di funzioni 1 / 39

Limiti di funzioni 1 / 39 Limiti di funzioni 1 / 39 Comportamento agli estremi: operazione di ite 2 / 39 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Limiti di funzioni 1 / 41

Limiti di funzioni 1 / 41 Limiti di funzioni 1 / 41 Comportamento agli estremi: operazione di ite 2 / 41 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Lezione 18 (8 gennaio) Limiti

Lezione 18 (8 gennaio) Limiti Lezione 18 (8 gennaio) Limiti Ripasso f x = ln 3 x 1 D = (1, + ) ln 3 x 1 + x 1 = ln 3 1 + 1 = ln 3 = ln(+ ) = + 0 + ln 3 x + x 1 = ln 3 + 1 = ln 3 + = ln(0+ ) = 1 Esempi di forme indeterminate x + x3

Dettagli

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 =

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 = Limiti e continuità Risoluzione di forme indeterminate con polinomi Ordine di infinito e confronto di infiniti Alcuni iti notevoli Funzioni continue Esercizi sui iti ( 3 + 3) = (10 + 3 32 ) = 57 ( + 2

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Francesco Daddi - dicembre 9 Esercizi svolti sui iti Esercizio. Calcolare sin). Soluzione. Moltiplichiamo e dividiamo per : sin) = sin) = sin) a questo punto, ponendo y =, dato che otteniamo y siny y =

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Esercizi svolti sui iti Esercizio. Calcolare sin(). Soluzione. Moltiplichiamo e dividiamo per : sin() sin() sin() a questo punto, ponendo y, dato che otteniamo y sin y y sin() y sin y y. Esercizi svolti

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni Esercitazioni di Matematica Generale A.A. 06/07 Pietro Pastore Lezione del Dicembre 06 Dominio di Funzioni Determinare il dominio delle seguenti funzioni ) x +3x. fx) =. Il dominio si trova considerando

Dettagli

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della Teorema degli zeri Una funzione reale f continua nell intervallo chiuso e itato [a; b] che assuma valori di segno opposto negli estremi di tale intervallo, si annulla in almeno un punto ad esso interno

Dettagli

LIMITI. Sia c D. Sia y=f(x) funzione definita in un dominio D. Tutorial di Paola Barberis - agg Ord =limite

LIMITI. Sia c D. Sia y=f(x) funzione definita in un dominio D. Tutorial di Paola Barberis - agg Ord =limite LIMITI Ord =ite Sia =f() funzione definita in un dominio D. Sia c D c Cercare il LIMITE della funzione per c ( che tende a c) significa trovare, man mano che la TENDE a c, l ORDINATA a cui SI AVVICINA

Dettagli

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni SOLUZIONI ESERCIZI ASSEGNATI Contents. SOLUZIONI ESERCIZI DEL 8. [B] Dispense a cura del docente.. SOLUZIONI ESERCIZI DEL 8. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 f : A R R A ' Funzioni Continue La funzione f si dice continua in f ( f ( se (e solo se A Ne seguono tre proprietà affinché f( sia continua in :. Devono esistere finiti il ite destro e sinistro di f( in.

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

DEFINIZIONE DI LIMITE

DEFINIZIONE DI LIMITE DEFINIZIONE DI LIMITE LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0, escluso al più il punto x 0 (x 0 è un punto di accumulazione)

Dettagli

MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO I Limiti e lo Studio delle Funzioni Definizione e calcolo dei iti. Definizione di Limite Possiamo dare una definizione intuitiva, grazie al lavoro

Dettagli

Limiti di funzioni e continuità

Limiti di funzioni e continuità Limiti di funzioni e continuità Paolo Montanari Appunti di Matematica Limiti di funzioni e continuità 1 Funzioni limitate La funzione f(x) è limitata superiormente se esiste un numero reale M tale che

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Calcolo infinitesimale

Calcolo infinitesimale Calcolo infinitesimale L operazione di limite L operazione di limite ha lo scopo di descrivere il comportamento di una funzione nei pressi di un punto di accumulazione per il suo dominio. Limite finito

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Calcola il valore dei seguenti limiti precisando quando si tratta di una forma indeterminata di quale forma si tratta:

Calcola il valore dei seguenti limiti precisando quando si tratta di una forma indeterminata di quale forma si tratta: Calcola il valore dei seguenti iti precisando quando si tratta di una forma indeterminata di quale forma si tratta: 2x 2 5x 3 1. x 3 x 2 + 4 x 3 2x 2 5x 3 x 2 + 4 non e una forma indeterminata, basta sostituire

Dettagli

francesca fattori speranza - bozza febbraio 2018 LIMITI applicati allo studio di funzione

francesca fattori speranza - bozza febbraio 2018 LIMITI applicati allo studio di funzione francesca fattori speranza - bozza febbraio 2018 LIMITI applicati allo studio di funzione In questa trattazione si affrontano solo alcuni esempi di funzioni: polinomiali, fratte irrazionale con argomento

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

Gli asintoti. Richiami ed esempi

Gli asintoti. Richiami ed esempi Gli asintoti Richiami ed esempi Scheda asintoti Definizioni generali di asintoto orizzontale, verticale e obliquo Scrivere l equazione di una funzione di una variabile dotata di due asintoti, uno orizzontale

Dettagli

CAPITOLO VI LIMITI DI FUNZIONI

CAPITOLO VI LIMITI DI FUNZIONI CAPITOLO VI LIMITI DI FUNZIONI. CONCETTO DI LIMITE Esula dallo scopo di questo libro la trattazione della teoria sui iti. Tuttavia, pensando di fare cosa gradita allo studente, che deve possedere questa

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Matematica con elementi di statistica ESERCIZI sui limiti Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica con elementi di statistica ESERCIZI sui limiti Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Calcolare i seguenti iti. Esercizio 1. Esercizio 2. Esercizio 3. Esercizio 4. Matematica con elementi di statistica ESERCIZI sui iti Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Esercizi 6: iti

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

15. Funzioni continue: esercizi

15. Funzioni continue: esercizi 15. Funzioni continue: esercizi Esercizio 15.7. Data la funzione f : R f(r) con legge α se 0 f() = β 2 se > 0, 1. dire se per α = β = 1 la funzione è invertibile e, in caso affermativo, determinare dominio,

Dettagli

= l. x x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZIONI. CONCETTO DI LIMITE Esula dallo scopo del presente capitolo la trattazione della teoria sui iti. Tuttavia, pensando di fare cosa gradita allo studente, che deve possedere questa nozione

Dettagli

23 INVERTIBILITÀ E CONTINUITÀ

23 INVERTIBILITÀ E CONTINUITÀ 23 INVERTIBILITÀ E CONTINUITÀ Ricordiamo che se A, B sono insiemi e f : A B è una funzione iniettiva, ovvero a 1 a 2 = fa 1 ) fa 2 ), allora la relazione gb) = a fa) = b definisce una funzione g : Im f

Dettagli

x x ' La funzione f si dice continua in x 0 se (e solo se) 0

x x ' La funzione f si dice continua in x 0 se (e solo se) 0 : A R R A ' Funzioni Continue La unzione si dice continua in ( ( se (e solo se A Ne seguono tre proprietà ainché ( sia continua in :. Devono esistere initi il ite destro e sinistro di ( in. Tali iti devono

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 26 index 1 2 Continuità Cristina Turrini

Dettagli

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k Ingegneria Elettronica e Informatica Analisi Matematica 1a Foschi Compito del 18.1.018 1. Utilizzando la formula di Newton per le potenze del binomio calcola il valore della somma 9. = Soluzione: Ricordiamo

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010 Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Matematica: Continuità e calcolo dei limiti (Cap.7)

Matematica: Continuità e calcolo dei limiti (Cap.7) Matematica: Continuità e calcolo dei limiti (Cap.7) Marco Dall Aglio LUISS University mdallaglio@luiss.it A.A. 2016-17 Dall Aglio (LUISS) Guerraggio Cap.7 A.A. 2016-17 1 / 24 Continuità in un punto Definizione

Dettagli

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0 Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R.

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R. APPUNTI DI MATEMATICA: I iti e la continuità Le derivate Prof. ssa Prenol R. INTERVALLI e INTORNI Definizione di intervallo: è un sottoinsieme di numeri reali e può essere - ilitato: graficamente viene

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 8 novembre 20 Studio di funzione con indicazione degli asintoti e grafico probabile Studiare completamente

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare

Dettagli

FUNZIONI CONTINUE E FUNZIONI LIMITATE

FUNZIONI CONTINUE E FUNZIONI LIMITATE FUNZIONI CONTINUE E FUNZIONI LIMITATE FUNZIONI CONTINUE Una funzione reale di variabile reale è continua se si può disegnare senza staccare la matita dal foglio. f x = x3 20 3 2 È una funzione continua

Dettagli

Soluzioni delle Esercitazioni V 15-19/10/ x 1 = = /x + = 0. 1+e x = 1. lnx 1+1/x = = = +.

Soluzioni delle Esercitazioni V 15-19/10/ x 1 = = /x + = 0. 1+e x = 1. lnx 1+1/x = = = +. Soluzioni delle Esercitazioni V 5-9/0/208 A. Limiti I iti che seguono si possono calcolare con l algebra dei iti. 2 3 4 5 6 7 8 9 0 +2 3 = +2 3 = 3 2. e = ) e = e. / + = 0 + = 0 + = 0. +e = +0 = = 0. +/

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal Strada le Grazie 15 37134 Verona - Italia Tel. +39 045 80 7069 Fax +39 045 80 7068 Corso di Laurea in Matematica Applicata PROVA

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

Concetto intuitivo di limite di una funzione

Concetto intuitivo di limite di una funzione Concetto intuitivo di limite di una funzione I limiti di funzioni sono valori a cui le funzioni si avvicinano in certi punti particolari, ossia in punti in cui non è possibile definire le funzioni stesse

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

1. Partendo dall angolo della figura definisci il seno e il coseno

1. Partendo dall angolo della figura definisci il seno e il coseno 1. Partendo dall angolo della figura definisci il seno e il coseno 2. Un angolo ha i seguenti valori per il seno e per il coseno, ; osa si può dire al riguardo? 3. In quali angoli, per 0 < < 2, cos < 0?

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in LIMITI Calcolo di limiti FUNZIONE CONTINUA Definizione Una funzione si dice continua in un punto quando il limite = La funzione non è definita in La funzione è definita in La funzione è definita in ma

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

LICEO SCIENTIFICO ESEDRA SCUOLA PARITARIA Classe V LS Prof. Francesco Marchi Appunti su: algebra dei iti Introduzione Abbiamo studiato i iti delle funzioni elementari, ad esempio abbiamo visto che: ln

Dettagli

CALCOLO DEI LIMITI = =

CALCOLO DEI LIMITI = = CALCOLO DEI LIMITI Tenendo conto dei teoremi dei iti e delle proprietà simboliche dell infinito è possibile calcolare il risultato di diversi tipi di ite. Negli esercizi di questo tipo si sostituisce alla

Dettagli

f(x) lim x c g(x) = lim x c f(x) lim x c g(x)

f(x) lim x c g(x) = lim x c f(x) lim x c g(x) Matematica I, 10.10.2012 Limiti di funzioni (II) 1. Limiti e Operazioni Algebriche L operazione di ite di successioni si comporta bene rispetto alle operazioni algebriche di somma (e sottrazione), prodotto

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 207/8 20 FEBBRAIO 208 CORREZIONE Esercizio Considerate la funzione f(x = log + x. Tracciate un grafico approssimativo

Dettagli

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI CONTINUE Sia f : domf R una funzione e sia x 0 domf (esista cioè f(x 0 ) R) Possono verificarsi due casi: il

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1 Topologia della retta reale. Concetto intuitivo di ite. Definizioni di ite. Teoremi sui iti. Applicazioni. Angela Donatiello TOPOLOGIA DELLA RETTA REALE Esiste una corrispondenza biunivoca tra l insieme

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA a.a. 7-8 Corso di laurea in Economia Aziendale Fascicolo n. Limite di funzioni e applicazioni. Limite di una funzione Funzioni continue Calcolo dei iti Asintoti Prof.ssa

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1 Cognome e nome APPELLO A DI AMC - SESSIONE ESTIVA - 4 LUGLIO 2008 Esercizio. (a) Data la funzione f(x) = x e x x determinare: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, derivata

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Teorema sul limite di una somma. ( x) l2. allora

Teorema sul limite di una somma. ( x) l2. allora Teorema sul ite di una somma Se f ( ) l e g( ) l allora [ f ( ) g( ) ] l l Il teorema vale anche per i casi in cui tende a più infinito oppure a infinito. La dimostrazione è analoga a quella vista qui

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

~ 1 ~ CALCOLO DEI LIMITI

~ 1 ~ CALCOLO DEI LIMITI ~ ~ CALCOLO DEI LIMITI ) Limiti che si presentano nella forma l. Pur non essendo forme indeterminate (il risultato è indicato convenzionalmente con i, nel senso che la funzione tende, in valore assoluto,

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

Calcolo I, a.a Primo esonero 11 novembre k + 2 k

Calcolo I, a.a Primo esonero 11 novembre k + 2 k Calcolo I, a.a. 015 016 Primo esonero 11 novembre 015 1) 6 punti Dimostrare per induzione che 5 n +, n 1. Se n = 1 la disuguaglianza si riduce a 5 + che è vera. Supponiamo ora che la disuguaglianza sia

Dettagli

Confronto locale di funzioni Test di autovalutazione

Confronto locale di funzioni Test di autovalutazione Test di autovalutazione 1. Per x 0: (a) x 3 = o(x 4 ) (b) x 4 = o(sin x 2 ) (c) x 3 x 3 + 1 (d) x 7 + x x 2 x 2. Il limite lim x 0 + (a) vale 0 (b) non esiste (c) vale 2 (d) è infinito 4x 3 x ln x tan

Dettagli

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 DEFINIZIONE 1 LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0,

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli