Risoluzione delle equazioni di terzo grado

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risoluzione delle equazioni di terzo grado"

Transcript

1 Università degli studi di Palermo SISSIS Anno Accademico Laboratorio di Algebra Risoluzione delle equazioni di terzo grado Prof. Michele Cipolla Relatori: Maria Elena Bono Floreana Bono Silvana Pupello Marcella Urso

2 Risoluzione delle equazioni di terzo grado Introduzione Lo scopo della presente unità didattica è quello di consentire una maturazione e un arricchimento interiore degli allievi, soprattutto sul piano delle conoscenze pure e delle capacità intellettuali, riflessive e critiche; non si propongono conoscenze efficaci, o capacità operative applicabili nelle attività lavorative e produttive. Pertanto essa può essere inserita all interno di una programmazione di una quinta classe di un liceo scientifico, in cui è stata già raggiunta una maturazione culturale e sono stati acquisiti metodi di critica e riflessione. Prerequisiti Avere padronanza delle tecniche del calcolo algebrico Saper utilizzare il software Derive per trovare le radici di un equazione Saper descrivere rapidamente e con precisione, mediante l uso delle lettere, sia relazioni matematiche sia fenomeni connessi con la fisica, l economia e le altre scienze Aver acquisito le tecniche per la risoluzione delle equazioni di primo e secondo grado Saper applicare la regola di Ruffini Saper lavorare con radicali Saper risolvere le equazioni di secondo grado anche quando <0, quindi saper operare con radicali di numeri negativi Conoscere e saper utilizzare le proprietà dei numeri complessi Obiettivi Conoscere la storia relativa alla risoluzione delle equazioni di terzo grado Risolvere problemi modellizzabili mediante equazioni di grado superiore al secondo Saper estrapolare l esistenza dell unità immaginaria in altri contesti

3 Motivazione Uno dei più importanti progressi compiuti dalla cultura italiana negli ultimi trent anni è stato il superamento della separazione tra scienze umane e scienze naturali ed esatte e il riconoscimento della rilevanza, non solo pratica, ma anche conoscitiva, culturale, sociale della ricerca matematica e sperimentale. In questo contesto acquista una sempre maggiore valenza l introduzione storica di alcune questioni matematiche fondamentali; come la disputa tra Cardano e Tartaglia relativa alla scoperta-invenzione delle formule risolutive delle equazioni di grado. È ormai assodato che oggi, con lo sviluppo tecnologico e l introduzione dei calcolatori, molti problemi di natura algebrica e logica sono di facile risoluzione e non necessitano di rigorosi percorsi, tuttavia analizzare e discutere problemi del genere può favorire il naturale processo di sviluppo cognitivo dell alunno, promuovendo l astrazione e la strutturazione di problemi per ricavarne algoritmi risolutivi. Si deve tenere presente che la speculazione matematica è elemento essenziale alla formazione umana, non meno di alcun altro tipo di studio; fornisce un mezzo insostituibile per un completo sviluppo della mente, con effetti sulle caratteristiche della personalità, dal momento che crea nell individuo capacità di riflessione, di equilibrio, di obiettività di giudizio. Impostazione didattico-metodologica Si propongono agli alunni problemi risolvibili mediante equazioni di grado, frutto dell ingegno di Diofanto, Fior e Tartaglia, quest ultimi protagonisti di famose matematiche disfide. Si invitano gli alunni a risolvere le equazioni ottenute mediante l utilizzo del software Derive e si analizzano le soluzioni visualizzate. La scelta del software Derive non è del tutto casuale: gli strumenti tecnologici all interno del processo insegnamento-apprendimento sono fondamentali per guidare gli studenti a fare matematica rendendoli a poco a poco autonomi nel costruire il proprio sapere e nell affrontare situazioni problematiche; essi, tuttavia, non devono essere lasciati in libera gestione agli studenti, perché la tecnologia da sola non produce apprendimento consapevole.

4 A questo punto l insegnante fa osservare che l algoritmo implementato nel software fa riferimento alle Formule Cardaniche. Prima di procedere nella formalizzazione matematica si riterrà opportuno, mettere in chiara evidenza il periodo storico in cui furono elaborate le suddette formule. In questo contesto, l insegnante avrà cura di motivare l apprendimento dell argomento, sottolineando il fatto che all epoca in cui venivano affrontati queste questioni si avevano ben pochi strumenti a disposizione e gli uomini potevano affidarsi solo all astuzia e all ingegno. Problema posto da Diofanto (III sec. d. C.) Trovare un triangolo rettangolo tale che l area aggiunta all ipotenusa sia un quadrato, mentre il perimetro un cubo. Problemi posti da Fior -Trovare un numero che, sommato alla sua radice cubica, dia come risultato sei. -Un ebreo presta un capitale a condizione che alla fine dell'anno gli venga pagata come interesse la radice cubica del capitale. Alla fine dell'anno, l'ebreo riceve ottocento ducati, tra capitale e interessi. Qual era il capitale? Problemi posti da Tartaglia -Un vascello sul quale si trovano quindici turchi e quindici cristiani viene colpito da una tempesta e il capitano ordina di gettare fuori bordo la metà dei passeggeri. Per sceglierli si procederà come segue: tutti i passeggeri verranno disposti in cerchio e, cominciando a contare a partire da un certo punto, ogni nono passeggero verrà gettato in mare. In che modo si devono disporre i passeggeri perché solo i turchi siano designati dalla sorte per essere gettati a mare? -Suddividere un segmento di lunghezza data in tre segmenti con i quali sia possibile costruire un triangolo rettangolo. -Una botte è piena di vino puro. Ogni giorno se ne attingono due secchi, che 4

5 vengono sostituiti con due secchi d'acqua. In capo a sei giorni, la botte è piena per metà d'acqua e per metà di vino. Qual era la sua capacità? Tra tutti i problemi introdotti abbiamo scelto di discutere il seguente proposto da Fior: Un ebreo presta un capitale a condizione che alla fine dell'anno gli venga pagata come interesse la radice cubica del capitale. Alla fine dell'anno, l'ebreo riceve otto (ottocento) ducati, tra capitale e interessi. Qual era il capitale? Soluzione Posto la quantità di capitale da ricavare, il problema si traduce nell equazione: = = 8 = 8 ( 8 ) Sviluppando tale cubo di binomio si ottiene la seguente equazione di terzo grado: 4 5 = 0 questa equazione può essere ricondotta ad una del tipo p = q, sostituendo a nel caso specifico si ottiene la seguente: = 8 Se risolviamo tale equazione con Derive si ottengono le tre soluzioni: 5

6 = 4 4 = = i i In particolare i valori approssimati sono i seguenti: = = i.8766 = i.8766 Evidentemente le soluzioni ottenute lasceranno gli alunni assai perplessi e poco convinti della riuscita del problema: si tratta di radici non tutte reali e con la presenza di estrazioni di radice cubiche. In questa fase nasce l esigenza di introdurre le formule cardaniche mediante una trattazione rigorosa sia da un punto di vista storico che analitico. Storia e Matematica Da Archimede a Gerolamo Cardano, dal III sec. a. C. al XVI sec. d. C., intercorrono quasi millenni. Ebbene, tanto tempo ci volle perché si ottenesse un risultato matematico veramente nuovo, rispetto alle conoscenze dei Greci. Per un matematico greco, il problema della determinazione della radice si poneva in modo completamente diverso rispetto al metodo algebrico elaborato dagli Arabi: il matematico greco era un geometra puro, accettava come soluzioni solo segmenti costruibili in modo esatto con la riga e il compasso, a partire dai dati. Gli Arabi e gli Europei occidentali fino al 500, non andavano al di là della soluzione di problemi traducibili in equazioni di grado. La storia del rinvenimento della formula risolutiva dell'equazione di terzo grado si sviluppa nella prima metà del 500. Come tutte le storie, soprattutto quelle in cui sono coinvolte più persone, è piuttosto intricata e difficile da ricostruire. I personaggi sono tutti italiani: Scipione dal Ferro, il suo allievo Antonio Maria Fior, Niccolò Fontana, detto Tartaglia e Gerolamo Cardano. 6

7 La difficoltà storica di attribuire la paternità di una formula è legata alle motivazioni socio-economiche che spingono questi matematici verso la ricerca scientifica. Da un lato c'è l'urgenza di scoprire le leggi della balistica, dall'altro la bravura di un matematico si misura con sfide pubbliche, delle vere e proprie gare di matematica. Il matematico si comportava in fondo, come l artigiano-artista, che custodisce gelosamente i segreti della sua bottega. Perciò, chi aveva una formula, o un metodo per risolvere un problema duro da masticare, non diceva niente a nessuno. Per dimostrare che era più bravo degli altri, quando un matematico era in possesso di una scoperta nuova, inviava un cartello di matematica disfida a qualche famoso lettore. Naturalmente se lo sfidato gettava la spugna, lo sfidante doveva dare lui la soluzione, altrimenti era squalificato per gioco scorretto. Il febbraio 55 si tiene una sfida tra Tartaglia e Fior: ciascuno propone all'altro trenta problemi da risolvere nel più breve tempo possibile. Tartaglia risolve rapidamente i problemi di Fior, mentre quest'ultimo non riesce a risolverne nessuno. Tutti i problemi si risolvevano per mezzo di equazioni di terzo grado; quelli proposti da Fior potevano essere ricondotti tutti all'unico tipo che conosceva di equazione di terzo grado, la cui formula risolutiva gli era stata rivelata dal suo maestro Scipione dal Ferro. La schiacciante vittoria di Tartaglia dimostrava che questi aveva trovato un metodo per risolvere tutte le equazioni di terzo grado. La notizia giunge a Cardano, medico, scienziato e astrologo dalla fama internazionale. Cardano cerca di convincere Tartaglia a rivelargli la formula, lo lusinga, lo minaccia, gli fa promesse. Dopo numerose insistenze Tartaglia cede richiedendo che la formula restasse segreta. Tartaglia la comunica a Cardano inviando i seguenti versi: Quando che 'l cubo con le cose appresso p Se agguaglia a qualche numero discreto: = q Trovami dui altri, differenti in esso; u-v = q Dapoi terrai, questo per consueto, Che 'l loro produtto, sempre sia eguale u v = Al terzo cubo delle cose netto; (p/) El residuo poi suo generale, Delli lor lati cubi, ben sottratti u Varrà la tua cosa principale. = In el secondo, de cotesti atti; Quando che 'l cubo, restasse lui solo, Tu osserverai quest'altri contratti, Del numer farai due tal part' a volo, v 7

8 Che l' una, in l' altra, si produca schietto, El terzo cubo delle cose in stolo; Delle quali poi, per commun precetto, Terrai li lati cubi, insieme gionti, El cotal somma, sarà il tuo concetto; El terzo, poi de questi nostri conti, Se solve col secondo, se ben guardi Che per natura son quasi congionti, Questi trovai, et non con passi tardi Nel mille cinquecent' e quattro e trenta; Con fondamenti ben saldi, e gagliardi; Nella Città del mar 'intorno centa. Nel 545, contravvenendo alla promessa verso Tartaglia, Cardano pubblica nell'ars magna la formula risolutiva delle equazioni di terzo grado. Invece di trattare la formula generale con il complesso linguaggio che ne sarebbe derivato, Cardano affronta un caso particolare, un esempio diremmo oggi, sottintendendo che il metodo si può applicare a qualsiasi caso. La formula generale data da Cardano è la seguente: q q 4 p 7 q q 4 = p 7 Applichiamo il procedimento suggerito da Tartaglia per risolvere il problema di Fior, partiamo dall equazione applicando il procedimento di Tartaglia si ha sostituendo la () nella () si ottiene da cui = -8 u-v = -8 () u v = /7 () (-8 v) v = /7 7 v 6v - = 0 Applicando la formula risolutiva delle equazioni di grado si ha 8

9 v, = 4 ± la radice positiva è v = 4 conseguentemente u = - 4 Infine = Confrontando questa soluzione con le soluzioni ottenute mediante Derive sembra che ne manchino due;in realtà questa formula dà valori di, poiché ognuno dei radicali cubici ha valori. Fra questi valori occorre però scegliere quelli che soddisfano alla condizione u v = p/ Pertanto scelto un valore u per il primo radicale cubico, si sceglierà v = - p/ u e così si avrà una prima radice = u p u e le altre due saranno: = åu = å u å v åv

10 dove å e å rappresentano le due radici cubiche dell unità: å = i å = i Indicata con R la quantità q 4 p è facile rendersi conto che: 7 ) Se R>0 l equazione ha una radice reale e due complesse coniugate; ) Se R=0 ha tutte le radici reali, di cui una è di molteplicità due; ) Se R<0 ha tre radici reali distinte L ultimo caso è particolarmente interessante in quanto, benché le radici siano reali, il loro calcolo, secondo la formula di Cardano, necessita dell estrazione di radici cubiche di numeri complessi: in effetti, per la regola dei segni, ogni quadrato di un numero reale (positivo o negativo) è positivo, quindi un numero negativo non può avere radici quadrate. Di fronte a queste difficoltà, gli algebristi italiani e i loro successori, in particolare ricordiamo il matematico R. Bombelli, non esitarono a eseguire calcoli sui numeri del tipo a, dove a>0, come se questi numeri esistessero, vale a dire applicando nei loro riguardi le regole usuali dell algebra, e ponendo ( ) = a. a Si nota facilmente che la formula di Cardano necessita di grandi abilità di calcolo sia con radicali sia con numeri complessi; pertanto spesso il loro utilizzo non è consigliato per la risoluzione manuale dell equazione di terzo grado, ma trova applicazione semplicemente negli algoritmi elaborati da un calcolatore. 0

11 Bibliografia essenziale C. B. Boyer, Storia della matematica, Mondadori, Milano, 80, pp. 8-. G. Loria, Storia delle matematiche, Hoepli, Milano, 50, pp M. Klein, Mathematical thought from ancient to modern times, Oford University Press, New York, 7, pp

la rilevazione degli apprendimenti INVALSI

la rilevazione degli apprendimenti INVALSI I quadri di riferimento: Matematica Il Quadro di Riferimento (QdR) per le prove di valutazione dell'invalsi di matematica presenta le idee chiave che guidano la progettazione delle prove, per quanto riguarda:

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969 80785696 718753 76 2=1,414213562

Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969 80785696 718753 76 2=1,414213562 mathematica [mentis] rubrica di cultura matematica a cura del CIRPU resp. scient. Prof. Italo Di Feo La radice 2 di Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

La prova di matematica nelle indagini IEA TIMSS e

La prova di matematica nelle indagini IEA TIMSS e PIANO DI INFORMAZIONE E FORMAZIONE SULL INDAGINE OCSE-PISA E ALTRE RICERCHE NAZIONALI E INTERNAZIONALI Seminario provinciale rivolto ai docenti del Primo Ciclo La prova di matematica nelle indagini IEA

Dettagli

Allegato A. Il profilo culturale, educativo e professionale dei Licei

Allegato A. Il profilo culturale, educativo e professionale dei Licei Allegato A Il profilo culturale, educativo e professionale dei Licei I percorsi liceali forniscono allo studente gli strumenti culturali e metodologici per una comprensione approfondita della realtà, affinché

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

PERCORSI DI INCLUSIONE E DI INTEGRAZIONE PER ALUNNI CON BISOGNI EDUCATIVI SPECIALI

PERCORSI DI INCLUSIONE E DI INTEGRAZIONE PER ALUNNI CON BISOGNI EDUCATIVI SPECIALI PERCORSI DI INCLUSIONE E DI INTEGRAZIONE PER ALUNNI CON BISOGNI EDUCATIVI SPECIALI ALCUNI DATI L Istituto Trento 5 comprende 3 scuole primarie e 2 scuole secondarie di I grado. Il numero totale di alunni

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009 RICERCA-AZIONE ovvero l insegnamento riflessivo Gli insegnanti sono progettisti.. riflettono sul contesto nel quale devono lavorare sugli obiettivi che vogliono raggiungere decidono quali contenuti trattare

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

TITOLO VALORE DI RIFERIMENTO.

TITOLO VALORE DI RIFERIMENTO. Istituto Comprensivo di Iseo a.s. 2012/2013 Progetto Di Casa nel Mondo - Competenze chiave per una cittadinanza sostenibile Gruppo lavoro Dott. Massetti Scuola Primaria Classi Terze TITOLO: I prodotti

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Anno di corso: 2004/2005. Istruzioni. Istruzioni per lo svolgimento dei progetti didattici. versione 1.1

Anno di corso: 2004/2005. Istruzioni. Istruzioni per lo svolgimento dei progetti didattici. versione 1.1 versione 1.1 per lo svolgimento dei progetti didattici Corso di Laboratorio di Programmazione II Prof. Luca Forlizzi Anno Accademico 2004-2005 GENERALITÀ...3 Scopo del documento...3 Struttura del documento...3

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

RELAZIONE PROGETTO THE ANIMATED E-BOOK

RELAZIONE PROGETTO THE ANIMATED E-BOOK RELAZIONE PROGETTO THE ANIMATED E-BOOK Nome scuola: ISTITUTO TECNICO COMMERCIALE D. ROMANAZZI Indirizzo: VIA C. ULPIANI, 6/A cap. 70126 città: BARI provincia: BA tel.: 080 5425611 fax: 080 5426492 e-mail:

Dettagli

Ri...valutando: azione e ricerca per il miglioramento

Ri...valutando: azione e ricerca per il miglioramento Il team di ricerca Mario Ambel (Responsabile) Anna Curci Emiliano Grimaldi Annamaria Palmieri 1. Progetto finalizzato alla elaborazione e validazione di un modellostandard - adattabile con opportune attenzioni

Dettagli

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle scatole alle figure piane Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle Indicazioni nazionali per il curricolo Le conoscenze matematiche contribuiscono alla formazione

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

«Questo matrimonio s ha da fare»

«Questo matrimonio s ha da fare» «Questo matrimonio s ha da fare» Italiano e matematica nella scuola del terzo millennio Convegno 25 giugno 2015 Teatro di Locarno e Dipartimento formazione e apprendimento Contro i luoghi comuni Simone

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri Giovanna Mayer Nucleo: Numeri Introduzione Tematica: Si propongono attività e giochi per sviluppare in modo più consapevole la capacità di confrontare frazioni, confrontare numeri decimali e successivamente

Dettagli

Mario Polito IARE: Press - ROMA

Mario Polito IARE: Press - ROMA Mario Polito info@mariopolito.it www.mariopolito.it IMPARARE A STUD IARE: LE TECNICHE DI STUDIO Come sottolineare, prendere appunti, creare schemi e mappe, archiviare Pubblicato dagli Editori Riuniti University

Dettagli

Classe V A a.s. 2012/2013 Liceo Classico Vitruvio Pollione

Classe V A a.s. 2012/2013 Liceo Classico Vitruvio Pollione Classe V A a.s. 2012/2013 Liceo Classico Vitruvio Pollione Algebra Geometria Il triangolo è una figura piana chiusa, delimitata da tre rette che si incontrano in tre vertici. I triangoli possono essere

Dettagli

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N.

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N. FORMAT DELL UNITÀ DI APPRENDIMENTO Scuola secondaria 1 grado S.Ricci di Belluno classe 2 ULSS n.1 Belluno Autori: PERSONALE AZIENDA ULSS N. 1 BELLUNO: Dr.ssa Mel Rosanna Dirigente medico SISP (Dipartimento

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione?

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Scrive Thomas Eliot: Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Interrogativi integrati da: Dov è l informazione che abbiamo perso nei dati?

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

GRIGLIE DI VALUTAZIONE ESAMI DI STATO

GRIGLIE DI VALUTAZIONE ESAMI DI STATO GRIGLIE DI VALUTAZIONE ESAMI DI STATO a cura di Salvatore Madaghiele SCHEDA DI VALUTAZIONE DELLA PRIMA PROVA SCRITTA: ITALIANO N. Candidato Classe Sesso: M F Data di nascita: Tema scelto: A B1 n. B2 n.

Dettagli

I. C. LENTINI LAURIA PROGETTO SPORTELLO D ASCOLTO PSICOLOGICO UNO SPAZIO PER PENSARE, PER ESSERE, PER DIVENTARE

I. C. LENTINI LAURIA PROGETTO SPORTELLO D ASCOLTO PSICOLOGICO UNO SPAZIO PER PENSARE, PER ESSERE, PER DIVENTARE ISTITUTO COMPRENSIVO STATALE di Sc. Materna Elementare e Media LENTINI 85045 LAURIA (PZ) Cod. Scuola: PZIC848008 Codice Fisc.: 91002150760 Via Roma, 102 - e FAX: 0973823292 I. C. LENTINI LAURIA PROGETTO

Dettagli

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) 1 LA LUCE NELLA STORIA Nell antica Grecia c era chi (i pitagorici) pensavano che ci fossero dei fili sottili che partono dagli

Dettagli

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI G. FANO (Torino - Italia) SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI 1. - La distinzione, che pareva tradizionale, tra scienze di ragionamento e scienze sperimentali è ormai

Dettagli

Quando a scuola ci si esercita nel far del gruppo il soggetto che apprende

Quando a scuola ci si esercita nel far del gruppo il soggetto che apprende Workshop n. 3 Quando a scuola ci si esercita nel far del gruppo il soggetto che apprende Introducono il tema e coordinano i lavori - Irene Camolese, Confcooperative - Franca Marchesi, Istituto Comprensivo

Dettagli

VENDI QUELLO CHE HAI E SEGUIMI. Commento al Vangelo di p. Alberto Maggi OSM

VENDI QUELLO CHE HAI E SEGUIMI. Commento al Vangelo di p. Alberto Maggi OSM XXVIII TEMPO ORDINARIO 11 ottobre 2009 VENDI QUELLO CHE HAI E SEGUIMI Commento al Vangelo di p. Alberto Maggi OSM Mc 10, 17-30 [In quel tempo], mentre Gesù andava per la strada, un tale gli corse incontro

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI 6.1 ISTRUZIONI PER IL VALUTATORE Il processo di valutazione si articola in quattro fasi. Il Valutatore deve: 1 leggere il questionario;

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

PICCOLA GUIDA ALLE OPERE DELLA SALA CONSULTAZIONE

PICCOLA GUIDA ALLE OPERE DELLA SALA CONSULTAZIONE PICCOLA GUIDA ALLE OPERE DELLA SALA CONSULTAZIONE La Sala consultazione della Biblioteca Provinciale P. Albino è organizzata secondo il principio dell accesso diretto da parte dell utenza al materiale

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

12 ATTIVARE LE RISORSE DEL GRUPPO CLASSE. Figura 1 OTTO STRATEGIE PER VALORIZZARE IL GRUPPO CLASSE COME RISORSA EDUCATIVA E DIDATTICA

12 ATTIVARE LE RISORSE DEL GRUPPO CLASSE. Figura 1 OTTO STRATEGIE PER VALORIZZARE IL GRUPPO CLASSE COME RISORSA EDUCATIVA E DIDATTICA 12 ATTIVARE LE RISORSE DEL GRUPPO CLASSE Figura 1 OTTO STRATEGIE PER VALORIZZARE IL GRUPPO CLASSE COME RISORSA EDUCATIVA E DIDATTICA LE CARATTERISTICHE PEDAGOGICHE DEL GRUPPO CLASSE 13 1 Le caratteristiche

Dettagli

Descrizione della pratica: 1. Identificazione:

Descrizione della pratica: 1. Identificazione: Descrizione della pratica: 1. Identificazione: Istituto scolastico dove si sviluppa la pratica: Al momento attuale (maggio 2008) partecipano al progetto n. 47 plessi di scuola primaria e n. 20 plessi di

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

La didattica personalizzata: utopia o realtà?

La didattica personalizzata: utopia o realtà? La didattica personalizzata: utopia o realtà? L integrazione di qualità è anche la qualità positiva per tutti gli attori coinvolti nei processi di integrazione, non solo per l alunno in difficoltà. Se

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Esempi di utilizzazione dell ADVP

Esempi di utilizzazione dell ADVP Esempi di utilizzazione dell ADVP G. Cappuccio Ipssar P. Borsellino ESERCIZIO DI REALIZZAZIONE IL VIAGGIO Guida per l insegnante Questo esercizio è un modo pratico per coinvolgere l alunno nel progetto

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING IL PROBLEM SOLVING nella pratica didattica attività di soluzione di problemi Che cos è un problema? 3 Che cos è un problema?

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare Istituto di Riabilitazione ANGELO CUSTODE PARLARE E CONTARE ALLA SCUOLA DELL INFANZIA Lo sviluppo delle abilità logico-matematiche nei bambini in età prescolare Dott.ssa Liana Belloni Dott.ssa Claudia

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

CURSOS AVE CON TUTOR

CURSOS AVE CON TUTOR CURSOS AVE CON TUTOR DOMANDE PIÙ FREQUENTI (FAQ) A che ora ed in quali giorni sono fissate le lezioni? Dal momento in cui riceverai le password di accesso al corso sei libero di entrare quando (24/24)

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Compiti di prestazione e prove di competenza

Compiti di prestazione e prove di competenza SPF www.successoformativo.it Compiti di prestazione e prove di competenza Maurizio Gentile www.successoformativo.it www.iprase.tn.it www.erickson.it Definizione 2 I compiti di prestazione possono essere

Dettagli

Esser Genitori dei Bambini Indaco e Cristallo: Crescerli col Cuore

Esser Genitori dei Bambini Indaco e Cristallo: Crescerli col Cuore Esser Genitori dei Bambini Indaco e Cristallo: Crescerli col Cuore Crescere un bambino Indaco o Cristallo è un privilegio speciale in questo momento di turbolenze e cambiamenti. Come genitori, state contribuendo

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Il quadro europeo delle qualifiche (EQF)

Il quadro europeo delle qualifiche (EQF) Il quadro europeo delle qualifiche (EQF) di A. Sveva Balduini ISFOL Agenzia Nazionale LLP Nell aprile del 2008, al termine di un lungo lavoro preparatorio e dopo un ampio processo di consultazione che

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

ISTITUTO STATALE D ISTRUZIONE SECONDARIA SUPERIORE CARLO LIVI

ISTITUTO STATALE D ISTRUZIONE SECONDARIA SUPERIORE CARLO LIVI ISTITUTO STATALE D ISTRUZIONE SECONDARIA SUPERIORE CARLO LIVI Via Pietro Maroncelli 33 59013 Montemurlo (Prato) tel. +39 0574 683312 fax +39 0574 689194 email pois00300c@istruzione.it pec pois00300c@pec.istruzione.it

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Gli strumenti per una didattica inclusiva

Gli strumenti per una didattica inclusiva STRUMENTI PER UNA DIDATTICA INCLUSIVA Ottilia Gottardi CTI Monza Est Gli strumenti per una didattica inclusiva Ottilia Gottardi CTI Monza Est PRINCIPI della PEDAGOGIA INCLUSIVA Tutti possono imparare;

Dettagli

Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA

Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA PREMESSA A tutt oggi i documenti ufficiali a cui ogni docente di lingue straniere è chiamato a far riferimento nel suo lavoro quotidiano,

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

IL CURRICOLO D ITALIANO COME LINGUA STARNIERA

IL CURRICOLO D ITALIANO COME LINGUA STARNIERA IL CURRICOLO D ITALIANO COME LINGUA STARNIERA INDICE INTRODUZIONE scuola media obiettivo generale linee di fondo : mete educative e mete specifiche le abilità da sviluppare durante le sei sessioni alcune

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli