Risoluzione delle equazioni di terzo grado

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risoluzione delle equazioni di terzo grado"

Transcript

1 Università degli studi di Palermo SISSIS Anno Accademico Laboratorio di Algebra Risoluzione delle equazioni di terzo grado Prof. Michele Cipolla Relatori: Maria Elena Bono Floreana Bono Silvana Pupello Marcella Urso

2 Risoluzione delle equazioni di terzo grado Introduzione Lo scopo della presente unità didattica è quello di consentire una maturazione e un arricchimento interiore degli allievi, soprattutto sul piano delle conoscenze pure e delle capacità intellettuali, riflessive e critiche; non si propongono conoscenze efficaci, o capacità operative applicabili nelle attività lavorative e produttive. Pertanto essa può essere inserita all interno di una programmazione di una quinta classe di un liceo scientifico, in cui è stata già raggiunta una maturazione culturale e sono stati acquisiti metodi di critica e riflessione. Prerequisiti Avere padronanza delle tecniche del calcolo algebrico Saper utilizzare il software Derive per trovare le radici di un equazione Saper descrivere rapidamente e con precisione, mediante l uso delle lettere, sia relazioni matematiche sia fenomeni connessi con la fisica, l economia e le altre scienze Aver acquisito le tecniche per la risoluzione delle equazioni di primo e secondo grado Saper applicare la regola di Ruffini Saper lavorare con radicali Saper risolvere le equazioni di secondo grado anche quando <0, quindi saper operare con radicali di numeri negativi Conoscere e saper utilizzare le proprietà dei numeri complessi Obiettivi Conoscere la storia relativa alla risoluzione delle equazioni di terzo grado Risolvere problemi modellizzabili mediante equazioni di grado superiore al secondo Saper estrapolare l esistenza dell unità immaginaria in altri contesti

3 Motivazione Uno dei più importanti progressi compiuti dalla cultura italiana negli ultimi trent anni è stato il superamento della separazione tra scienze umane e scienze naturali ed esatte e il riconoscimento della rilevanza, non solo pratica, ma anche conoscitiva, culturale, sociale della ricerca matematica e sperimentale. In questo contesto acquista una sempre maggiore valenza l introduzione storica di alcune questioni matematiche fondamentali; come la disputa tra Cardano e Tartaglia relativa alla scoperta-invenzione delle formule risolutive delle equazioni di grado. È ormai assodato che oggi, con lo sviluppo tecnologico e l introduzione dei calcolatori, molti problemi di natura algebrica e logica sono di facile risoluzione e non necessitano di rigorosi percorsi, tuttavia analizzare e discutere problemi del genere può favorire il naturale processo di sviluppo cognitivo dell alunno, promuovendo l astrazione e la strutturazione di problemi per ricavarne algoritmi risolutivi. Si deve tenere presente che la speculazione matematica è elemento essenziale alla formazione umana, non meno di alcun altro tipo di studio; fornisce un mezzo insostituibile per un completo sviluppo della mente, con effetti sulle caratteristiche della personalità, dal momento che crea nell individuo capacità di riflessione, di equilibrio, di obiettività di giudizio. Impostazione didattico-metodologica Si propongono agli alunni problemi risolvibili mediante equazioni di grado, frutto dell ingegno di Diofanto, Fior e Tartaglia, quest ultimi protagonisti di famose matematiche disfide. Si invitano gli alunni a risolvere le equazioni ottenute mediante l utilizzo del software Derive e si analizzano le soluzioni visualizzate. La scelta del software Derive non è del tutto casuale: gli strumenti tecnologici all interno del processo insegnamento-apprendimento sono fondamentali per guidare gli studenti a fare matematica rendendoli a poco a poco autonomi nel costruire il proprio sapere e nell affrontare situazioni problematiche; essi, tuttavia, non devono essere lasciati in libera gestione agli studenti, perché la tecnologia da sola non produce apprendimento consapevole.

4 A questo punto l insegnante fa osservare che l algoritmo implementato nel software fa riferimento alle Formule Cardaniche. Prima di procedere nella formalizzazione matematica si riterrà opportuno, mettere in chiara evidenza il periodo storico in cui furono elaborate le suddette formule. In questo contesto, l insegnante avrà cura di motivare l apprendimento dell argomento, sottolineando il fatto che all epoca in cui venivano affrontati queste questioni si avevano ben pochi strumenti a disposizione e gli uomini potevano affidarsi solo all astuzia e all ingegno. Problema posto da Diofanto (III sec. d. C.) Trovare un triangolo rettangolo tale che l area aggiunta all ipotenusa sia un quadrato, mentre il perimetro un cubo. Problemi posti da Fior -Trovare un numero che, sommato alla sua radice cubica, dia come risultato sei. -Un ebreo presta un capitale a condizione che alla fine dell'anno gli venga pagata come interesse la radice cubica del capitale. Alla fine dell'anno, l'ebreo riceve ottocento ducati, tra capitale e interessi. Qual era il capitale? Problemi posti da Tartaglia -Un vascello sul quale si trovano quindici turchi e quindici cristiani viene colpito da una tempesta e il capitano ordina di gettare fuori bordo la metà dei passeggeri. Per sceglierli si procederà come segue: tutti i passeggeri verranno disposti in cerchio e, cominciando a contare a partire da un certo punto, ogni nono passeggero verrà gettato in mare. In che modo si devono disporre i passeggeri perché solo i turchi siano designati dalla sorte per essere gettati a mare? -Suddividere un segmento di lunghezza data in tre segmenti con i quali sia possibile costruire un triangolo rettangolo. -Una botte è piena di vino puro. Ogni giorno se ne attingono due secchi, che 4

5 vengono sostituiti con due secchi d'acqua. In capo a sei giorni, la botte è piena per metà d'acqua e per metà di vino. Qual era la sua capacità? Tra tutti i problemi introdotti abbiamo scelto di discutere il seguente proposto da Fior: Un ebreo presta un capitale a condizione che alla fine dell'anno gli venga pagata come interesse la radice cubica del capitale. Alla fine dell'anno, l'ebreo riceve otto (ottocento) ducati, tra capitale e interessi. Qual era il capitale? Soluzione Posto la quantità di capitale da ricavare, il problema si traduce nell equazione: = = 8 = 8 ( 8 ) Sviluppando tale cubo di binomio si ottiene la seguente equazione di terzo grado: 4 5 = 0 questa equazione può essere ricondotta ad una del tipo p = q, sostituendo a nel caso specifico si ottiene la seguente: = 8 Se risolviamo tale equazione con Derive si ottengono le tre soluzioni: 5

6 = 4 4 = = i i In particolare i valori approssimati sono i seguenti: = = i.8766 = i.8766 Evidentemente le soluzioni ottenute lasceranno gli alunni assai perplessi e poco convinti della riuscita del problema: si tratta di radici non tutte reali e con la presenza di estrazioni di radice cubiche. In questa fase nasce l esigenza di introdurre le formule cardaniche mediante una trattazione rigorosa sia da un punto di vista storico che analitico. Storia e Matematica Da Archimede a Gerolamo Cardano, dal III sec. a. C. al XVI sec. d. C., intercorrono quasi millenni. Ebbene, tanto tempo ci volle perché si ottenesse un risultato matematico veramente nuovo, rispetto alle conoscenze dei Greci. Per un matematico greco, il problema della determinazione della radice si poneva in modo completamente diverso rispetto al metodo algebrico elaborato dagli Arabi: il matematico greco era un geometra puro, accettava come soluzioni solo segmenti costruibili in modo esatto con la riga e il compasso, a partire dai dati. Gli Arabi e gli Europei occidentali fino al 500, non andavano al di là della soluzione di problemi traducibili in equazioni di grado. La storia del rinvenimento della formula risolutiva dell'equazione di terzo grado si sviluppa nella prima metà del 500. Come tutte le storie, soprattutto quelle in cui sono coinvolte più persone, è piuttosto intricata e difficile da ricostruire. I personaggi sono tutti italiani: Scipione dal Ferro, il suo allievo Antonio Maria Fior, Niccolò Fontana, detto Tartaglia e Gerolamo Cardano. 6

7 La difficoltà storica di attribuire la paternità di una formula è legata alle motivazioni socio-economiche che spingono questi matematici verso la ricerca scientifica. Da un lato c'è l'urgenza di scoprire le leggi della balistica, dall'altro la bravura di un matematico si misura con sfide pubbliche, delle vere e proprie gare di matematica. Il matematico si comportava in fondo, come l artigiano-artista, che custodisce gelosamente i segreti della sua bottega. Perciò, chi aveva una formula, o un metodo per risolvere un problema duro da masticare, non diceva niente a nessuno. Per dimostrare che era più bravo degli altri, quando un matematico era in possesso di una scoperta nuova, inviava un cartello di matematica disfida a qualche famoso lettore. Naturalmente se lo sfidato gettava la spugna, lo sfidante doveva dare lui la soluzione, altrimenti era squalificato per gioco scorretto. Il febbraio 55 si tiene una sfida tra Tartaglia e Fior: ciascuno propone all'altro trenta problemi da risolvere nel più breve tempo possibile. Tartaglia risolve rapidamente i problemi di Fior, mentre quest'ultimo non riesce a risolverne nessuno. Tutti i problemi si risolvevano per mezzo di equazioni di terzo grado; quelli proposti da Fior potevano essere ricondotti tutti all'unico tipo che conosceva di equazione di terzo grado, la cui formula risolutiva gli era stata rivelata dal suo maestro Scipione dal Ferro. La schiacciante vittoria di Tartaglia dimostrava che questi aveva trovato un metodo per risolvere tutte le equazioni di terzo grado. La notizia giunge a Cardano, medico, scienziato e astrologo dalla fama internazionale. Cardano cerca di convincere Tartaglia a rivelargli la formula, lo lusinga, lo minaccia, gli fa promesse. Dopo numerose insistenze Tartaglia cede richiedendo che la formula restasse segreta. Tartaglia la comunica a Cardano inviando i seguenti versi: Quando che 'l cubo con le cose appresso p Se agguaglia a qualche numero discreto: = q Trovami dui altri, differenti in esso; u-v = q Dapoi terrai, questo per consueto, Che 'l loro produtto, sempre sia eguale u v = Al terzo cubo delle cose netto; (p/) El residuo poi suo generale, Delli lor lati cubi, ben sottratti u Varrà la tua cosa principale. = In el secondo, de cotesti atti; Quando che 'l cubo, restasse lui solo, Tu osserverai quest'altri contratti, Del numer farai due tal part' a volo, v 7

8 Che l' una, in l' altra, si produca schietto, El terzo cubo delle cose in stolo; Delle quali poi, per commun precetto, Terrai li lati cubi, insieme gionti, El cotal somma, sarà il tuo concetto; El terzo, poi de questi nostri conti, Se solve col secondo, se ben guardi Che per natura son quasi congionti, Questi trovai, et non con passi tardi Nel mille cinquecent' e quattro e trenta; Con fondamenti ben saldi, e gagliardi; Nella Città del mar 'intorno centa. Nel 545, contravvenendo alla promessa verso Tartaglia, Cardano pubblica nell'ars magna la formula risolutiva delle equazioni di terzo grado. Invece di trattare la formula generale con il complesso linguaggio che ne sarebbe derivato, Cardano affronta un caso particolare, un esempio diremmo oggi, sottintendendo che il metodo si può applicare a qualsiasi caso. La formula generale data da Cardano è la seguente: q q 4 p 7 q q 4 = p 7 Applichiamo il procedimento suggerito da Tartaglia per risolvere il problema di Fior, partiamo dall equazione applicando il procedimento di Tartaglia si ha sostituendo la () nella () si ottiene da cui = -8 u-v = -8 () u v = /7 () (-8 v) v = /7 7 v 6v - = 0 Applicando la formula risolutiva delle equazioni di grado si ha 8

9 v, = 4 ± la radice positiva è v = 4 conseguentemente u = - 4 Infine = Confrontando questa soluzione con le soluzioni ottenute mediante Derive sembra che ne manchino due;in realtà questa formula dà valori di, poiché ognuno dei radicali cubici ha valori. Fra questi valori occorre però scegliere quelli che soddisfano alla condizione u v = p/ Pertanto scelto un valore u per il primo radicale cubico, si sceglierà v = - p/ u e così si avrà una prima radice = u p u e le altre due saranno: = åu = å u å v åv

10 dove å e å rappresentano le due radici cubiche dell unità: å = i å = i Indicata con R la quantità q 4 p è facile rendersi conto che: 7 ) Se R>0 l equazione ha una radice reale e due complesse coniugate; ) Se R=0 ha tutte le radici reali, di cui una è di molteplicità due; ) Se R<0 ha tre radici reali distinte L ultimo caso è particolarmente interessante in quanto, benché le radici siano reali, il loro calcolo, secondo la formula di Cardano, necessita dell estrazione di radici cubiche di numeri complessi: in effetti, per la regola dei segni, ogni quadrato di un numero reale (positivo o negativo) è positivo, quindi un numero negativo non può avere radici quadrate. Di fronte a queste difficoltà, gli algebristi italiani e i loro successori, in particolare ricordiamo il matematico R. Bombelli, non esitarono a eseguire calcoli sui numeri del tipo a, dove a>0, come se questi numeri esistessero, vale a dire applicando nei loro riguardi le regole usuali dell algebra, e ponendo ( ) = a. a Si nota facilmente che la formula di Cardano necessita di grandi abilità di calcolo sia con radicali sia con numeri complessi; pertanto spesso il loro utilizzo non è consigliato per la risoluzione manuale dell equazione di terzo grado, ma trova applicazione semplicemente negli algoritmi elaborati da un calcolatore. 0

11 Bibliografia essenziale C. B. Boyer, Storia della matematica, Mondadori, Milano, 80, pp. 8-. G. Loria, Storia delle matematiche, Hoepli, Milano, 50, pp M. Klein, Mathematical thought from ancient to modern times, Oford University Press, New York, 7, pp

EQUAZIONE DI 3 GRADO

EQUAZIONE DI 3 GRADO EQUAZIONE DI GRADO Tre matematici e un equazione in rima Al giorno d oggi, quando un matematico dimostra un teorema, lo comunica ai colleghi di tutto il mondo pubblicando un articolo. Non era così nel

Dettagli

1. Competenze trasversali

1. Competenze trasversali 1 ISTITUTO D ISTRUZIONE SUPERIORE G. CENA SEZIONE TECNICA ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA DI MATEMATICA DOCENTI: PROF. ANGERA GIANFRANCO CLASSE V U TUR Secondo le linee guida, il corso

Dettagli

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini Corsi di Studio: Amministrazione, Finanza e Marketing/IGEA- Costruzioni, Ambiente e Territorio/Geometra Liceo Linguistico/Linguistico Moderno -

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza LICEO SCIENTIFICO STATALE A. GRAMSCI - IVREA ANNO SCOLASTICO 2013-2014 CLASSE 1^F - S.A. PIANO DI LAVORO ANNUALE DI MATEMATICA Prof. Angelo Bozza FINALITA SPECIFICHE DELLA DISCIPLINA E DIDATTICI Le finalità

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi.

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. PROGETTO SeT Il ciclo dell informazione Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. Scuola media Istituto comprensivo di Fagagna (Udine) Insegnanti referenti: Guerra Annalja, Gianquinto

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

I.P.S.S.S E. DE AMICIS - ROMA

I.P.S.S.S E. DE AMICIS - ROMA I.P.S.S.S E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA a.s. 2015-2016 Indirizzo Servizi Socio Sanitari Classe 4 sezione B Docente : Prof.ssa Maria Diomedi Camassei FINALITÀ EDUCATIVE Si perseguono

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

Unità d apprendimento /Competenza

Unità d apprendimento /Competenza Titolo dell Unità di Apprendimento/Competenza: Moltiplichiamo Unità d apprendimento /Competenza Denominazione Classe Competenza/e da sviluppare Prova di accertamento finale Prerequisiti in termini di competenze,

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI INFANZIA I bambini esplorano continuamente la realtà e imparano a riflettere sulle proprie esperienze descrivendole, rappresentandole, riorganizzandole con diversi criteri. Pongono così le basi per la

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

IL PUZZLE INGRANDITO Prof c èc. un problema

IL PUZZLE INGRANDITO Prof c èc. un problema ISTITUTO PROFESSIONALE STATALE PER I SERVIZI COMMERCIALI E TURISTICI E. MORANTE DI SASSUOLO (MO) presenta IL PUZZLE INGRANDITO Prof c èc un problema Classi 1^D e 1^E Docenti: Prof. Vestuti Antonio, Prof.ssa

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

2. Un teorema geniale e divertente anche per la scuola elementare

2. Un teorema geniale e divertente anche per la scuola elementare 051-056 BDM 56 Maurizi imp 21.5.2008 11:49 Pagina 51 II. Didattica 2. Un teorema geniale e divertente anche per la scuola elementare Lorella Maurizi 1 51 Ho proposto ai bambini di una classe quinta della

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

I quesiti di Matematica per la classe di concorso A059

I quesiti di Matematica per la classe di concorso A059 I quesiti di Matematica per la classe di concorso A059 Prof. Michelangelo Di Stasio Liceo Scientifico Statale Galileo Galilei di Piedimonte Matese (CE) michelangelodistasio@tin.it SOMMARIO Si propone la

Dettagli

PIANO DI LAVORO PERSONALE

PIANO DI LAVORO PERSONALE ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

Università di Pisa. Corso di Perfezionamento in Strategie didattiche per promuovere un atteggiamento positivo verso la matematica e la fisica

Università di Pisa. Corso di Perfezionamento in Strategie didattiche per promuovere un atteggiamento positivo verso la matematica e la fisica Università di Pisa Corso di Perfezionamento in Strategie didattiche per promuovere un atteggiamento positivo verso la matematica e la fisica Relazione di Laboratorio 2 A. Blotti, F. Giovannetti 1aprile2007

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

Lavoro di gruppo: Ipotesi di progettazione didattica per competenze

Lavoro di gruppo: Ipotesi di progettazione didattica per competenze Ministero dell Istruzione, dell Università e della ricerca UFFICIO SCOLASTICO REGIONALE PER LA CAMPANIA Direzione Generale Via Ponte della Maddalena 55-80142 Napoli Segreteria Direttore Generale - 0815576624-356

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

Istituto San Tomaso d Aquino

Istituto San Tomaso d Aquino Istituto San Tomaso d Aquino alba pratalia aràba Linee di progetto per l utilizzo delle tecnologie nella didattica a.s. 2013 2014 a.s. 2014 2015 0 Linee di progetto per l utilizzo delle tecnologie nella

Dettagli

Le competenze in matematica degli studenti in uscita dalla scuola superiore: non solo abilità. Ada Sargenti Claudia Testa

Le competenze in matematica degli studenti in uscita dalla scuola superiore: non solo abilità. Ada Sargenti Claudia Testa Le competenze in matematica degli studenti in uscita dalla scuola superiore: non solo abilità Ada Sargenti Claudia Testa 19 febbraio 2009 Esperienze insegnamento in Matematica in secondaria superiore ricerca

Dettagli

Disciplina: SCIENZE MATEMATICHE UNITÀ DI APPRENDIMENTO 1

Disciplina: SCIENZE MATEMATICHE UNITÀ DI APPRENDIMENTO 1 Disciplina: SCIENZE MATEMATICHE UNITÀ DI APPRENDIMENTO 1 OBIETTIVO FORMATIVO Comprendere come gli strumenti matematici siano necessari per operare nella realtà. L alunno si muove con sicurezza nel calcolo

Dettagli

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel: 035 250547 035 253492 Fax: 035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

LICEO SCIENTIFICO STATALE G. D. CASSINI

LICEO SCIENTIFICO STATALE G. D. CASSINI PROGRAMMAZIONE DI MATEMATICA CLASSI PRIME NUCLEI TEMATICI E METODOLOGIA. Nucleo 1 Nucleo 2 Nucleo 3 Nucleo 4 Nucleo 5 Ambiente di lavoro (in generale) e linguaggio della matematica Ambiente e linguaggio

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

GIANLUIGI BALLARANI. I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe

GIANLUIGI BALLARANI. I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe GIANLUIGI BALLARANI I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe Individuarli e correggerli VOLUME 3 1 GIANLUIGI BALLARANI Autore di Esami No Problem Esami No Problem Tecniche per

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana

Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana Oggetto: Relazione della quarta annualità del progetto Psicologia dell'apprendimento della matematica.

Dettagli

INFORMATICA. DOCENTE: CAVALLO Serena Classi: III E A.S.: 2013-2014 FINALITA

INFORMATICA. DOCENTE: CAVALLO Serena Classi: III E A.S.: 2013-2014 FINALITA INFORMATICA DOCENTE: CAVALLO Serena Classi: III E A.S.: 2013-2014 FINALITA L insegnamento di INFORMATICA nel secondo biennio si propone di: potenziare l uso degli strumenti multimediali a supporto dello

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e Polli e conigli Livello scolare: primo biennio Abilità Interessate Calcolo di base - sistemi Risolvere per via grafica e algebrica problemi che si formalizzano con equazioni. Analizzare semplici testi

Dettagli

FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO. PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof.

FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO. PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof. FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof. ssa Laura Piazzi CLASSE I A.S.2014 /2015 2 OBIETTIVI E COMPETENZE 2.1 OBIETTIVI

Dettagli

PIANO DI LAVORO ANNUALE anno scolastico 2011-2012

PIANO DI LAVORO ANNUALE anno scolastico 2011-2012 Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Progettazione annuale per la classe seconda

Progettazione annuale per la classe seconda Progettazione annuale per la classe seconda Valutazioni iniziali. Attivita introduttive per la valutazione dei prerequisiti. Numeri. 1) Approfondire la conoscenza del sistema decimale con riferimento al

Dettagli

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

UDA UNITA DI APPRENDIMENTO. Costruzione di un itinerario turistico nella città di New York

UDA UNITA DI APPRENDIMENTO. Costruzione di un itinerario turistico nella città di New York UDA Denominazione Prodotti UNITA DI APPRENDIMENTO Viaggio a New York Costruzione di un itinerario turistico nella città di New York Competenze chiave/competenze culturali GEOGRAFIA: L alunno si orienta

Dettagli

Dimostrare alla Scuola media: dal perché al rigore spontaneamente

Dimostrare alla Scuola media: dal perché al rigore spontaneamente (Maria Cantoni, gennaio 2013). Un lavoro che viene da lontano e che continua oggi. Dimostrare alla Scuola media: dal perché al rigore spontaneamente Costruzione dei triangoli in prima media. Prima dei

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof S. Rizza classe 2 a a/f/m Obtv educativi OBTV didattici trasversali Motivazione

Dettagli

DIPARTIMENTO SCIENTIFICO

DIPARTIMENTO SCIENTIFICO DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI QUINTE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

CURRICOLO DI MATEMATICA FINE CLASSE TERZA SCUOLA PRIMARIA

CURRICOLO DI MATEMATICA FINE CLASSE TERZA SCUOLA PRIMARIA CURRICOLO DI MATEMATICA FINE CLASSE TERZA SCUOLA PRIMARIA Nuclei tematici Numeri Traguardi per lo sviluppo delle competenze L'alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali...

Dettagli

PROGRAMMAZIONE DISCIPLINARE

PROGRAMMAZIONE DISCIPLINARE LICEO GINNASIO JACOPO STELLINI Piazza I Maggio, 26-33100 Udine Tel. 0432 504577 Fax. 0432 511490 Codice fiscale 80023240304 e-mail: info@liceostellini.it - Indirizzo Internet: www.stelliniudine.it - PEC:

Dettagli

L unica linguaggi, consueti. domande e ambiti imprevisti o, comunque, diversi, in generale, da quelli più

L unica linguaggi, consueti. domande e ambiti imprevisti o, comunque, diversi, in generale, da quelli più GIOCHI MATEMATICI ANNO SCOLASTICO PER 2009 SCUOLA - 2010 PRIMARIA Il di Centro Gruppo Matematica di ricerca F. Enriques sulla didattica dell'università della matematica degli Studi nella scuola di Milano,

Dettagli

Curricolo di matematica problemi con equazioni figurali

Curricolo di matematica problemi con equazioni figurali Curricolo di matematica problemi con equazioni figurali Presentazione dell attività svolta nelle classi delle Scuole Primarie e Secondarie di Primo Grado degli Istituti Comprensivi di Reggio Emilia: Pertini

Dettagli

Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione)

Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione) CURRICOLO DI MATEMATICA SCUOLA PRIMARIA Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione) Le conoscenze matematiche contribuiscono

Dettagli

RELAZIONE SUL PERCORSO ESPERIENZIALE (prof. Trinchero)

RELAZIONE SUL PERCORSO ESPERIENZIALE (prof. Trinchero) RELAZIONE SUL PERCORSO ESPERIENZIALE (prof. Trinchero) Ins. Margherio Guglielmina. Scuola Primaria di Mazzè. Classe Seconda. Anno scolastico 2013-2014 Gli incontri con il prof. Trinchero sono stati molto

Dettagli

ACCOMPAGNAMENTO ALLE INDICAZIONI NAZIONALI- MIUR 2012 MATEMATICA. Nodo concettuale disciplinare

ACCOMPAGNAMENTO ALLE INDICAZIONI NAZIONALI- MIUR 2012 MATEMATICA. Nodo concettuale disciplinare ACCOMPAGNAMENTO ALLE INDICAZIONI NAZIONALI- MIUR 2012 CURRICOLO VERTICALE MATEMATICA NUCLEO TEMATICO SPAZIO E FIGURE Nodo concettuale disciplinare DESCRIVERE E RAPPRESENTARE LE FORME E LO SPAZIO (Daniela

Dettagli

PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA. Classe Quarta. (Aggiornato) ANNO SCOLASTICO 2011/12

PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA. Classe Quarta. (Aggiornato) ANNO SCOLASTICO 2011/12 Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel:035 250547 035 253492 Fax:035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

Documentare le Unità Formative e valutare gli apprendimenti

Documentare le Unità Formative e valutare gli apprendimenti Documentare le Unità Formative e valutare gli apprendimenti Documentare e valutare: l uso del TR nel suo significato formativo e nei suoi aspetti tecnici Mestre 15 gennaio 2010 G.Giambelluca Da: INDICAZIONI

Dettagli

PERCORSO DIDATTICO DI OTTICA GEOMETRICA

PERCORSO DIDATTICO DI OTTICA GEOMETRICA PERCORSO DIDATTICO DI OTTICA GEOMETRICA Tipo di scuola e classe: Liceo Scientifico, classe II Nodi concettuali: riflessione della luce; rifrazione della luce, riflessione totale, rifrazione attraverso

Dettagli

Classe IV Matematica Scuola primaria

Classe IV Matematica Scuola primaria MATERIALI PER LA VALUTAZIONE DEI TRAGUARDI DI COMPETENZA Classe IV Matematica Scuola primaria Traguardo per lo sviluppo della competenza Riesce a risolvere facili problemi in tutti gli ambiti di contenuto,

Dettagli

CURRICULUM SCUOLA PRIMARIA MATEMATICA

CURRICULUM SCUOLA PRIMARIA MATEMATICA Ministero dell istruzione, dell università e della ricerca Istituto Comprensivo Giulio Bevilacqua Via Cardinale Giulio Bevilacqua n 8 25046 Cazzago San Martino (Bs) telefono 030 / 72.50.53 - fax 030 /

Dettagli

Al Dirigente Scolastico IIS SILVIO CECCATO Montecchio Maggiore VI

Al Dirigente Scolastico IIS SILVIO CECCATO Montecchio Maggiore VI Al Dirigente Scolastico IIS SILVIO CECCATO Montecchio Maggiore VI Disciplina: MATEMATICA Classe: 3AM A.S. 2015/16 Docente: Boschetti Lisanna ANALISI DI SITUAZIONE di partenza - LIVELLO COGNITIVO La maggior

Dettagli

Risoluzione di situazioni/problema nella Scuola Primaria: ruolo del linguaggio naturale per la comprensione di strategie risolutive

Risoluzione di situazioni/problema nella Scuola Primaria: ruolo del linguaggio naturale per la comprensione di strategie risolutive Università degli Studi di Palermo Facoltà di Scienze della Formazione C.d.L in Scienze della Formazione Primaria Indirizzo Scuola Primaria Risoluzione di situazioni/problema nella Scuola Primaria: ruolo

Dettagli

Coniglietti Aurei. di Andrea Centomo e Lucia Gecchelin

Coniglietti Aurei. di Andrea Centomo e Lucia Gecchelin Coniglietti Aurei di Andrea Centomo e Lucia Gecchelin Con l'origami, l'arte del piegare la carta, si creano figure di qualunque tipo a partire da uno o più fogli di carta, senza incollare e senza mai tagliare.

Dettagli

ISTITUTO COMPRENSIVO SASSOFERRATO UNITÁ DI INSEGNAMENTO APPRENDIMENTO n.1 a.s.2013/2014

ISTITUTO COMPRENSIVO SASSOFERRATO UNITÁ DI INSEGNAMENTO APPRENDIMENTO n.1 a.s.2013/2014 Articolazione dell apprendimento Dati identificativi ISTITUTO COMPRENSIVO SASSOFERRATO UNITÁ DI INSEGNAMENTO APPRENDIMENTO n.1 a.s.2013/2014 Titolo significativo Risolvere i problemi Insegnamenti coinvolti

Dettagli

La matematica nel passaggio dal primo al secondo ciclo: un esperienza di prova d ingresso comune per il primo anno della secondaria superiore.

La matematica nel passaggio dal primo al secondo ciclo: un esperienza di prova d ingresso comune per il primo anno della secondaria superiore. La matematica nel passaggio dal primo al secondo ciclo: un esperienza di prova d ingresso comune per il primo anno della secondaria superiore. XXX CONVEGNO UMI - CIIM BERGAMO 25-27 OTTOBRE 2012 Antonio

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO E. BERNARDI PADOVA Anno Scolastico 2014-2015 INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA CLASSI: Terza Quarta Quinta Anno

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

Risparmiare sulla bolletta del telefono

Risparmiare sulla bolletta del telefono Livello scolare: 1 biennio Risparmiare sulla bolletta del telefono Abilità interessate In situazioni problematiche, individuare relazioni significative tra grandezze di varia natura (per esempio variazione

Dettagli

Istituto comprensivo Arbe Zara

Istituto comprensivo Arbe Zara Istituto comprensivo Arbe Zara Viale Zara,96 Milano Tel. 02/6080097 Scuola Secondaria di primo grado Falcone Borsellino Viale Sarca, 24 Milano Tel- 02/88448270 A.s 2015 /2016 Progettazione didattica della

Dettagli

BENVENUTO AL CORSO ONLINE. POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA DEL CORSO

BENVENUTO AL CORSO ONLINE. POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA DEL CORSO BENVENUTO AL CORSO ONLINE POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA DEL CORSO ACCESSO AL CORSO Sei già registrato/a come studente su Psicologia Positiva in Educazione Corso Online Hai

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Classe: 5A SIA A.S. 20015/16 ANALISI DI SITUAZIONE - LIVELLO COGNITIVO

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Classe: 5A SIA A.S. 20015/16 ANALISI DI SITUAZIONE - LIVELLO COGNITIVO Disciplina: MATEMATICA Classe: 5A SIA A.S. 20015/16 Docente: POLONIO NADIA ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe risponde adeguatamente alle proposte formative, e lavora in modo disciplinato,

Dettagli

Non cercate di soddisfare la vostra vanità, insegnando loro troppe cose. Risvegliate la loro curiosità.

Non cercate di soddisfare la vostra vanità, insegnando loro troppe cose. Risvegliate la loro curiosità. Non cercate di soddisfare la vostra vanità, insegnando loro troppe cose. Risvegliate la loro curiosità. E sufficiente aprire la mente, non sovraccaricarla. Mettetevi soltanto una scintilla. Se vi è della

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per

Dettagli

ELABORATO DAI DOCENTI. ertyuiopasdfghjklzxcvbnmqwertyuiopasdfghj ISTITUTO COMPRENSIVO CALVISANO. Anno scolastico 2014-2015

ELABORATO DAI DOCENTI. ertyuiopasdfghjklzxcvbnmqwertyuiopasdfghj ISTITUTO COMPRENSIVO CALVISANO. Anno scolastico 2014-2015 qwertyuiopasdfghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyuiopasdfg CURRICOLO DI MATEMATICA hjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqw ELABORATO DAI DOCENTI

Dettagli

PSA: Laboratorio disciplinare di religione per gli insegnanti della scuola elementare

PSA: Laboratorio disciplinare di religione per gli insegnanti della scuola elementare PSA: Laboratorio disciplinare di religione per gli insegnanti della scuola elementare Sottogruppo coordinato da Fortunata Capparo (verbale 2 incontro - 18 /11 2002) L ispettore Gandelli ha iniziato l incontro

Dettagli

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Angelo Ambrisi Ne plus ultra. Non si va oltre! Gli integrali costituiscono le colonne d Ercole dell insegnamento della

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

I WEBQUEST SCIENZE DELLA FORMAZIONE PRIMARIA UNIVERSITÀ DEGLI STUDI DI PALERMO. Palermo 9 novembre 2011

I WEBQUEST SCIENZE DELLA FORMAZIONE PRIMARIA UNIVERSITÀ DEGLI STUDI DI PALERMO. Palermo 9 novembre 2011 I WEBQUEST SCIENZE DELLA FORMAZIONE PRIMARIA Palermo 9 novembre 2011 UNIVERSITÀ DEGLI STUDI DI PALERMO Webquest Attività di indagine guidata sul Web, che richiede la partecipazione attiva degli studenti,

Dettagli

LE BOTTEGHE DELL INSEGNARE MATEMATICA

LE BOTTEGHE DELL INSEGNARE MATEMATICA LE BOTTEGHE DELL INSEGNARE Report dei lavori svolti durante la Convention Protagonisti nella scuola per la crescita della società Bologna 13-14 ottobre 2012 MATEMATICA Matematici, mettiamoci in gioco Responsabile

Dettagli

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA PIANO DI LAVORO A.S. 2013/14 Liceo SCIENTIFICO GOBETTI OMEGNA Professoressa LILIANA PIZZI Disciplina MATEMATICA Classe PRIMA sezione B Data: 12 Ottobre 2013 A. LIVELLI DI PARTENZA TEST E/O GRIGLIE DI OSSERVAZIONE

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

STRUTTURA UDA U.D.A. 2. Classe III A PRESENTAZIONE

STRUTTURA UDA U.D.A. 2. Classe III A PRESENTAZIONE STRUTTURA UDA UNITÀ DIDATTICA di APPRENDIMENTO di TECNOLOGIE ELETTRICO-ELETTRONICHE E APPLICAZIONI U.D.A. 2 Classe III A.S. 2015/2016 TITOLO: Energia, potenza e rendimento. Campo elettrico e condensatori.

Dettagli

CLASSE PRIMA LICEO LINGUISTICO

CLASSE PRIMA LICEO LINGUISTICO www.scientificoatripalda.gov.it PROGRAMMAZIONE EDUCATIVO DIDATTICA DI MATEMATICA CLASSE PRIMA LICEO LINGUISTICO ANNO SCOLASTICO 2015/2016 PARTE PRIMA PREMESSA La riforma del secondo ciclo d istruzione

Dettagli

Progettare esperienze per generare competenze

Progettare esperienze per generare competenze Progettare esperienze per generare competenze L insegnamento della matematica nella prospettiva della ricerca-azione Ins. Facondina Salvatore Premessa (dalle Nuove Indicazioni) Obiettivo della scuola è

Dettagli

Sollecitare riflessione anche su prove di SCIENZE. Prendere confidenza anche con altri sistemi valutativi diversi da INValSI

Sollecitare riflessione anche su prove di SCIENZE. Prendere confidenza anche con altri sistemi valutativi diversi da INValSI Sollecitare riflessione anche su prove di SCIENZE Prendere confidenza anche con altri sistemi valutativi diversi da INValSI questo anno scolastico sarà l anno delle prove TIMSS Indagine TIMSS per Scienze

Dettagli

La Scuola Primaria F. Busoni di Pozzale presenta il progetto Gioco Scopro

La Scuola Primaria F. Busoni di Pozzale presenta il progetto Gioco Scopro La presenta il progetto Gioco Scopro Progetto GIOCO-SCOPRO!!! Nik-day 2011: prepariamo insieme il calendario della Solidarietà ed il nuovo libro! Cari bambini e care bambine dai 3 ai 99 anni, quest anno

Dettagli

UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016. TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE

UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016. TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE UDA N 4 Tecniche di Confezione nell abbigliamento UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016 TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE Destinatari

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA PER INIZIARE EL CORSO

POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA PER INIZIARE EL CORSO POSitivitiES Psicologia Positiva nelle Scuole Europee GUIDA PER INIZIARE EL CORSO POSitivitiES Positive Psychology in European Schools PositiviES è un progetto europeo Comenius multilaterale che si prefigge

Dettagli

SEZIONE A: Traguardi formativi COMPETENZE ABILITÀ CONOSCENZE

SEZIONE A: Traguardi formativi COMPETENZE ABILITÀ CONOSCENZE SEZIONE A: Traguardi formativi COMPETENZA CHIAVE EUROPEA: COMPETENZE IN MATEMATICA CLASSE TERZA A - Numeri COMPETENZE ABILITÀ CONOSCENZE Utilizzare con sicurezza le tecniche e le procedure del calcolo

Dettagli