Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura."

Transcript

1 ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza dalla riva, noi avvertiamo l onda che si è prodotta. Quando pigiamo il pulsante della luce, la luce si propaga in una stanza e la illumina. Apparantemente i processi sono diversi ma sono situazioni fisiche che avvengono in un punto dello spazio, si propagano attravesro lo spazio e si avvertono più tardi in un altro punto. Questi processi sono esempi di moto ondoso. Per studiare questo problema più in generale supponiamo di avere un proprietà fisica descritta da un certo campo. Il campo può essere elettromagnetico, le deformazione in una molla (spring), la pressione in un gas, la tensione (strain) in un solido. Supponiamo che la perurbazione in un punto sia dinamica, cioè dipendente dal tempo e che ci sia una perurbazione dello stato fisico in quel posto. Le proprietà fisiche del sistema desrotte dalle equazioni del campo e che dipendono dal tempo hanno come risultato la propagazione di questa perturbazione attraverso lo spazio. Questo disturba le condizioni statiche in altri posti. parlaimo quindi di onda associata ad un particolare campo considerato. Consideriamo ad esmpio la superficie libera di un liquido. Il campo in questo caso è lo spostamento di ciascun punto della superficie relativo allo stato di equilibrio. All equilibrio e in condizioni statiche la superficie libera di un liquido è piana ed orizzontale, Ma se in un punto le condizioni della superficie sono disturbate, ad esempio da una pietra, sappiamo che la perturbazione si propaga in tutte le direzioni sulla superfixcie del liquido. Per determinare il meccanismo di propagazione e la sua velocità, dobbiamo analizzare come il movimento in un punto della superficie influenza il resto. 1

2 Dobbiamo scrivere le equazioni dinamiche del nostro processo. queste equazioni allora ci permettono di ottenere delle informazioni quantitative circa la variazione nello spazio e nel tempo del disturbo. Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. Rimpiazzando x con x a, otteniamo ξ = f(x a), e analogamente per x + a: ξ = f(x + a); supponendo a > 0 si ha una traslazione ma non una deformazione della figura. Se a = vt, con t il tempo, otteniamo una curva che cammina, cioè ξ = f(x vt) rappresenta una curva che si muove verso destra con una velocità v chiamata velocità di fase. Analogamente ξ = f(x + vt) rappresenta un curva che si muove verso sinistra con velocità v. Allora un espressione matematica del tipo (18.1) ξ = f(x ± vt) è adeguata per descrivere una situazione fisica che si muove o si propaga senza deformazione lungo l asse x; questo è chiamato movimento ondoso. La quantità ξ(x, i) può rappresentare una gran quantità di grandezze fisiche, come la deformazione di un solido, la pressione di un gas,un campo elettrico 2

3 o magnetico. Un caso particolare si ha quando ξ(x, t) è sinusoidale o una funzione armonica ξ(x, t) = ξ o sin k(x vt) ξ(x + 2π/k vt) = ξ o sin[k(x + 2π/k vt)] = ξ o sin[k(x vt) + 2π] = = ξ o sin[k(x vt)] = ξ(x, t) allora λ = 2π/k è il periodo spaziale della curva in fig. 18.4, cioè la curva si ripete ogni lunghezza λ; tale λ è detta lunghezza dell onda. La quantità k = 2π/λ rappresenta il numero di lunghezze d onda nella distanza 2π ed è chiamato il numero dell onda. (18.4) ξ(x, t) = ξ o sin k(x vt) = ξ o sin(2π/λ)(x vt) rappresenta una sinusoide o onda armonica di lunghezza λ, che si propaga a destra lungo l asse x con velocità v. L equazione (18.4) può riscriversi così: ξ(x, t) = ξ o sin(kx ωt) con ω = kv = 2πv/λ, che dà la frequenza angolare dell onda. Poiché ω = 2πν con ν = frequenza con cui la situazione fisica varia nel punto x, si ha λν = 2πv ω ω 2π = v quindi si ha λν = v, relazione tra lunghezza d onda, frequenza e velocità di propagazione. Se P è il periodo di oscillazione in ogni punto è dato da Allora P = 2π ω = λ v = λ ν ξ = ξ o sin 2πλ(x vt) = ξ o sin 2π(x/λ t/p ) = ξ o sin k(x + vt) = 3

4 = ξ o sin(kx + ωt) = ξ o sin 2π(x/λ t/p ) (k = 2π/λ, ω = kv = 2π/P ) Allora in conclusione ξ = ξ o sin 2π(x/λ + t/p ) rappresenta un onda armonica o sinusoidaleche si muove lungo la direzione x. Osservando la figura 18.5, noi possiamo osservare la funzione ξ(x, t) al tempo t o, t o + P/4, t o + P/2, t o + 3P/4 e t o + P. Notiamo che la situazione fisica si ripete nello spazio dopo un periodo, infatti λ = v/ν = vp che mostra che possiamo definire la lunghezza d onda come la distanza coperta dal movimento dell onda in un periodo. Allora in un movimento dell onda sinusoidale abbiamo due periodicità: 1) il tempo (dato dal periodo P ); 2) lo spazio (dato dalla lunghezza d onda λ) con la relazione λ = vp Si può dimostrare che l espressione (18.1) può essere riscritta come in: (18.2) ξ(x, t) = F (t ± x/v) dove + indica la propagazione verso sinistra, indica la propagazione verso destra. Allora per un onda armonica si ha ξ(x, t) = ξ o sin ω(t ± x/v) = ξ o sin ω(t ± kx) ANALISI DI FOURIER E MOTO D ONDA Ogni movimento periodico può essere espresso come una composizione di semplici movimenti armonici di frequenza ω, 2ω,..., nω,... o periodi P, P/2,..., P/n,... 4

5 Lo stesso riusltayto si applica al movimento delle onde. Sia ξ = f(x vt) il movimento periodico di un onda, cioè un movimento che si ripete al tempo P, 2P,..., np ; in altre parole ξ = f(x vt) = f(x v(t ± P )) = f(x vt vp ) questo significa che a un dato tempo ξ si ripete quando x cresce o decresce con vp. 2vP,..., nvp,.... Se invece di cambiare t cambiamo x con la quantità x = vp, l onda si ripete nello spazio. Questo vale per il movimento ondoso sinusoidale. Sia ξ = f(x) una funzione periodica nello spazio con periodo λ cioè f(x) = f(x + λ). Allora usando il teorema di Fourier possiamo scrivere ξ = f(x) = a o +a 1 cos kx+a 2 cos 2kx+ +a n cos nkx+ +b 1 sin kx+b 2 sin 2kx+ +b n sin knx con k = 2π/λ, che gioca lo stesso ruolo di ω. Si dimostra che ξ = f(x vt) può essere espressa da ξ = f(x vt) = a o +a 1 cos k(x vt)+a 2 cos 2k(x vt)+ +a n cos nk(x vt)+ + +b 1 sin k(x vt) + b 2 sin 2k(x vt) + + b n sin nk(x vt) + essendo ω = kv quindi ξ = f(x vt) = a o +a 1 cos(kx ωt)+a 2 cos 2(kx ωt)+ +a n cos n(kx ωt)+ + +b 1 sin(kx ωt) + b 2 sin 2(kx ωt) + + b n (kx ωt) + che indica che ogni moto ondoso periodico può essere espresso come la sovrapposizione di moti ondosi di frequenze ω, 2ω, 3ω,, nω,... e lunghezze d onda λ, λ/2, λ/3,, λ/n, 5

6 È importante capire il moto ondoso armonico per comprendere il moto ondoso generale. EQUAZIONI DIFFERENZIALI DEL MOTO ONDOSO Investighiamo come determinare quando un campo dipendente dal tempo si propaga come un onda senza distorsione. Dobbiamo ptrovare un equazione differenziale applicabile in tutti i vari tipi di moto ondoso. Ogni volta che noi riconosciamo che un particolare campo, come risultato delle sue proprietà fisiche, soddisfa tale equazione, possiamo essere certi che il campo si propaga attraverso lo spazio con una data velocità e senza distorsione. Viceversa, se osserviamo come risultato di un esperimento, che un campo si propaga nello spazio con una velocità definita e senza distorsione, allora possiamo essere pronti a descrivere il campo con un insieme di equazioni compatibile con l equazione delle onde. L equazione che descrive un moto ondoso con una velocità definita v e senza distorsione lungo l asse positivo delle x (oppure l asse negativo) è 2 ξ (18.11) t 2 = v2 2 ξ x 2 detta Equazione differenziale del moto ondoso. La soluzione generale di (18.11) è data da (18.12) ξ(x, t) = f 1 (x vt) + f 2 (x + vt) allora la soluzione generale della (18.11) può essere espressa come la superposizione di due moti ondosi che si propagano in direzioni opposte. Se abbaimo un onda che arriva lungo l asse x+ e un onda riflessa lungo l asse x dovremo usare la formula generale (18.12) 6

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

ESEMPIO - un sassolino (goccia) cade sulla superficie di un liquido in quiete.

ESEMPIO - un sassolino (goccia) cade sulla superficie di un liquido in quiete. ONDE Esaminiamo la modalità con la quale una perturbazione dallo stato di equilibrio di un punto materiale che fa parte di un mezzo esteso elastico viene trasmessa ad altri punti dell insieme. ESEMPIO

Dettagli

Il modello ondulatorio

Il modello ondulatorio LUCE E VISIONE I COLORI PPUNI DI FISIC Il modello ondulatorio I fenomeni di cui ci siamo occupati finora possono essere facilmente spiegati considerando la luce composta da corpuscoli che sottostanno alle

Dettagli

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle.

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle. Richiami di onde Durante il corso di fisica avete visto che le onde possono dividersi in - Onde meccaniche (come quelle del mare, le onde sismiche, le onde sonore) caratterizzate dalla necessità di un

Dettagli

Qualche semplice considerazione sulle onde di Daniele Gasparri

Qualche semplice considerazione sulle onde di Daniele Gasparri Qualche semplice considerazione sulle onde di Daniele Gasparri Le onde sono delle perturbazioni periodiche che si propagano nello spazio; quasi sempre (tranne nel caso della luce) si ha un mezzo che permette

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG I Radar ad Onda Continua (CW) Principi di funzionamento dei radar CW. Al contrario dei radar ad impulsi, quelli ad onda continua (CW) emettono radiazioni elettromagnetiche

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Analisi di un segnale sonoro

Analisi di un segnale sonoro Analisi di un segnale sonoro 1. Introduzione Lo scopo di questa esperienza è quello di scoprire com è fatto un suono, riconoscere le differenze fra i timbri, imparare a fare un analisi in frequenza e vedere

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 6: Onde e Radiazione Elettromagnetica Onde e radiazione elettromagnetica Natura delle onde Ampiezza,

Dettagli

- E.3 - MANUALE DI OTTICA. per la classe quinta (tecnico) a cura dei docenti dell'iis G.Galilei - Milano

- E.3 - MANUALE DI OTTICA. per la classe quinta (tecnico) a cura dei docenti dell'iis G.Galilei - Milano - E.3 - MANUALE DI OTTICA per la classe quinta (tecnico) a cura dei docenti dell'iis G.Galilei - Milano Settembre 008 - E.4 - - E.5 - J - LE ONDE Sappiamo che la luce, del cui studio si occupa, l'ottica,

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Indice: Introduzione 2. L'onda (La sinusoide del nostro segnale) 3. Adsr 4. I cavi 6. Tipo di connettori 7. Gli alimentatori 9. L'amplificatore 11

Indice: Introduzione 2. L'onda (La sinusoide del nostro segnale) 3. Adsr 4. I cavi 6. Tipo di connettori 7. Gli alimentatori 9. L'amplificatore 11 Indice: Introduzione 2 L'onda (La sinusoide del nostro segnale) 3 Adsr 4 I cavi 6 Tipo di connettori 7 Gli alimentatori 9 L'amplificatore 11 Le valvole 15 I trasduttori elettroacustici 16 Il compressore

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE Introduzione Il modello geometrico della luce, vale a dire il modello di raggio che si propaga in linea retta, permette di descrivere un ampia gamma

Dettagli

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni?

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? La natura della luce Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? Se si potesse fotografare un fotone in un certo istante vedremmo una deformazione

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento La misura della distanza Metodi di misura indiretta della distanza Stadia verticale angolo parallattico costante

Dettagli

Forze elastiche e Molla elicoidale versione 1.02 preliminare

Forze elastiche e Molla elicoidale versione 1.02 preliminare Forze elastiche e Molla elicoidale versione 1.02 preliminare MDV April 18, 2015 1 Elasticità L elasticità è la proprietà dei corpi soldi di tornare nella loro forma originale dopo avere subito una deformazione

Dettagli

Elementi di sismologia

Elementi di sismologia Elementi di sismologia Sismologia e Rischio Sismico Anno Accademico 2009-2010 Giovanna Cultrera, cultrera@ingv.it Istituto Nazionale di Geofisica e Vulcanologia Trasformata di Fourier Premessa: l equazione

Dettagli

LE ONDE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE. A. A. 2015-2016 Fabrizio Le Boffelli onde. P.

LE ONDE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE. A. A. 2015-2016 Fabrizio Le Boffelli onde. P. CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE LE ONDE A. A. 2015-2016 Fabrizio Le Boffelli onde pag.1 LE ONDE Fenomeni ondulatori Periodo e frequenza Lunghezza d onda e

Dettagli

La fisica della chitarra

La fisica della chitarra La fisica della chitarra Marco Bonvini 8 febbraio 2007 Indice 1 Premessa 2 2 Cosa sono le note 2 2.1 Il sistema temperato.................................. 2 3 Le onde stazionarie su una corda 4 3.1 Accordare

Dettagli

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n )

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n ) INTRODUZIONE ALLE SERIE DI FOURIER. Definizione di Serie Data una successione di numeri reali a k posso considerare la somma dei numeri da 0 a 5 (che chiamerò s 5 ): 5 s 5 = a k = a 0 + a + a + a 3 + a

Dettagli

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05 Nota di Copyright Questo insieme di trasparenze (detto nel seguito slide) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo e i copyright relativi alle slides

Dettagli

Spostamento Ampiezza Ciclo Periodo Frequenza

Spostamento Ampiezza Ciclo Periodo Frequenza Vibrazioni e onde I corpi elastici sono soggetti a vibrazioni e oscillazioni Il diapason vibra e produce onde sonore Le oscillazioni della corrente elettrica possono produrre onde elettromagnetiche Le

Dettagli

POLARIZZAZIONE ORIZZONTALE O VERTICALE?

POLARIZZAZIONE ORIZZONTALE O VERTICALE? A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese POLARIZZAZIONE ORIZZONTALE O VERTICALE? Venerdi, 7 dicembre, ore 21:15 - Carlo, I4VIL Oscillatore e risuonatore di Hertz ( http://www.sparkmuseum.com

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Suggerimenti per evitare errori frequenti nello scritto di fisica

Suggerimenti per evitare errori frequenti nello scritto di fisica Suggerimenti per evitare errori frequenti nello scritto di fisica Quelli che seguono sono osservazioni utili ad evitare alcuni degli errori piu frequenti registrati durante gli scritti di fisica. L elenco

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011 Liceo Tecnico Chimica Industriale Meccanica Elettrotecnica e Automazione Elettronica e Telecomunicazioni Istituto Tecnico Industriale Statale Alessandro Volta Via Assisana, 40/E - loc. Piscille - 06087

Dettagli

Corso di Acustica prof. ing. Gino Iannace

Corso di Acustica prof. ing. Gino Iannace Corso di Acustica prof. ing. Gino Iannace e-mail: gino.iannace@unina2.it prof. ing. Gino IANNACE 1 Il suono è un "rumore sgradevole", "un suono fastidioso, non desiderato". Dal punto di vista fisico, il

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

Ingranometro monofianco

Ingranometro monofianco Ingranometro monofianco Accoppiamento con gioco L accoppiamento tra ruota e controruota, nella quasi totalità dei casi, avviene con gioco. Ciò vuol dire che l interasse tra i due ingranaggi è leggermente

Dettagli

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza Modulazioni Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 06 Modulazioni 1/29 Comunicazione a lunga distanza I segnali elettrici si indeboliscono quando viaggiano su un

Dettagli

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25 Indice generale PREFAZIONE ALLO STUDENTE TAVOLA DEI COLORI x xiv xvi 1 INTRODUZIONE, MISURE, STIME 1 1 1 La natura della scienza 2 1 2 Modelli, teorie e leggi 3 1 3 Misure ed errori; cifre significative

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 4 A P Prof. Matteo Bonetti. Meccanica

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 4 A P Prof. Matteo Bonetti. Meccanica Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 4 A P Prof. Matteo Bonetti Meccanica MODULO 1. MOTI ROTATORI 1. Cinematica dei moti rotatori: periodo, frequenza, velocità

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

LA LUCE, I COLORI, LA VISIONE

LA LUCE, I COLORI, LA VISIONE LA LUCE, I COLORI, LA VISIONE Si è elaborato un percorso sia per la scuola primaria sia per la scuola secondaria di primo grado. I moduli sono indipendenti gli uni dagli altri ma sono presentati secondo

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

IL FENOMENO DELLA RISONANZA

IL FENOMENO DELLA RISONANZA IL FENOMENO DELLA RISONANZA Premessa Pur non essendo possibile effettuare una trattazione rigorosa alle scuole superiori ritengo possa essere didatticamente utile far scoprire agli studenti il fenomeno

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

Introduzione alla Meccanica Quantistica. Fausto Borgonovi

Introduzione alla Meccanica Quantistica. Fausto Borgonovi Introduzione alla Meccanica Quantistica Fausto Borgonovi Dipartimento di Matematica e Fisica e i.l.a.m.p. Universitá Cattolica, via Musei 41, BRESCIA Istituto Nazionale di Fisica Nucleare, PAVIA fausto.borgonovi@unicatt.it

Dettagli

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni Alessandro Farini: note per le lezioni di ottica del sistema visivo Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni 1 Lo spettro elettromagnetico La radiazione

Dettagli

CAMPI E LORO PROPRIETÀ

CAMPI E LORO PROPRIETÀ CMPI E LORO PROPRIETÀ 1.1 Introduzione ia una regione nello spazio in cui, in ogni suo punto, sia definita una grandezza g. La regione si dice allora soggetta ad un campo. Un campo può essere scalare,

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Unità 2 Le onde e le loro proprietà

Unità 2 Le onde e le loro proprietà TOMO III LE ONDE convenzione: i simboli in grassetto vanno frecciati Modulo 1 Oscillazioni, onde e suoni Unità 2 Le onde e le loro proprietà 2.0 Ascoltando la musica alla radio in riva al mare, le uniche

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

3. Il diodo a giunzione

3. Il diodo a giunzione 3. l diodo a giunzione 3.1 La giunzione pn Come si è detto a proposito dei meccanismi di conduzione della corrente nei semiconduttori, i portatori liberi tendono a spostarsi dalle zone a concentrazione

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Lezione 42: l'induzione elettromagnetica

Lezione 42: l'induzione elettromagnetica Lezione 42 - pag.1 Lezione 42: l'induzione elettromagnetica 42.1. Gli esperimenti di Faraday L'esperimento di Oersted del 1820 dimostrò che una corrente elettrica produce un campo magnetico. Subito gli

Dettagli

Complementi di Analisi per Informatica *** Capitolo 5. Spettrografia. a Raggi Infrarossi. Sergio Benenti. 7 settembre 2013. r 2. O ε. r 1.

Complementi di Analisi per Informatica *** Capitolo 5. Spettrografia. a Raggi Infrarossi. Sergio Benenti. 7 settembre 2013. r 2. O ε. r 1. Complementi di Analisi per Informatica *** Capitolo 5 Spettrografia a Raggi Infrarossi Sergio Benenti 7 settembre 213 SB Detector Sample r 1 r 1 r 2 r 2 asse x r O ε Indice 5 Spettrografia a raggi infrarossi

Dettagli

MICROSCOPIA OTTICA: INGRANDIMENTO E MICROSCOPIO OTTICO

MICROSCOPIA OTTICA: INGRANDIMENTO E MICROSCOPIO OTTICO MICROSCOPIA OTTICA: INGRANDIMENTO E MICROSCOPIO OTTICO La microscopia ottica è una tecnica di osservazione capace di produrre immagini ingrandite di oggetti o di particolari di essi, troppo piccoli per

Dettagli

Von Neumann fa anche l ipotesi che i funzionali siano lineari sull algebra:

Von Neumann fa anche l ipotesi che i funzionali siano lineari sull algebra: CAPITOLO 6 Il paradosso di Einstein Podolski Rosen Nel 1935 usciva un articolo degli autori sopra indicati, dal titolo Si può ritenere completa la descrizione quantistica della realtà fisica? L articolo

Dettagli

Competenze Abilità Conoscenze Tempi Leggere, comprendere e interpretare un testo scritto delle varie tipologie previste anche in contesti non noti.

Competenze Abilità Conoscenze Tempi Leggere, comprendere e interpretare un testo scritto delle varie tipologie previste anche in contesti non noti. PRIMO BIENNIO Fisica: Primo anno Leggere, comprendere e interpretare un testo scritto delle varie tipologie previste anche in contesti non noti. Osservare, descrivere ed analizzare fenomeni appartenenti

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Terrirorio a.a. 2006-2007

Corso di laurea in Ingegneria per l Ambiente e il Terrirorio a.a. 2006-2007 Corso di laurea in Ingegneria per l Ambiente e il Terrirorio a.a. 2006-2007 Misura delle distanze mediante onde Si è in presenza di un onda quando in un punto A dello spazio si produce un fenomeno oscillatorio

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni parametri fisici (cenni)

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni parametri fisici (cenni) Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

CLASSE: 1^ CAT. E 1^ GRA

CLASSE: 1^ CAT. E 1^ GRA ITS BANDINI - SIENA MATERIA DI INSEGNAMENTO: FISICA e LABORATORIO CLASSE: 1^ CAT. E 1^ GRA In relazione alla programmazione curricolare ci si prefigge di raggiungere i seguenti obiettivi disciplinari:

Dettagli

RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO

RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO CAPITOLO RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO. - APPROSSIMAZIONE DI UN SEGNALE Si è detto che un segnale deterministico è rappresentabile analiticamente con una funzione

Dettagli

Variazioni di Pressione: 'Sonic Boom'

Variazioni di Pressione: 'Sonic Boom' Variazioni di Pressione: 'Sonic Boom' www.lepla.eu Obiettivo Con questo esperimento ci si propone di osservare le variazioni di pressione all interno di una siringa quando il pistone viene tirato fuori

Dettagli

LE ONDE. r r. - durante l oscillazione l energia cinetica si trasforma in potenziale e viceversa

LE ONDE. r r. - durante l oscillazione l energia cinetica si trasforma in potenziale e viceversa LE ONDE Generalità sulle onde meccaniche Quando un corpo si muoe, la sua energia meccanica si sposta da un punto all altro dello spazio. Ma l energia meccanica può anche propagarsi senza che i sia spostamento

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010 Note sull esperienza Misura di g versione 1, Francesco, 7/05/010 L esperienza, basata sullo studio di una molla a spirale in condizioni di equilibrio e di oscillazione, ha diversi scopi e finalità, tra

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Associazione per l Insegnamento della Fisica Giochi di Anacleto

Associazione per l Insegnamento della Fisica Giochi di Anacleto Associazione per l Insegnamento della Fisica Giochi di Anacleto DOMANDE E RISPOSTE 23 Aprile 2007 Soluzioni Quesito 1 La forza con cui la carica positiva 2Q respinge la carica positiva + Q posta nell origine

Dettagli

Banco a microonde Introduzione

Banco a microonde Introduzione Banco a microonde Introduzione Il sistema e costituito (vedi figura 1) da una sorgente direzionale di onde elettromagnetiche polarizzate di frequenza di 9.5 GHz ( = 3.16 cm) e da un rivelatore direzionale

Dettagli

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA 1 POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA Per ogni punto del programma d esame vengono qui di seguito indicate le pagine corrispondenti nel testo G. Tonzig,

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15

I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15 I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15 DISCIPLINA: FISICA (Indirizzi scientifico e scientifico sportivo) CLASSE: QUARTA (tutte le sezioni) COMPETENZE DISCIPLINARI ABILITA CONTENUTI

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW Le antenne a quadro (o telaio) Il principio di funzionamento di un'antenna a quadro è differente da quello delle comuni antenne filari

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli