Funzioni reali di variabile reale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Funzioni reali di variabile reale"

Transcript

1 Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione f = (F,A,B) avente dominio A R, codominio B R e grafico F A B R R. La funzione f è dunque un elemento dell insieme composto da tutte le funzioni definite in sottoinsiemi di numeri reali ed a valori reali. Lezione 26.wpd 08/01/2011 XXVI - 1 Lezione 26.wpd 08/01/2011 XXVI - 2 i scrive in genere y = f(x) con y = variabile dipendente x = variabile indipendente f(a) = Im f R si chiama immagine di f. e X A, si dice immagine di X tramite f l insieme se T Im f, si chiama controimmagine di T tramite f l insieme: Lezione 26.wpd 08/01/2011 XXVI - 3 Lezione 26.wpd 08/01/2011 XXVI - 4

2 Tre passi per conoscere una funzione: 2) Identificazione dell immagine 1) Identificazione del dominio di una funzione È d uso chiamare, in questo contesto, dominio d una funzione il massimo sottoinsieme di R su cui hanno senso le espressioni analitiche che risultano nella definizione di funzione, ma può essere anche più piccolo di questo sottoinsieme. Questo risulta importante nello studio delle proprietà globali d una funzione: limitatezza, monotonia, esistenza e valore del massimo e del minimo. In questo contesto, si chiama codominio d una funzione f un qualunque insieme che contenga l immagine della f. D altro canto, ogni insieme che contiene l immagine può essere codominio di f. Ad esempio, la funzione y = a x si può considerare a valori in R, ma anche in R +. i sceglie R + quando si vuole evidenziare che y = a x è sempre positiva; si sceglie R quando questo è secondario. La definizione del codominio è importante per definire i caratteri globali della funzione. Lezione 26.wpd 08/01/2011 XXVI - 5 Lezione 26.wpd 08/01/2011 XXVI - 6 3) Identificazione del grafico e dei suoi caratteri principali È possibile rappresentare graficamente una funzione su un piano cartesiano......ma non sempre. o: ia y = f(x) la funzione di Dirichlet Essa non è rappresentabile graficamente, perché comprende: tutti i punti dell asse x (y = 0) con ascissa irrazionale e tutti i punti della retta y = 1 con ascissa razionale. Lezione 26.wpd 08/01/2011 XXVI - 7 Lezione 26.wpd 08/01/2011 XXVI - 8

3 Algebra di funzioni reali Algebra di funzioni reali Algebra di funzioni reali Le funzioni reali di variabile reale aventi uguale dominio sono un algebra su R: 1) f + g si definisce come: ( x)( (f+g) (x) = f(x) + g(x)) e dà la struttura di gruppo commutativo 2) af si definisce come ( x) ((af) (x) = a f(x)) e dà la struttura di spazio vettoriale su R di dimensione infinita (numerabile) 3) f g si definisce come ( x)( (fg) (x) = f(x) g(x)) e dà la struttura d anello commutativo. Non è un campo, perché non sempre esiste la funzione 1 / f(x) tale che ( Perché esista, occorre e basta che f(x) 0 per ogni x, cosa non sempre vera. Lezione 26.wpd 08/01/2011 XXVI - 9 Lezione 26.wpd 08/01/2011 XXVI - 10 Algebra di funzioni reali Funzioni composta e inversa Funzioni composta e inversa o: e f(x) = 3x per x (1, 6), allora esiste 1/f(x) = 1/3x; se g(x) = 3x - 6, allora g(2) = 0, dunque 1/g(x) è definita solo in (1,2) (2, 6). Date due funzioni f e g definite in modo tale che Im (f) sia contenuta nel dominio di g, allora si chiama funzione composta la funzione. o: Date le funzioni composte sono (ben diverse!), le loro funzioni Lezione 26.wpd 08/01/2011 XXVI - 11 Lezione 26.wpd 08/01/2011 XXVI - 12

4 Funzioni composta e inversa La composizione fra funzioni è associativa, in genere non commutativa, esiste la funzione identica f(x) = x. L inversa esiste se e solo se la funzione è biiettiva. Nota: occorre distinguere fra la funzione inversa nel senso della composizione f -1 e la funzione 1 / f(x) inversa rispetto al prodotto fra funzioni. i tratta di due funzioni diverse, giacché laddove f(x) * 1 / f (x) = 1, per ogni x. o: data y = f(x) = x 2, la sua inversa è, mentre 1 / f(x) = 1 / x 2. Dati due insiemi dotati della stessa struttura, si chiamano morfismi le funzioni fra di essi che ne conservano la struttura. : 1) fra insiemi (senza struttura) le funzioni; 2) fra strutture d ordine, le funzioni monotòne: x y f(x) f(y) o x y f(x) f(y) Lezione 26.wpd 08/01/2011 XXVI - 13 Lezione 26.wpd 08/01/2011 XXVI ) fra strutture di gruppo, gli omomorfismi f(x y) = f(x) f(y) 4) fra spazi topologici, le funzioni continue. 5) fra anelli: gli omomorfismi f(a+b) = f(a) + f(b) f(ab) = f(a)f(b) 5) fra spazi vettoriali, le trasformazioni lineari: f(av + bw) = af(v) + bf(w) 6) fra spazi metrici le isometrie. I morfismi possono essere - morfismi se funzioni generiche; - monomorfismi, se sono iniezioni; - epimorfismi, se sono suriezioni; - isomorfismi, se sono biiezioni. : L esponenziale y = a x è un isomorfismo fra R(+) ed R + -{0} (.): infatti a x+z = a x. a z. Il logaritmo y = log a x è un isomorfismo fra R + -{0}(.) ed R(+): log a (xz) = log a x + log a z. Lezione 26.wpd 08/01/2011 XXVI - 15 Lezione 26.wpd 08/01/2011 XXVI - 16

5 Funzioni monotone Funzioni monotone Funzioni monotòne Una funzione f : A R si dice crescente se, per ogni coppia di punti x 1, x 2 di A, con x 1 > x 2, risulta f(x 1 ) f(x 2 ). Analogamente una funzione f : A R si dice decrescente se, per ogni coppia di punti x 1, x 2 di A, con x 1 > x 2, risulta f(x 1 ) f(x 2 ). e poi vale sempre la disuguaglianza stretta, la f si dice strettamente crescente (o strettamente decrescente). In quanto mantengono l ordinamento, le funzioni crescenti e decrescenti sono monotòne, quelle strettamente crescenti e decrescenti si dicono strettamente monotòne. Nota: le funzioni strettamente monotòne sono un esempio di funzioni invertibili. Esistono però, funzioni invertibili in un intervallo che non sono monotòne. Lezione 26.wpd 08/01/2011 XXVI - 17 Lezione 26.wpd 08/01/2011 XXVI - 18 Funzioni monotone o: f è invertibile, ma non monotòna. Consideriamo i seguenti esempi di funzioni reali di variabile reale: o 1: f(x) = ax + b Lezione 26.wpd 08/01/2011 XXVI - 19 Lezione 26.wpd 08/01/2011 XXVI - 20

6 o 2: f(x) = sen x o 3: f(x) = cos x Lezione 26.wpd 08/01/2011 XXVI - 21 Lezione 26.wpd 08/01/2011 XXVI - 22 o 4: o 5: f(x) = x 2 Lezione 26.wpd 08/01/2011 XXVI - 23 Lezione 26.wpd 08/01/2011 XXVI - 24

7 o 6: o 7: f(x) = a x Lezione 26.wpd 08/01/2011 XXVI - 25 Lezione 26.wpd 08/01/2011 XXVI - 26 o 8: f(x) = log a x o 9: f(x) = massimo intero x Lezione 26.wpd 08/01/2011 XXVI - 27 Lezione 26.wpd 08/01/2011 XXVI - 28

8 La costruzione del grafico d una funzione è facilitata dalla conoscenza dei grafici delle principali funzioni elementari. Partendo, dunque, dal grafico della funzione y = f(x) s ottengono i grafici delle funzioni seguenti: 1) y 1 = - f(x), il grafico è simmetrico rispetto all asse delle ascisse; 2) y 2 = f(-x), il grafico è simmetrico rispetto all asse delle ordinate; 3) y 3 = f(x - a), il grafico è spostato del valore a lungo l asse delle ascisse; 4) y 4 = b + f(x), il grafico è spostato del valore b lungo l asse delle ordinate. : Calcolare il dominio delle funzioni seguenti: 1) e x > 0 ci sono due determinazioni:, dunque non è una funzione x < 0? quindi, se x R + {0} allora y R + {0}. Lezione 26.wpd 08/01/2011 XXVI - 29 Lezione 26.wpd 08/01/2011 XXVI ) D = [-50, -25) [5, 25] 3) x 0, quindi 4) Dev'essere, quindi ({x 0} {x > 0}) - {1} cioè Lezione 26.wpd 08/01/2011 XXVI - 31

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

PREMESSE DELL ANALISI INFINETISIMALE

PREMESSE DELL ANALISI INFINETISIMALE PREMESSE DELL ANALISI INFINETISIMALE LE PREMESSE DELL ANALISI INFINETISIMALE Insiemi numerici e insiemi di punti Un insieme i cui elementi sono numeri reali è chiamato insieme numerico. Detto R l insieme

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Pagina 1 Generalità sulle funzioni Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla definizione

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

03 - Le funzioni reali di variabile reale

03 - Le funzioni reali di variabile reale Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale ppunti del corso di Matematica 03 - Le funzioni reali di variabile reale nno ccademico 2013/2014

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Modello di un fenomeno

Modello di un fenomeno Funzioni Modello di un fenomeno Un modello è una costruzione ideale basata su alcune caratteristiche essenziali del fenomeno, dette variabili. Un modello è ovviamente una approssimazione del fenomeno che

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Introduzione al concetto di funzione

Introduzione al concetto di funzione Introduzione al concetto di funzione Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Introduzione al concetto di funzione Analisi A 1 / 36 Definizione di funzione: è

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

LE FUNZIONI. Cosa sono DEFINIZIONI

LE FUNZIONI. Cosa sono DEFINIZIONI LE FUNZIONI Cosa sono Il concetto di funzione nasce nell antichità come nozione di dipendenza di una variabile da un altra. I matematici greci già facevano uso implicito del concetto di funzione in argomenti

Dettagli

Graficamente: si rintraccia f (A) sull asse y eseneanalizzanoinf, sup, min, max.

Graficamente: si rintraccia f (A) sull asse y eseneanalizzanoinf, sup, min, max. 3. FUNZIONI LIMITATE, ESTREMI DI UNA FUNZIONE Per funzioni reali (a dominio qualunque), im f è incluso in R e quindi ha senso la seguente: Definizioni. Sia f :domf X R esiaa dom f. 1 Si chiamano estremo

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PREREQUISITI : concetti di insieme, relazione, intervallo, intorno, quantificatori, Riferimento Cartesiano Ortogonale (RCO), le coniche, funzioni, operazioni e composizioni

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2006/07. Notazioni, richiami sulla teoria degli insiemi.

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2006/07. Notazioni, richiami sulla teoria degli insiemi. Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2006/07 Notazioni, richiami sulla teoria degli insiemi. Introduzione e richiami di alcune notazioni (simboli matematiche.

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

FUNZIONI NUMERICHE. Funzione numerica

FUNZIONI NUMERICHE. Funzione numerica Funzione numerica FUNZIONI NUMERICHE Una funzione si dice numerica se gli insiemi A e B sono insiemi numerici, cioè N (insieme dei numeri naturali), Z (insieme dei numeri relativi), Q (insieme dei numeri

Dettagli

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme.

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. 1 FUNZIONI Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. Insiemi Un insieme è un raggruppamento di oggetti di qualsiasi natura.

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Funzioni Potenza. POTENZE AD ESPONENTE INTERO: se n N, f(x) = x n è definita per ogni x R; se l esponente è un intero negativo,

Funzioni Potenza. POTENZE AD ESPONENTE INTERO: se n N, f(x) = x n è definita per ogni x R; se l esponente è un intero negativo, Funzioni Potenza POTENZE AD ESPONENTE INTERO: se n N, f(x) = x n è definita per ogni x R; se l esponente è un intero negativo, f(x) = x n = x n definita per ogni x 0. POTENZE AD ESPONENTE RAZIONALE: per

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale CONVITTO NAZIONALE MARIA LUIGIA Classe 3B Liceo Scientifico Anno scolastico 2011-2012 Docente: prof.ssa Paola Perego Disciplina: Matematica MODULO 1 : Funzioni Programma svolto ARGOMENTO CONOSCENZE/CONTENUTI

Dettagli

Corso di ALGEBRA (M-Z) INSIEMI PARZIALMENTE ORDINATI E RETICOLI

Corso di ALGEBRA (M-Z) INSIEMI PARZIALMENTE ORDINATI E RETICOLI Corso di ALGEBRA (M-Z) 2013-14 INSIEMI PARZIALMENTE ORDINATI E RETICOLI Sia P un insieme non vuoto. Una relazione d ordine su P è una relazione riflessiva, antisimmetrica e transitiva. La coppia (P,) si

Dettagli

Funzioni di una variabile reale

Funzioni di una variabile reale Capitolo. Introduzione Nella matematica, ed in molte delle sue applicazioni scientifiche e tecniche, si ha molto spesso la necessità di considerare grandezze variabili. L esistenza di una grandezza variabile

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona Matematica per le scienze sociali Successioni e funzioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) / 8 Outline Successioni 2 Funzioni 3 Funzioni elementari 4 Limiti

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre Funzione 1 il concetto di funzione nasce da quello di corrispondenza fra grandezze tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Funzioni continue di una variabile

Funzioni continue di una variabile Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica Generale Funzioni continue di una variabile Anno Accademico 2013/2014

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni, per descrivere a livello qualitativo l andamento di una funzione y = f() : 1. campo di esistenza ( insieme di definizione ) 2. segno:

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi ppendice Elementi di teoria degli insiemi.1 Introduzione Comincia qui l esposizione di alcuni concetti primitivi, molto semplici da un punto di vista intuitivo, ma a volte difficili da definire con grande

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 0/3 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi del 0 ottobre 0 La sottrazione

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova Facoltà di Agraria - Anno Accademico 2009-2010 24 febbraio 2010 1) L equazione 2x 3 3x 2 12x + 7 = 0 ha a)1 radice reale e 2 complesse b)nessuna radice reale c)2 radici reali ed 1 complessa d)3 radici

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2014-2015 L.Doretti 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta

Dettagli