Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA."

Transcript

1 Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà: due figure congruenti sono sempre equivalenti, ma due superfici equivalenti non sono sempre congruenti. F F A F = A F Def: Figure che possono essere scomposte in figure equivalenti, si dicono EQUISCOMPONIBILI.

2 AREA DEI POLIGONI Proprietà: Figure equiscomponibili sono tra loro EQUIVALENTI. Proprietà: La somma o la differenza fra superfici rispettivamente congruenti da origine a figure equivalenti. Approfondimento: Il tangram è un antico gioco di origine cinese; è costituito da un quadrato diviso in sette pezzi di forme geometriche diverse: - un parallelogramma - un quadrato - cinque triangoli ( grandi, 1 medio e piccoli).

3 AREA DEI POLIGONI 3 Def: misurare una superficie significa calcolare quante volte contiene l unità di misura. L unità di misura delle superfici è il metro quadrato m Si utilizzano multipli e sottomultipli: km hm dam m dm cm mm Per passare da un unità di misura all altra si deve MOLTIPLICARE o DIVIDERE per 100

4 AREA DEI POLIGONI 4 AREA DEI QUADRILATERI Rettangolo lati paralleli e congruenti due a due base e altezza tutti gli angoli di 90 0 (retti) ha due diagonali congruenti, che si tagliano a metà ha due assi di simmetria P = (b + h) A = b h A = b h b = A h h = A b

5 AREA DEI POLIGONI 5 Quadrato: lati tutti congruenti angoli tutti congruenti e di 90 0 due diagonali congruenti e che si tagliano a metà 4 assi di simmetria P = 4l Formula inversa: A = l l = l P = 4l l = P 4 A = l l = A Parallelogrammo Un parallelogrammo è equivalente a un rettangolo avente base e altezza rispettivamente congruenti. lati paralleli a due a due DE e CF sono le due altezze non ha assi di simmetria le due diagonali si tagliano a metà, ma non sono congruenti tra loro P = (b + l) A = b h

6 AREA DEI POLIGONI 6 Formule inverse: P = (b + l) P = b + l P l = b b = P l l = P b A = b h b = A h h = A b Rombo: tutti i lati congruenti e paralleli due a due angoli congruenti due a due diagonali perpendicolari che si tagliano a metà, che dividono la figura in 4 triangoli rettangoli congruenti assi di simmetria sono le diagonali Un rombo è equivalente alla metà di un rettangolo avente per lati le diagonali del rombo. d 1 = diagonale maggiore d = diagonale minore A = d 1 d

7 AREA DEI POLIGONI 7 Formule inverse A = d 1 d A d 1 = d Quindi d 1 = A d d = A d 1 Osservazione 1: Il rombo è anche un parallelogrammo, quindi valgono anche le formule viste per il parallelogrammo! A = AC BD = AB DH Osservazione : Il quadrato è un rombo particolare avente le diagonali congruenti. Per il quadrato risulta quindi: da cui: A = d d = A d = A

8 Quadrilateri aventi le diagonali perpendicolari AREA DEI POLIGONI 8 L area del rettangolo ottenuto è uguale al doppio dell area del quadrilatero ABCD: A rettangolo = AC BD A ABCD = A rettangolo = AC BD = d 1 d Trapezio SCALENO ISOSCELE RETTANGOLO Lati tutti diversi Angoli tutti diversi Altezze: DK=CH AD = BC lati obliqui A = B e C = D Altezze: DK=CH Diagonali congruenti A = D = 90 AD è lato e altezza AD=CH HB è proiezione del lato obliquo BC sulla base maggiore

9 AREA DEI POLIGONI 9 OSSERVAZIONE: ogni trapezio è equivalente alla metà del parallelogrammo avente per base la somma delle basi del trapezio e la stessa altezza. Quindi l area del trapezio è la metà: Se raddoppio il trapezio ottengo un parallelogramma, la cui area misura: A t = AD DH Ma AD = AB + CD base maggiore+base minore A p = AD DH A t = (AB + CD) DH Formule inverse: (B + b) = A h A = (B + b) h B = A h b b = A h B h = A (B + b)

10 AREA DEI POLIGONI 10 AB = l q 6 = 10 6 = 60 m BC = l q 4 = 10 4 = 40 m SCHEMA DEI PROBLEMI N. 6 BC = 4 6 AB A = 400 m A q = A 6 4 = 400 = 100 m 4 l q = A q = 100 = 10 m Regola: data l area di un quadrilatero e sapendo che una dimensione è una data frazione dell altra dimensione, si procede: 1. Si trova l AREA del quadratino che rappresenta l unità frazionaria A q = A N D. Si trova l unità frazionaria l q = A q 3. Si moltiplica l unità frazionaria una volta per il denominatore e una volta per il numeratore AB = l q N BC = l q D

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014 TEST PSICOMETRICO Corso preparatorio all esame in italiano del 2014 Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: gsassun@yahoo.it info@israeluni.it Realizzato grazie al contributo dell UNIONE DELLE

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE www.istitutocalabrese.vr.it e-mail vris@istruzione.it www.liceoprimolevi.it STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE Gli insegnanti di matematica delle Scuole Medie di BUSSOLENGO CAPRINO VERONESE

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 In un piano, riferito

Dettagli

Classe 2ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1 e 2, Petrini con Quaderno di recupero

Classe 2ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1 e 2, Petrini con Quaderno di recupero ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC0701R Liceo delle Scienze Umane VAPM07011 Via G. Carducci 4 105 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99 Bravissimo/a! Sei arrivato/a alla fine della parte di italiano... Adesso perché non ripassi un po di matematica? A settembre sarai un bolide nelle operazioni, nel risolvere i problemi e in geometria! matematica

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno... VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. Rita e Marco DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA Rita e Marco 3 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE La danza degli stormi, foto di _Pek_ http://www.flickr.com/photos/_pek_/4113244536 1. Generalità sulle trasformazioni geometriche piane...2 2.

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Seconda Spazio per

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

I quesiti sono distribuiti negli ambiti secondo la tabella seguente

I quesiti sono distribuiti negli ambiti secondo la tabella seguente Servizio Nazionale di Valutazione a.s. 2010/11 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado (a cura di Giorgio Bolondi, Rossella Garuti, Aurelia Orlandoni, Domingo

Dettagli

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3 INIE Unità 7 LL IRONFERENZ I POLIGONI REGOLRI, Il libro prosegue nel 7. IRONFERENZ E ERIO, ESERIZI da p. 7. PRTI ELL IRONFERENZ E EL ERIO, Le parti della circonferenza, Le parti del cerchio, 7. NGOLI E

Dettagli

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015 METODOLOGIA DIDATTICA E STRUMENTI Le lezioni teoriche vengono sviluppate a partire da momenti pratici e di osservazione di fenomeni. I principi teorici verranno quindi o presentati dall insegnate o ricavati

Dettagli

INVALSI. Ministero dell Istruzione dell Università e della Ricerca

INVALSI. Ministero dell Istruzione dell Università e della Ricerca X MATEMATICA_COP_Layout 1 15/03/11 08:51 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480...

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480... ARITMETICA Le classi del numero Leggi i numeri che si riferiscono agli abitanti di alcuni Stati del mondo, poi riscrivili nella tabella in ordine crescente. Argentina 0 5 Nigeria 5 78 900 Australia 06

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

LA GEOMETRIA CON GEOGEBRA

LA GEOMETRIA CON GEOGEBRA La geometria con Geogebra Introduzione 1 SERGIO BALSIMELLI LA GEOMETRIA CON GEOGEBRA (seconda edizione) Esercizi per la scuola secondaria di primo grado e di secondo grado La geometria con Geogebra Introduzione

Dettagli

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA)

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA) Istruzioni e programmi d insegnamento per gli istituti tecnici approvati con regio decreto 2 ottobre 1891 n. 622 (Raccolta ufficiale delle leggi e dei decreti del Regno d Italia, Roma, Stamperia Reale,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998 Anno Accademico 1997/1998 MATEMATICA anno 1997 1998 n. 69 L'espressione (4 + 2x 12y) / 2 si può ridurre a: A) 2 + 2 (x + 6y) B) 4 + y + 6x C) 2 + x + 6y D) 4 + x + 6y E) 2 + 2x + 6y MATEMATICA anno 1997

Dettagli

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1 E1. L immagine qui sotto è una ricostruzione dell Acropoli di Atene. L edificio indicato con P è il Partenone, tempio dedicato alla dea Atena. Osserva ora questa piantina dell Acropoli: Quale numero riportato

Dettagli

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza LICEO SCIENTIFICO STATALE A. GRAMSCI - IVREA ANNO SCOLASTICO 2013-2014 CLASSE 1^F - S.A. PIANO DI LAVORO ANNUALE DI MATEMATICA Prof. Angelo Bozza FINALITA SPECIFICHE DELLA DISCIPLINA E DIDATTICI Le finalità

Dettagli

NonsoloMatematica. Indice. Tutto quello che ti serve per eseguire i calcoli di Fisica. 1 Schede di matematica, M2

NonsoloMatematica. Indice. Tutto quello che ti serve per eseguire i calcoli di Fisica. 1 Schede di matematica, M2 NonsoloMatematica Tutto quello che ti serve per eseguire i calcoli di Fisica Indice Schede di matematica, M. Grandezze direttamente proporzionali, M. Grandezze con proporzionalità quadratica, M7.3 Grandezze

Dettagli

INDICE. Unità 1 MISURARE, 1. Unità 2 GLI ENTI FONDAMENTALI DELLA GEOMETRIA, 45 1.1 LA MISURA DELLE GRANDEZZE, 2 MISURE DI LUNGHEZZA, 7

INDICE. Unità 1 MISURARE, 1. Unità 2 GLI ENTI FONDAMENTALI DELLA GEOMETRIA, 45 1.1 LA MISURA DELLE GRANDEZZE, 2 MISURE DI LUNGHEZZA, 7 INDICE Unità 1 MISURARE, 1 Il libro prosegue nel CD 1.1 LA MISURA DELLE GRANDEZZE, 2 Il Sistema Internazionale di unità, 3 Multipli e sottomultipli, 4 LABORATORIO matematico: Misurazioni con le unità di

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Sistemi di misura. Enti geometrici fondamentali GEOMETRIA

Sistemi di misura. Enti geometrici fondamentali GEOMETRIA Sistemi di misura Enti geometrici fondamentali GEOMETRI SISTEMI DI MISUR Si dice grandezza tutto ciò che si può misurare, Es: la durata di una lezione di matematica, il peso di un ragazzo, la lunghezza

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0,

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0, PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 19 novembre 2008 1) La prova consiste di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

CONCETTO di GRANDEZZA

CONCETTO di GRANDEZZA CONCETTO di GRANDEZZA Le GRANDEZZE FISICHE sono qualità misurabili di un corpo o di un fenomeno Esempi di grandezze Per misurare una grandezza occorre un adeguato strumento di misura GRANDEZZA Lunghezza

Dettagli

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica)

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica) Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale Test di autovalutazione (matematica) 1. Eseguendo la divisione con resto di 3437 per 225

Dettagli

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti 02-318112/1 via Alcuino 4-20149 Milano 02-33100578 codice fiscale 97504620150

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Cognome e nome Data Matematica Teoria - Numeri III Base I Frazioni e numeri razionali I. Introduzione I.. Rappresentazione di frazioni FRAZIONE I.. Frazione come operatore 0? di 0 : Divido in ( ) : di

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1 PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5 Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo 5 Spazio per l etichetta autoadesiva ISTRUZIONI Troverai nel fascicolo

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

E-BOOK01 INVALSI Matematica

E-BOOK01 INVALSI Matematica E-book01 per la scuola secondaria di II grado Per la preparazione alle prove INVALSI dell anno scolastico 2012-13 Le domande presenti in questo e-book sono prodotte e distribuite dall Istituto Nazionale

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Piano Lauree Scientifiche 2012/2013. Liceo Scientifico Renato Caccioppoli Napoli Napoli

Piano Lauree Scientifiche 2012/2013. Liceo Scientifico Renato Caccioppoli Napoli Napoli Piano Lauree Scientifiche 2012/2013 Liceo Scientifico Renato Caccioppoli Napoli Napoli Pitagora utilizzando l inversione circolare Euclide e Gli Elementi Negli Elementi Euclide parte da postulati formula

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola primaria. Classe Quinta Fascicolo 1

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola primaria. Classe Quinta Fascicolo 1 Prova di MateMatica - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola primaria Classe Quinta Fascicolo 1 Spazio per l etichetta autoadesiva

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI

MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI Indice Triangle Shapes Photo by: maxtodorov Taken from: http://www.flickr.com/photos/maxtodorov/3066505212/ License: Creative commons Attribution

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013. Prova di Matematica : Disequazioni + Parallelogrammi Alunno: Classe: 2C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013. Prova di Matematica : Disequazioni + Parallelogrammi Alunno: Classe: 2C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 202-203 Prova di Matematica : Disequazioni + Parallelogrammi Alunno: Classe: 2C 20.0.202 prof. Mimmo Corrado. Risolvi le seguenti equazioni: 5+ 3

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli

ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli ESEMPI DIDATTICI CON CABRI Jr. A cura di P. Accomazzo C. Dané N. Nolli I tasti utilizzati con Cabri Jr. [Y=] [WINDOW] [ZOOM] [TRACE] [GRAPH] [2ND] [DEL] [CLEAR] [ALPHA] [ENTER] Apre il menu File (F1).

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

PIANO DI FORMAZIONE DI MATEMATICA

PIANO DI FORMAZIONE DI MATEMATICA PIANO DI FORMAZIONE DI MATEMATICA Allegato 3: Competenze per classe e competenze comuni a tutte le classi esemplificate 300 Premessa Per ogni classe sono state formulate tre competenze. Ciascuna è presentata

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 22/02/2004 22.51 Pagina 16 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Qual è il risultato

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei

Dettagli

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1 assocubo.ggb Assonometria monometrica del cubo con gli strumenti geometrici di NOTEBOOK Z Y 60 o 60 o 30 o X L.T. Assonometria monometrica con squadra e righello interattivo a cura di Manuela Menzaghi

Dettagli

PROGRAMMAZIONE MATEMATICA BIENNIO A.S. 2014-2015

PROGRAMMAZIONE MATEMATICA BIENNIO A.S. 2014-2015 PROGRAMMAZIONE MATEMATICA BIENNIO A.S. 2014-2015 - Finalità della matematica - Promuovere le facoltà intuitive e logiche - Educare a procedimenti sperimentali oltre che di astrazione e di formazione dei

Dettagli

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1 MATEMATICA LEGGERA 1. Equazioni 2. Proporzioni 3. Potenze 4. Notazione scientifica 5. Superfici e volumi 6. Percentuale 7. Funzioni 8. Sistemi di riferimento 9. Esponenziale e logaritmo 10. Gaussiana 11.

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

RELAZIONI E PROPRIETA 1

RELAZIONI E PROPRIETA 1 C. De Fusco Relazioni e loro proprietà 1 RELAZIONI E PROPRIETA 1 Generalità. 2 Relazioni particolari tra insiemi.. 3 Relazioni tra numeri 6 Proprietà delle relazioni in un insieme 9 Relazioni di equivalenza.

Dettagli

Piano di lavoro annuale a.s. 2013/2014

Piano di lavoro annuale a.s. 2013/2014 Piano di lavoro annuale a.s. 2013/2014 Docente: Frank Ilde Materia: Matematica Classe: 1^ASA 1. Nel primo consiglio di classe sono stati definiti gli obiettivi educativo-cognitivi generali che sono stati

Dettagli

Gilda Flaccavento Romano. Quaderno. studente. per lo

Gilda Flaccavento Romano. Quaderno. studente. per lo Gilda Flaccavento Romano Quaderno per lo studente indice esercizi di recupero I numeri relativi 6 Il calcolo letterale 8 Equazioni e disequazioni 11 La risoluzione algebrica dei problemi 13 La statistica

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Raccolta Temi d'esame - Corso di Ordinamento

Raccolta Temi d'esame - Corso di Ordinamento ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinaria Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

Classe 1ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1, Petrini con Quaderno di recupero

Classe 1ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1, Petrini con Quaderno di recupero ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Mestre 7/6/2012 Prof. Mauro Martignon Prof. Martina Zuccon Per gli studenti

Mestre 7/6/2012 Prof. Mauro Martignon Prof. Martina Zuccon Per gli studenti Programma di Informatica svolto nella classe 1C del Liceo Scientifico G.Bruno anno scolastico 2011-12. Obiettivi generali dell informatica; caratteristiche fondamentali di un computer; hardware e software,

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

CORSO DI TECNOLOGIA Prof.ssa Loffa Laura

CORSO DI TECNOLOGIA Prof.ssa Loffa Laura 1. SISTEMAZIONE QUADERNO CORSO DI TECNOLOGIA Prof.ssa Loffa Laura CLASSE PRIMA A. S. 2013 2014 ------- COMPITI PER LE VACANZE Il quaderno è in ordine se: E diviso in sezioni come richiesto ad inizio anno.

Dettagli

CLASSE 1 E Prof. Ssa: Georgia Angelini

CLASSE 1 E Prof. Ssa: Georgia Angelini Scuola secondaria di 2 Grado Liceo Artistico A.S. 2012 2013 CLASSE 1 E Prof. Ssa: Georgia Angelini PROGRAMMAZIONE CONSUNTIVA DISCIPLINE GEOMETRICHE La classe è composta da alunni che hanno dimostrano una

Dettagli