L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA"

Transcript

1 L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria. Area = Superficie 5 cm 3 cm azzurro 3 cm Area = parte colorata in azzurro 5 cm Un errore abbastanza diffuso tra i giovani studenti è quello di confondere le formule per il calcolo dell area con quelle del perimetro. Poiché il perimetro rappresenta la misura del contorno della figura, si può facilmente ricavare facendo la somma dei lati; quindi non c è bisogno di imparare a memoria alcuna formula! Nel rettangolo preso ad esempio, è evidente che la misura del perimetro (cioè della linea spezzata chiusa rossa) è data da = 16 cm Un altro errore abbastanza comune è quello di confondere le unità di misura: l unità di misura delle aree è sempre elevata alla seconda, poiché non si tratta di una misura lineare (metro, con i suoi multipli e sottomultipli), ma di una misura di superficie (metro, con i suoi multipli e sottomultipli). In effetti, per indicare la misura dell area del rettangolo preso ad esempio, dobbiamo calcolare quanti quadratini con il lato di 1 cm occorrono per coprire l intera superficie. Ognuno di questi quadratini, per definizione, rappresenta 1 cm Area = 15 cm

2 Ovviamente, se dobbiamo misurare aree molto grandi, l unità di misura non sarà il cm ma il m (ad esempio, la superficie di una stanza) o l hm (ad esempio, la superficie di un campo coltivato) o il Km (ad esempio, la superficie di una regione). Vediamo ora le formule Ricorda che la base di una figura geometrica si indica con il simbolo b l altezza con il simbolo h l area con il simbolo A Quadrato A = b x h Poiché le base e l altezza nel quadrato sono uguali, la formula diventa A = l x l, cioè A = l (dove l indica la misura del lato) Ad esempio, devo calcolare l area di un quadrato di lato 6 m. A = (6m) = 36 m 6m Rettangolo A = b x h Esempio, devo calcolare l area di un rettangolo di base 6m e altezza 4m. 4m A = 6m x 4m = 4 m 6m Parallelogramma A = b x h Esempio, devo calcolare l area di un trapezio di base 8cm e altezza 6cm A = 8cm x 6cm = 48 cm 6cm 8cm Trapezio Il trapezio può essere disegnato così o così Quindi ha basi. Indichiamo con B la base più lunga (base maggiore) e con b la base più corta (base minore) A = (B + b) x h Esempio, devo calcolare l area di un trapezio di base maggiore 8cm, base minore 6cm e altezza 4cm

3 A = (8cm + 6 cm) x 4cm = 14 cm x 4 cm : = 56 cm : = 8 cm Rombo Il rombo ha diagonali (nel disegno rappresentate dalle linee tratteggiate); indichiamo con D la più lunga (diagonale maggiore) e con d la più corta (diagonale minore) A = D x d Esempio, devo calcolare l area di un rombo di diagonale maggiore 10 dm e diagonale minore 8 cm A = 10 dm x 8 dm : = 80 dm : = 40 dm Triangolo A = b x h Esempio, devo calcolare l area di un triangolo di base 7 cm e altezza 6 cm A = 7 cm x 6 cm : = 4 cm : = 1 cm Circonferenza e cerchio r Per calcolare la misura della circonferenza (contorno) e del cerchio (area) basta conoscere la misura del raggio, il cui simbolo è r. In entrambe le formule compare un numero decimale illimitato non periodico, il cui valore approssimato per difetto è 3,14. Questo numero si indica con un simbolo derivato dall alfabeto greco, il pi greco (π) Indichiamo con C la Circonferenza e con C il cerchio C = x r x π C = r x π Esempio, devo calcolare la misura di una circonferenza di raggio 5 m

4 C = x 5 m x π = 10 m x π Posso lasciare scritto così il risultato, oppure posso fare la moltiplicazione per 3,14 (sapendo di giungere ad un risultato approssimato) e scrivere C = 10 m x π = 31,4 m L area (cerchio) misura: C = (5m) x π = 5 m x π moltiplicazione per 3,14 anche qui, se voglio, posso lasciare scritto così il risultato, o svolgere la PROVA TU 1. Calcola l area di un quadrato di lato 8 metri. Calcola l area di un rettangolo di base 16 cm e di altezza 10 cm 3. Calcola l area un trapezio di base maggiore 15 cm, base minore 8 cm, altezza 6 cm. 4. Calcola l area di un rombo di diagonale maggiore 60 cm e diagonale minore 40 cm 5. Calcola la circonferenza di raggio 60 cm Controlla poi i risultati nel foglio seguente Prof.ssa Mancuso

5 Risultati 1. A = 64 m. A = 160 cm 3. A = 69 cm 4. A = 100 cm 5. C = 10 x π cm oppure C = 376,8 cm

L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli

L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli In un poligono possiamo prendere diversi tipi di misure: L ampiezza degli angoli La misura dei lati ed il perimetro La misura della sua superficie o area. L ampiezza degli angoli si misura in gradi (simbolo

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 14 L equivalenza di figure piane Due figure piane si dicono equivalenti (o equiestese) se hanno la stessa estensione nel piano. L area

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:... Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Anna Montemurro. 3Geometria. e misura

Anna Montemurro. 3Geometria. e misura Anna Montemurro Destinazione Matematica 3Geometria e misura ... verifico 1 Come si definisce il cerchio? Che cosa s intende per raggio e per diametro di un cerchio? Disegna tre cerchi, rispettivamente

Dettagli

Risolvi i seguenti problemi scrivendo dati, richiesta, figura e svolgimento come negli esempi sottostanti.

Risolvi i seguenti problemi scrivendo dati, richiesta, figura e svolgimento come negli esempi sottostanti. cbnd Antonio Guermani Scheda n 1 versione del 09/04/2014 1) L'area di un triangolo scaleno è 20, ha e la base è lunga volte la sua altezza. Calcola la misura della base e dell'altezza. [7; 111 hm] 2) L'area

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr.

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr. Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 Nota bene: il numero di esercizi da svolgere dipende dal voto che hai avuto nella pagella del 2 quadrimestre in matematica, ed

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

Come risolvere i quesiti dell INVALSI - secondo

Come risolvere i quesiti dell INVALSI - secondo Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:

Dettagli

PROBLEMI DI GEOMETRIA SUL CERCHIO

PROBLEMI DI GEOMETRIA SUL CERCHIO PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente

Dettagli

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini (marina.bertolini@mat.unimi.it)

Dettagli

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

PROGRAMMA SVOLTO E COMPITI ESTIVI

PROGRAMMA SVOLTO E COMPITI ESTIVI Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo 51-53 /119) 1) Il concetto della radice di un numero. a) Concetto numerico. 3 = ;l operazione inversa è : qual è quel numero il cui quadrato è 9? Matematicamente

Dettagli

Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems (with solution)

Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems (with solution) Geometria Equivalenza e misura delle aree Rombo. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems

Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems Cerchio e circonferenza. Eserciziario ragionato con soluzioni. - 1 Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems 1. I dischi cd-rom, inventati

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Corso di preparazione ai Giochi di Archimede Geometria e Logica

Corso di preparazione ai Giochi di Archimede Geometria e Logica Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

per vedere la forma decimale, basterà premere il tasto

per vedere la forma decimale, basterà premere il tasto Il cerchio - ripasso 1) Un rapporto importantissimo ed interessantissimo. π : Questa lettera dell alfabeto greco, si legge pi greco, rappresenta il rapporto tre la lunghezza della circonferenza e quella

Dettagli

1 La lunghezza della circonferenza

1 La lunghezza della circonferenza 1 La lunghezza della circonferenza Ricordiamo che per misurare una grandezza bisogna scegliere un unità di misura e stabilire quante volte quest ultima è contenuta nella prima. Nel caso della circonferenza

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate.

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate. LINEE SEMPLICI INTRECCIATE Colora di giallo le linee semplici, di verde quelle intrecciate. Disegna di rosa le linee semplici, di azzurro quelle intrecciate. LINEE APERTE CHIUSE Colora di giallo le linee

Dettagli

E periodico semplice?

E periodico semplice? COMPITI PER LE VACANZE gruppo A. Per affrontare bene il terzo anno è indispensabile rivedere alcuni argomenti; i compiti che seguono servono a questo. Sono da eseguire su un apposito quaderno che sarà

Dettagli

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? 1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

PROBLEMI DI GEOMETRIA SUL QUADRATO

PROBLEMI DI GEOMETRIA SUL QUADRATO PROBLEMI DI GEOMETRIA SUL QUADRATO 1. Calcola la lunghezza della diagonale di un quadrato che ha il lato di 15 mm. 2. Il perimetro di un quadrato misura 20,8 dm, calcola la lunghezza della diagonale. 3.

Dettagli

PROBLEMI SVOLTI SULLA PIRAMIDE

PROBLEMI SVOLTI SULLA PIRAMIDE PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

Esercizi per le vacanze estive.

Esercizi per le vacanze estive. Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza. LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si

Dettagli

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13 PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S. 2012 /13 ARITMETICA 1. Calcola il valore delle seguenti espressioni = + 2. Risolvi il seguente problema: Una gara ciclistica prevede

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!)

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!) CLASSE 2^A (futura 3^A) Prof.ssa Cappello A.S. 2015/2016 Ciao ragazzi! Di seguito trovate un elenco di esercizi da svolgere. INVITO 1: non fate tutti gli esercizi a giugno, o tutti a settembre, ma cercate,

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1

3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1 3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1 Problemi di geometra solida sulla piramide. Completi di soluzione guidata. Collection of problems on the cone. With solution. 1.

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Circonferenze e cerchi

Circonferenze e cerchi Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto

Dettagli

Consolidamento Conoscenze

Consolidamento Conoscenze onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2005

Dettagli

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

Leggi con attenzione il testo di ogni quesito, evitando di trascurare qualche dato o parte della domanda.

Leggi con attenzione il testo di ogni quesito, evitando di trascurare qualche dato o parte della domanda. *N15140131I* /16 *N15140131I0* INDICAZIONI E CONSIGLI Leggi con attenzione il testo di ogni quesito, evitando di trascurare qualche dato o parte della domanda. Quando il quesito te lo consente, cerca di

Dettagli

Raccolta di problemi di geometra piana sui poligoni iscritti e circoscritti Polygon, Regular Polygon and circumscribed circle.

Raccolta di problemi di geometra piana sui poligoni iscritti e circoscritti Polygon, Regular Polygon and circumscribed circle. Poligoni inscritti e circoscritti 1 Raccolta di problemi di geometra piana sui poligoni iscritti e circoscritti Polygon, Regular Polygon and circumscribed circle. (Geometry) 1. Un esagono regolare ha il

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

(ED IMPARARE LE REGOLE DELLE OPERAZIONI)

(ED IMPARARE LE REGOLE DELLE OPERAZIONI) COME CALCOLARE IL PERIMETRO DI UN RETTANGOLO (ED IMPARARE LE REGOLE DELLE OPERAZIONI) Mettiamo che io abbia 8 panini, per calcolare la loro somma posso fare panino+panino+panino+panino+panino+panino+panino+panino=

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:... Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

B7. Problemi di primo grado

B7. Problemi di primo grado B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta

Dettagli

TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa

TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA In un qualsiasi triangolo rettangolo il quadrato costruito sull'ipotenusa

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli