Buone Vacanze! Compiti per le vacanze. Classe II A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Buone Vacanze! Compiti per le vacanze. Classe II A"

Transcript

1 Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei problemi disegna bene la figura a matita, usando il righello, e scrivi sempre i dati e le richieste Se non ricordi qualche cosa consulta il libro di testo o le regole e gli esempi scritti sul tuo quaderno Cerca di essere ordinato IL QUADERNO LO CONSEGNERAI AL TUO INSEGNANTE DI MATEMATICA IL PRIMO GIORNO DI SCUOLA. Buone Vacanze!

2

3 . Un quadrato ed un rettangolo hanno i perimetri uguali ed il lato del quadrato è espresso in metri dal valore della x nella proporzione x 8 Calcola l area del rettangolo, sapendo che una sua dimensione è uguale ai dell altra..( m ) ( ) 8. x x 6 8. Un rombo ha l area di 6 m e la diagonale minore è lunga 8 m. Calcola l area di un quadrato avente il lato congruente ai 8 della diagonale maggiore del rombo; la misura delle basi di un trapezio equivalente al quadrato (cioè hanno la stessa area) e avente l altezza lunga m e una base i dell altra; l area di un parallelogramma avente base e altezza rispettivamente il doppio e il triplo della base minore del trapezio. ( m ;, m;, m;, m ). Trasforma in frazioni i seguenti numeri periodici semplici misti.,,8,8 0, 6, 0, 8,0,8,9 0, 8 0,, Un quadrato ha l area di 00 cm ; calcola il perimetro e l area di un triangolo rettangolo avente un cateto lungo 8 cm e l ipotenusa congruente alla diagonale del quadrato. ( 6 cm ; 9 cm ) 8. Un triangolo rettangolo e uno isoscele sono equivalenti. Nel primo triangolo un cateto è dell altro e la loro somma è,6 cm. Calcola l altezza del secondo triangolo, sapendo che la base misura 0,8 cm. ( cm ) 9. x x 6 0

4 0.. La differenza tra le diagonali di un rombo è di cm ed una è i dell altra. Calcola il perimetro di un quadrato avente il lato uguale alla diagonale minore del rombo; le dimensioni di un rettangolo sapendo che una supera l altra di cm e che ha il perimetro uguale ai di quello del quadrato; la base di un triangolo isoscele avente lo stesso perimetro del rettangolo ed il lato obliquo di cm. (6 cm; 6, cm; 9, cm; 8 cm) In un trapezio isoscele la somma delle basi è di,6 m e la base minore è i dell altra. Calcola l area del trapezio sapendo che il lato obliquo è uguale alla base minore. (,6m ). 0 8 x 6. Un triangolo isoscele ha l area di 9 m e l altezza relativa alla base lunga 6 m Calcola il perimetro del triangolo; l area di un quadrato avente il lato congruente all altezza relativa al lato obliquo del triangolo. (6 m; 68,6 m ) 6. Un rombo ha l area di 80 m ed una diagonale è lunga 6 m. Calcola l area del rettangolo che ha lo stesso perimetro del rombo ed una dimensione uguale ai dell altra. ( m ). Trasforma i seguenti numeri decimali in frazioni decimali e, se possibile, riduci ai minimi termini.,6 0,6, 0,09,08,, 0, x 9 9. Un trapezio isoscele ha l area di 60 cm, l altezza lunga 90 cm e la base maggiore i della minore. Calcola il perimetro del trapezio; il perimetro e l area di un triangolo rettangolo avente un cateto lungo 6 cm e l ipotenusa congruente ai della diagonale del trapezio. (0 cm; 08 cm;86 cm )

5 0. ( ) ( ) ( ) 0,,6,,, 0,8 6 ( ). Un quadrato ha l area di 0 cm ; calcola la misura della diagonale e del perimetro del quadrato; la misura del perimetro e l area di un triangolo rettangolo avente un cateto lungo 0 cm e la misura dell ipotenusa uguale a quella della diagonale del quadrato. (0cm;, cm; 0 cm; 600 cm ). Trasforma le seguenti frazioni decimali in numeri decimali x x 0. x x x. In un triangolo isoscele la base e l altezza sono una i dell altra e la somma delle loro lunghezze misura 66 cm. Calcola l area del triangolo; l area di un quadrato avente il perimetro uguale a quello del triangolo dato. (880 cm ; cm ) 8. Un rombo ha l area di 960 cm e una diagonale lunga cm. Calcola l area di un rettangolo isoperimetrico al rombo e avente la base i 0 dell altezza; il perimetro e la misura della diagonale di un quadrato equivalente ai 0 del rettangolo. (0 cm ; 60 cm; 6,6 cm) 9. In un trapezio rettangolo la differenza tra le basi è cm e la minore è i 8 della maggiore. Calcola perimetro e area del trapezio, sapendo che il lato obliquo misura 0 cm. 0. ( )

6 (,6 0,8 0,) 0,9 (,,6),. Calcola la x x x 0,6 x x, x x 69 0, x x 0, 9 x x x,, x. In un trapezio isoscele la differenza fra le basi è 6 cm ed è i dell altra. Sapendo che il lato obliquo misura cm, calcola perimetro, area e misura della diagonale del trapezio. ( 6 cm;. ). Un trapezio rettangolo è equivalente a un rombo avente il perimetro di cm e la diagonale minore di, cm. Sapendo che il lato obliquo e l altezza del trapezio misurano 6, cm e 6 cm, calcola le misure delle basi del trapezio. ( 8,8 cm; 9,9 cm ) 6. In un triangolo rettangolo un cateto è i dell altro e la loro differenza misura cm. Calcola l area del triangolo rettangolo; il perimetro di un trapezio rettangolo equivalente al triplo del triangolo, sapendo che la differenza delle basi misura cm e l altezza è lunga 8 cm. (0 cm ; 98 cm). In un triangolo rettangolo i cateti misurano 0 cm e 0 cm. Calcola la misura dell ipotenusa; la misura di ciascuno dei due segmenti in cui l ipotenusa è divisa dall altezza; la misura dell altezza relativa all ipotenusa. ( 0 cm; cm; 8 cm; cm ) 8. x In un trapezio rettangolo il lato obliquo misura 9 m e la sua proiezione sulla base maggiore è di, m. Sapendo che la base maggiore è dell altezza, calcola la misura del lato di un 9 rombo isoperimetrico al trapezio. (6,9 m) 0. 9 x x 0

7 . In un sistema di riferimento cartesiano rappresenta i punti A (; ), B (8; ), C (8;8), D (; 8) e congiungili nell ordine dato e il primo punto con l ultimo. Calcola il perimetro, l area e la misura della diagonale della figura che hai ottenuto ( u cm).. Un triangolo isoscele ha l area di 00 cm e la base che misura 0 cm. Calcola la misura del perimetro del triangolo isoscele; l area di un rombo il cui perimetro è i 9 di quello del triangolo isoscele ed avente una diagonale lunga 0 cm. (80 cm; 600cm ). Su un piano cartesiano rappresenta il rettangolo ABCD congiungendo i punti A (; 0), B (; 0), C (;6), D (;6). Di esso calcola il perimetro l area la misura di una delle due diagonali.. x 8. x x 6 6. Un triangolo isoscele avente l altezza che misura cm e l area di 60 cm è equivalente ad un rombo; calcola la misura del perimetro del triangolo isoscele; la misura del perimetro del rombo sapendo che una sua diagonale è i dell altezza del triangolo isoscele; la misura della diagonale di un rettangolo il cui perimetro misura cm ed un dimensione è lunga quanto il perimetro del triangolo isoscele. (6 cm; cm; 8,cm). La diagonale di un rettangolo misura 6 cm ed è uguale ai di un lato. Calcola 0 l area del rettangolo; 6 la misura del perimetro di un rombo equivalente ai del rettangolo sapendo che una diagonale del rombo misura 8 cm. ( 60 cm ; 0 cm) esempi Esempio

8 esempi Funzioni e diagrammi di proporzionalità - Problemi sulla percentuale. Esegui il seguente esercizio. Espressioni con i numeri interi. Esegui il seguente esercizio.. Osserva il grafico e stabilisci la relativa funzione indicando se si tratta di proporzionalità diretta o inversa.. Risolvi il seguente problema.. Risolvi il seguente problema.

9 6. Risolvi il seguente problema.. Calcola quanto richiesto. 8. Risolvi il seguente problema. 9. Risolvi il seguente problema. 0. Esegui il seguente esercizio.

10 Le operazioni con i numeri relativi Esegui le seguenti addizioni. RICORDA La somma di due numeri concordi, cioè con lo stesso segno, è il numero relativo che ha per segno lo stesso segno e per valore numerico la somma dei valori aritmetici. La somma di due numeri discordi, cioè con segno diverso, è il numero che ha per segno il segno del numero con valore numerico maggiore e per valore numerico la differenza dei valori numerici. Esempio. (8) ().. (-) (8).. (-) (-6) -0.. () (-9) -. a) (-) (-); () (); (-) (-6). b) (0) (); (-) (9); (-) (8). a) (-) (9); (-6) (-8); (8) (). b) () (-); () (); (-) (-9). a) () (-); (-) (); (-) (-). b) (9) (8); (6) (-6); (-6) (-). Esegui le seguenti sottrazioni. RICORDA La differenza di due numeri relativi si ottiene addizionando al primo l opposto del secondo. L addizione e la sottrazione di numeri relativi si possono considerare come un unica operazione, detta addizione algebrica. Esempio. (-8) - () (-8) (-) - 9. (-) - (-0) (-) (0) a) () - (-); (-) - (-); (-) - (). b) (8) - (-); (-) - (6); (8) - (-). a) (-) - (-); (8) - (-9); (-) - (0). b) () - (); () - (-); (-) - (-). 6 a) (-) - (); () - (-); () - (). b) (-) - (-); (9) - (-); (-) - (0). empimpi Esegui le seguenti addizioni algebriche. Esempio. (-) - (-) - (6) ( ) ( ) (8) ( ); () ( 8) ( ) - (0). [ ; 0] 8 ( ) ( ) (); () () (0) (). [; 0]

11 Calcola il valore delle seguenti espressioni con addizioni algebriche. Esempio - [8 - ] - -[8 - (- ) ] oppure - [ 8-8 ] - 9 ( ); 0 - (8 - ) [-; ] 0 - [ - (8 - ) ]; -9 - [-( ) - ] [-; -9] - {-8 [- ( - ) - ] } ; - [- (- ) 8] - [ - (- ) ]. [8; -] Esegui le seguenti moltiplicazioni e divisioni. RICORDA Il prodotto di due numeri relativi è il numero relativo che ha per valore numerico il prodotto dei valori numerici e per segno o -, secondo la regola dei segni Regola dei segni Il quoziente di due numeri relativi, di cui il secondo diverso da 0, si ottiene dividendo il primo numero per il secondo. Il segno del quoziente sarà o -, secondo la regola dei segni Regola dei segni esempi Esempi. (6) () 8;. (6) () ; (-6) (-) 8; (-6) (-) ; (6) (-) -8; (6) (-) -; (-6) () -8. (-6) () -. (-) (-); () (-); (-) (-); (-) (0). (-0) (-); () (8); (-6) (9); () (-). Espressioni con i numeri interi. Esegui le seguenti divisioni.. Calcola i seguenti prodotti.

12 . Esegui le seguenti sottrazioni.. Esegui le seguenti addizioni.. Calcola le seguenti somme algebriche. 6. Esegui le seguenti sottrazioni.. Esegui le seguenti addizioni. 8. Esegui le seguenti sottrazioni. 9. Esegui la seguente addizione togliendo le parentesi. 0. Esegui la seguente addizione togliendo le parentesi.

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

PROGRAMMA SVOLTO E COMPITI ESTIVI

PROGRAMMA SVOLTO E COMPITI ESTIVI Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr.

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr. Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 Nota bene: il numero di esercizi da svolgere dipende dal voto che hai avuto nella pagella del 2 quadrimestre in matematica, ed

Dettagli

ESERCIZI PER LE VACANZE

ESERCIZI PER LE VACANZE ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini

Dettagli

E periodico semplice?

E periodico semplice? COMPITI PER LE VACANZE gruppo A. Per affrontare bene il terzo anno è indispensabile rivedere alcuni argomenti; i compiti che seguono servono a questo. Sono da eseguire su un apposito quaderno che sarà

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici.

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici. IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

Esercizi per le vacanze estive.

Esercizi per le vacanze estive. Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche

Dettagli

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca

Dettagli

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13 PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S. 2012 /13 ARITMETICA 1. Calcola il valore delle seguenti espressioni = + 2. Risolvi il seguente problema: Una gara ciclistica prevede

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo 51-53 /119) 1) Il concetto della radice di un numero. a) Concetto numerico. 3 = ;l operazione inversa è : qual è quel numero il cui quadrato è 9? Matematicamente

Dettagli

Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems (with solution)

Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems (with solution) Geometria Equivalenza e misura delle aree Rombo. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems

Dettagli

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!)

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!) CLASSE 2^A (futura 3^A) Prof.ssa Cappello A.S. 2015/2016 Ciao ragazzi! Di seguito trovate un elenco di esercizi da svolgere. INVITO 1: non fate tutti gli esercizi a giugno, o tutti a settembre, ma cercate,

Dettagli

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

Consolidamento Conoscenze

Consolidamento Conoscenze onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..

Dettagli

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

Matematica I A COMPITI DELLE VACANZE (R. 2,98) 12x1= =. 38:0=. 15+0= 30:30=.. 37x0= 0:4=.. 0x1=. 17:0=

Matematica I A COMPITI DELLE VACANZE (R. 2,98) 12x1= =. 38:0=. 15+0= 30:30=.. 37x0= 0:4=.. 0x1=. 17:0= Matematica I A COMPITI DELLE VACANZE - ARITMETICA - Risolvi le seguenti espressioni sul quaderno svolgendo tutti i passaggi: anno scolastico 0/0. 0 :x x x. xx :0 x. : 0 : x x x x x :. x : :x : x:.. : x

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

P = L + L + L. AREA E PERIMETRO DEL QUADRATO, DEL RETTANGOLO e DEL PARALLELOGRAMMA AREA E PERIMETRO DEL TRIANGOLO. PERIMETRO: è la SOMMA DEI LATI!

P = L + L + L. AREA E PERIMETRO DEL QUADRATO, DEL RETTANGOLO e DEL PARALLELOGRAMMA AREA E PERIMETRO DEL TRIANGOLO. PERIMETRO: è la SOMMA DEI LATI! AREA E PERIMETRO DEL TRIANGOLO COME SI CALCOLA? P = L + L + L oppure P = L 3 AREA: è la MISURA DELL INTERNO DEL TRIANGOLO! COME SI CALCOLA? A = (b h) : 2 CON QUESTE DUE FORMULE PUOI TROVARE ALTRE PARTI

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Relazioni, misura, dati e previsioni 2. Spazio e figure 2

Relazioni, misura, dati e previsioni 2. Spazio e figure 2 CLASSE II PROGRAMMAZIONE DI MATEMATICA UDA IL NUMERO Relazioni, misura, dati e previsioni 2 Contenuti ed attività I numeri razionali; Confronto tra numeri razionali; Operazioni ed espressioni con le frazioni;

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

SCHEMA RIASSUNTIVO SUI QUADRILATERI

SCHEMA RIASSUNTIVO SUI QUADRILATERI SCHEMA RIASSUNTIVO SUI QUADRILATERI ( a cura della prof.sa Carmelisa Destradis ) SI CHIAMA QUADRILATERO UNA FIGURA PIANA CON QUATTRO LATI E QUATTRO ANGOLI. LA SOMMA DEGLI ANGOLI INTERNI DI QUALUNQUE QUADRILATERO

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid

Dettagli

Compiti vacanze IIG a.s Alunno:

Compiti vacanze IIG a.s Alunno: Compiti vacanze IIG a.s. 2015-2016 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6

Dettagli

Raccolta di problemi di geometra solida sul prisma con la risoluzione

Raccolta di problemi di geometra solida sul prisma con la risoluzione 3D Geometria solida - 1 Raccolta di problemi di geometra solida sul prisma con la risoluzione 1. Un prisma alto 9 cm ha per base un triangolo isoscele che ha l altezza relativa alla base di 8 cm e i lati

Dettagli

Geometria Equivalenza e misura delle aree Rombo. Completi di soluzione guidata. - 1

Geometria Equivalenza e misura delle aree Rombo. Completi di soluzione guidata. - 1 Geometria Equivalenza e misura delle aree Rombo. Completi di soluzione guidata. - 1 Raccolta di problemi di equivalenza e misura delle aree sul rombo. Completi di soluzione guidata. Measurement - of Rhombus

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012 Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali

Dettagli

Le caratteristiche generali di un quadrilatero

Le caratteristiche generali di un quadrilatero 1 Le caratteristiche generali di un quadrilatero Nel quadrilatero (poligono di quattro lati) si distinguono:! i vertici,,, ;! gli angoli α, β, γ, δ;! i lati,,, ;! le diagonali e. EFINIZIONE. ue angoli

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO MATEMATICA

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO MATEMATICA COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO 014-015 MATEMATICA II 1 LE DISEQUAZIONI LINEARI x x 5 7 x 4 x x x xx 5x x 4x impossibile 5x 1x x 1 x 6x x 1 x x x 5 0 1 x x 0

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe I H ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it (dip. matematica recupero).

Dettagli

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli.

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli. ITCS LUXEMBURG - BO AS 00\0 Compiti estivi classe prima su parti di programma svolto ALGEBRA Monomi e polinomi: semplificare le espressioni con i prodotti notevoli. 9 A) a + b b a a + b ( ) a ( a + b)

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

PROBLEMI DI GEOMETRIA SUL CERCHIO

PROBLEMI DI GEOMETRIA SUL CERCHIO PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

a.s. 2015/2016 Scuola Secondaria 1 grado Loiano Classe 2 B Compiti per le vacanze

a.s. 2015/2016 Scuola Secondaria 1 grado Loiano Classe 2 B Compiti per le vacanze a.s. 2015/2016 Scuola Secondaria 1 grado Loiano Classe 2 B Compiti per le vacanze Per iniziare a settembre con il programma di III a, occorre ripassare alcune nozioni basilari del programma di II a. Nelle

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto

Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se

Dettagli

TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa

TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA In un qualsiasi triangolo rettangolo il quadrato costruito sull'ipotenusa

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe A clac B E F G H lisl Docenti: Gerace, Ricci, Battuello, Fecchio, Ferrero Disciplina: MATEMATICA Tutti gli studenti

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti POLIGONI RETTANGOLO Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti Pertanto ogni parallelogramma che ha gli angoli congruenti e le diagonali congruenti è un

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

PROBLEMI DI GEOMETRIA SUL QUADRATO

PROBLEMI DI GEOMETRIA SUL QUADRATO PROBLEMI DI GEOMETRIA SUL QUADRATO 1. Calcola la lunghezza della diagonale di un quadrato che ha il lato di 15 mm. 2. Il perimetro di un quadrato misura 20,8 dm, calcola la lunghezza della diagonale. 3.

Dettagli

L INSIEME DEI NUMERI RELATIVI

L INSIEME DEI NUMERI RELATIVI L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri

Dettagli

TITOLO: LEGGERE I QUADRILATERI

TITOLO: LEGGERE I QUADRILATERI TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 01-01 ESERCIZIARIO di MATEMATICA ITAS TRENTIN Lonigo INDICE

Dettagli

Buon lavoro e serene vacanze

Buon lavoro e serene vacanze Indicazioni per un buon ingresso nella scuola superiore Caro/a alunno/a, siamo i tuoi futuri insegnanti di MATEMATICA e, per conoscerti meglio, vogliamo suggerirti un piccolo lavoro che dovrai svolgere

Dettagli

B7. Problemi di primo grado

B7. Problemi di primo grado B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta

Dettagli

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

PROGRAMMAZIONE DISCIPLINARE

PROGRAMMAZIONE DISCIPLINARE Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli