Relazioni, misura, dati e previsioni 2. Spazio e figure 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazioni, misura, dati e previsioni 2. Spazio e figure 2"

Transcript

1 CLASSE II PROGRAMMAZIONE DI MATEMATICA UDA IL NUMERO Relazioni, misura, dati e previsioni 2 Contenuti ed attività I numeri razionali; Confronto tra numeri razionali; Operazioni ed espressioni con le frazioni; Problemi con le frazioni; Numeri decimali limitati e periodici; Concetto di radice; Calcolo e operazioni con le radici; Lettura e uso delle tavole per l estrazione di radice. La radice quadrata I rapporti; Le proporzioni e le loro proprietà; Problemi con rapporti e proporzioni; Rappresentazione sul piano cartesiano di relazioni con la proporzionalità diretta e inversa. Spazio e figure 2 Gli elementi e le caratteristiche di un poligono; Equivalenza ed equiscomponibilità di semplici figure piane; Area e perimetro di figure piane; Il teorema di Pitagora; Terne pitagoriche; Applicazione del teorema di Pitagora alle figure piane;

2 CLASSE II PROGRAMMAZIONE SCIENZE NATURALI UDA L uomo e l ambiente Contenuti ed attività La struttura del corpo umano e i suoi livelli di organizzaz ione. I principali apparati del corpo umano, nutrizione e digestione. Le rocce e processi formativi Elementi di fisica e chimica 2 Il magnetismo principi di corrente elettrica

3 CLASSE I PROGRAMMAZIONE DI MATEMATICA IL NUMERO UDA Contenuti ed attività Sistema di numerazione decimale. Numeri naturali e numeri decimali. Operazioni con i numeri naturali e proprietà. Potenze di numeri naturali. Multipli e divisori di un numero. Criteri di divisibilità. Numeri primi e numeri composti. Scomposizioni in fattori primi. M.C.D. E m.c.m. Frazione come operatore e come quoziente matematico. Frazioni proprie, improprie e apparenti. Frazioni equivalenti. SPAZIO E FIGURE RELAZIO NI, MISURE DATI E PREVISIO Enti geometrici fondamentali: punto, retta, piano. I segmenti e la loro misura. Gli angoli e la loro misura. Figure piane: proprietà e caratteristiche. Il piano cartesiano. Rappresentazione e linguaggio degli insiemi. Sistema Internazionale di misura.

4 CLASSE I PROGRAMMAZIONE DI SCIENZE NATURALI UDA Elementi di fisica e chimica 1 I viventi e l ambiente Contenuti ed attività Le proprietà della materia; Gli stati di aggregazione della materia; Le trasformazioni della materia; Passaggi di stato; Soluzioni e solubilità; Calore e temperatura; L organizzazio ne cellulare; Organismi unicellulari e pluricellulari; Descrivere la cellula come sistema organizzato e complesso e come unità base di tutti gli organismi viventi; Descrivere le strutture caratteristiche della cellula; Individuare la rete di relazioni e i processi di cambiamento del vivente introducendo il concetto di organizzazione cellulare; Comprendere il senso delle grandi classificazioni;

5 COMPITI DI MATEMATICA PER LE VACANZE 2016 IL PRESENTE FASCICOLO COSTITUISCE IL TUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO E PRESENTARLO IL PRIMO GIORNO DI SCUOLA. PER LA PARTE DI TEORIA UTILIZZA IL TUO LIBRO DI TESTO E GLI APPUNTI PRESI QUEST ANNO. UN PO' DI CONSIGLI UTILI: - FINITA LA SCUOLA RIPOSATI PER CIRCA UN MESETTO; - NON SVOLGERE TUTTI GLI ESERCIZI NELLA PRIMA PARTE DELLE VACANZE; - NON ASPETTARE DI SVOLGERLI QUALCHE GIORNO PRIMA DI RIPRENDERE LA SCUOLA; - LAVORA BENE NEGLI ULTIMI GIORNI DI VACANZA (30-60 MINUTI AL GIORNO), COSÌ DA NON APPESANTIRE TROPPO LE TUE GIORNATE E RIPRENDERE GRADUALMENTE CONTATTO CON LA SCUOLA, FINO ALL'INIZIO DELL'ANNO SCOLASTICO. NON RESTA CHE AUGURARTI BUONA ESTATE!!!!! Gabriele Fiumara 1

6 COMPITI DI MATEMATICA PER LE VACANZE ARITMETICA 1. Esegui le seguenti espressioni. 2. Esegui le seguenti espressioni applicando, se possibile, le proprietà delle potenze. 2

7 3. Ripassa bene dal libro di testo i criteri di divisibilità studiati e risolvi i seguenti esercizi: a) Inserisci al posto dei puntini una cifra tale da rendere il numero divisibile per 4: 34 4; 51 0; 358. b) Inserisci al posto dei puntini una cifra tale da rendere il numero divisibile per 3: 12 4; 1 7; 567. c) Inserisci al posto dei puntini una cifra tale da rendere il numero divisibile per 11: 27 4; 6 79; Calcola mentalmente il m.c.m. delle seguenti coppie o terne di numeri riportando sul quaderno il risultato. a) (5;6) (6;10) (7;8) (8;10) b) (10;15) (8;16) (10;11) (20;12) c) (6;5;15) (4;5;6) (10;15;6) (7;8;14) d) (7;5;10) (8;12;16) (4;6;12) (12;18;36) 5. Calcola mentalmente il M.C.D delle seguenti coppie o terne di numeri riportando sul quaderno il risultato. a) (9;12) (8;12) (12;15) (8;15) b) (15;16) (18;24) (25;27) (26;39) c) (2;6;8) (15;20;25) (15;18;21) (18;24;30) d) (6;7;8) (21;28;63) (12;36;60) (17;34;51) 6. Con il metodo della scomposizione in fattori primi determina il M.C.D. e il m.c.m. dei seguenti gruppi di numeri. a) (45;60) b) (180;240) c) (20;35;50) d) (108; 144; 180) e) (46; 69; 115) f) (72; 120; 192) g) (140;175; 245) h) (6300; 1890;10080) 7. Problemi risolvibili con il M.C.D. o con il m.c.m. a) In un giardino durante il periodo estivo i prati devono essere innaffiati ogni 5 giorni, le rose ogni 3 giorni, le aiuole di petunie ogni 2 giorni. Se oggi, 2 luglio, il giardiniere ha innaffiato tutti i tipi di piante, quando effettuerà di nuovo contemporaneamente le tre annaffiature? [1 Agosto] b) Con 110 caramelle al limone, 132 all arancia e 154 ai frutti di bosco un negoziante vuole confezionare il maggior numero di sacchetti uguali contenenti tutti e tre i tipi di 3

8 caramelle. Quanti sacchetti può confezionare? Quante caramelle di ogni tipo contiene ogni sacchetto? [22; 5; 6; 7] c) In una scuola ci sono 120 alunni di 11 anni, 144 di 12 anni e 168 di 13 anni. Per una gara si vogliono formare delle squadre del massimo numero possibile, ugualmente composte di alunni delle varie età. Quante squadre si formeranno? Quanti alunni di ogni età comprende ogni squadra? [24; 5; 6; 7] 8. Ripassa la teoria sulle frazioni e risolvi i seguenti esercizi: a) Scrivi cinque frazioni proprie e cinque frazioni apparenti. b) Scrivi cinque frazioni che abbiano rispettivamente come numeratore e denominatore due numeri consecutivi. Di che tipo sono queste frazioni? c) Operando su tre rettangoli uguali rappresenta i seguenti gruppi di frazioni. Cosa noti? Rispondi sul quaderno., e, e e d) Quali sono le frazioni equivalenti a aventi come denominatori numeri minori o uguali a 40? e) Riduci ai minimi termini le seguenti frazioni: ; GEOMETRIA Scheda 1 Metti una crocetta di fianco alla risposta esatta: 1) Quale di queste definizioni di angolo è esatta? L angolo è ciascuna delle due parti di piano compresa tra due semirette, che hanno la stessa origine. L angolo è lo spazio racchiuso da una linea spezzata chiusa. Più sono lunghi i suoi lati maggiore è l angolo. 2) La metà di un angolo piatto è: ottuso acuto retto 3) L unità di misura dell angolo è il grado, è stato ottenuto dividendo: l angolo piatto in 90 parti; l angolo retto in 180 parti; l angolo giro in 360 parti. 4

9 4) Un angolo minore di 90 è detto: acuto retto ottuso 5) In un angolo retto: i lati si incontrano obliquamente; i lati sono perpendicolari tra loro; i lati sono semirette opposte. 6) Un angolo minore di 90 è detto: acuto. retto. ottuso. 7) Un angolo di 360 è chiamato: piatto. giro. retto. Scheda 2 1. Disegna sul tuo quaderno: a. Due segmenti consecutivi b. Due segmenti adiacenti c. Due angoli consecutivi d. Due angoli adiacenti 2. Risolvi i seguenti problemi: a. La somma di due segmenti misura 234 mm e uno di essi è il doppio dell altro. Trova la misura dei due segmenti. b. La differenza di due segmenti è 548 cm e uno di essi è il triplo dell altro. Trova la misura dei due segmenti. c. La differenza di due segmenti è 35 m e la loro somma è 85 m. Trova la misura dei due segmenti. 3. Disegna in ogni caso un triangolo seguendo le indicazioni e classifica il triangolo rispetto ai lati e agli angoli : a. Due lati congruenti e un angolo ottuso b. Tre lati congruenti c. Un angolo retto e tre lati disuguali 5

10 d. Due lati congruenti e tre angoli acuti 4. In un triangolo ogni lato deve essere minore della somma degli altri due. Tenendo conto di questa proprietà, individua, in ogni caso, fra le tre possibilità proposte, la misura del lato c di un triangolo, date le misure dei lati a e b: a = 5 cm, b = 3 cm, c = 8 cm, 12 cm, 6 cm a = 12 cm, b = 12 cm, c= 24 cm, 20 cm, 36 cm a = 5 cm, b = 5 cm, c = 10 cm, 12 cm, 5 cm Problemi 5. Risolvi i seguenti problemi sui triangoli e gli angoli dopo averli impostati correttamente sul quaderno ed avere eseguito il disegno: a. In un triangolo due angoli misurano rispettivamente 52 e 28. Calcola la misura del terzo angolo e classifica il triangolo rispetto agli angoli. [100 ] b. In un triangolo un angolo misura 45 e un altro è il suo doppio. Calcola la misura del terzo angolo e classifica il triangolo rispetto agli angoli e rispetto ai lati. [45 ] c. In un triangolo due angoli misurano rispettivamente 67 e 23. Dopo aver calcolato la misura del terzo angolo, classifica il triangolo rispetto agli angoli. [90 ] d. In un triangolo un angolo misura 66 e gli altri due sono uno il doppio dell altro. Calcolane l ampiezza. [38 ; 76 ] e. In un triangolo un angolo misura 75 ed un altro è i di questo. Calcola l ampiezza del terzo angolo. [45 ] f. In un triangolo la differenza fra due angoli è di 44 e uno è il quintuplo dell altro. Calcola l ampiezza dei tre angoli. [11 ; 55 ; 114 ] g. In un triangolo la somma degli angoli è di 145 e uno è dell altro. Calcola l ampiezza dei tre angoli. [35 ; 116 ; 29 ] 6. Risolvi i seguenti problemi sui triangoli ed il perimetro dopo averli impostati correttamente sul quaderno ed avere eseguito il disegno: a. Un triangolo isoscele ha il perimetro di 28 cm e ciascun lato obliquo è lungo 108 mm. Calcola la misura della base in cm. [6,4 cm] b. Calcola il perimetro di un triangolo avente i lati di 50 m, 92 m e 73 m. Che tipo di triangolo è rispetto ai lati? c. Un triangolo ha il perimetro di 97,5 dm e due lati che misurano 28 dm e 4,15 m. Calcola la misura del terzo lato e classifica il triangolo rispetto ai lati. [28 dm d. In un triangolo scaleno il lato AB misura 54 cm, il lato BC è la metà di AB ed il lato CA è i di BC. Quanto misura il perimetro del triangolo? Esprimilo in m. e. Un triangolo equilatero ha il perimetro di 12,6 m. Calcola: 6

11 1. la misura dei lati del triangolo; 2. la misura del lato di un altro triangolo equilatero avente il perimetro pari ai del triangolo dato. f. Il perimetro di un triangolo isoscele misura 154 cm e ciascun lato obliquo è il triplo della base. Determina la misura della base. g. In un triangolo un lato misura 22 cm e il perimetro è 64 cm. Sapendo che la differenza fra gli altri due lati è 4 cm, calcolane la misura. h. La somma e la differenza tra i cateti di un triangolo rettangolo misurano 62 dm e 34 dm. Calcola la misura di ciascuno dei due cateti. i. Calcola la misura di ciascuno dei due cateti di un triangolo rettangolo isoscele sapendo che il suo perimetro è di 11,6 m e che l ipotenusa misura 48 dm. j. In un triangolo rettangolo il cateto maggiore AC supera il minore AB di 2 cm e l ipotenusa supera il cateto AB di 4 cm. Sapendo che AB misura 6 cm, calcola il perimetro. [24 cm] k. Calcola la misura del lato di un triangolo equilatero sapendo che il suo perimetro è di quello di un altro triangolo equilatero il cui lato misura 16,5 cm. [27,5 cm] l. In un triangolo isoscele la somma e la differenza di un lato obliquo e della base misurano rispettivamente 42,4 cm e 12,4 cm. Calcolane il perimetro. [69,8 cm] 7

12 COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO E PRESENTARLO IL PRIMO GIORNO DI SCUOLA. PER LA PARTE DI TEORIA UTILIZZA IL TUO LIBRO DI TESTO E GLI APPUNTI PRESI QUEST ANNO. UN PO' DI CONSIGLI UTILI: - FINITA LA SCUOLA RIPOSATI PER CIRCA UN MESETTO; - NON SVOLGERE TUTTI GLI ESERCIZI NELLA PRIMA PARTE DELLE VACANZE; - NON ASPETTARE DI SVOLGERLI QUALCHE GIORNO PRIMA DI RIPRENDERE LA SCUOLA; - LAVORA BENE NEGLI ULTIMI GIORNI DI VACANZA (30-60 MINUTI AL GIORNO), COSÌ DA NON APPESANTIRE TROPPO LE TUE GIORNATE E RIPRENDERE GRADUALMENTE CONTATTO CON LA SCUOLA, FINO ALL'INIZIO DELL'ANNO SCOLASTICO. NON RESTA CHE AUGURARTI BUONA ESTATE!!!!! 1

13 COMPITI DI MATEMATICA PER LE VACANZE ARITMETICA 1) Risolvi le seguenti espressioni. 2) Risolvi le seguenti espressioni applicando, se possibile, le proprietà delle potenze. 3) Risolvi le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici. 2

14 COMPITI DI MATEMATICA PER LE VACANZE 4) Dopo aver svolto i calcoli con le frazioni, risolvi le seguenti proporzioni determinando il termine incognito. 5) Risolvi i seguenti problemi. 1. Il papà di Luigi per motivi di salute deve stare a dieta finché non avrà perso il 5% di peso, che è attualmente di 76 Kg. Quale sarà il suo peso dopo la dieta? [72,2 Kg] 2. Una cassetta piena di mele pesa 8,6 Kg, mentre vuota pesa 6 hg. Quale percentuale del peso lordo rappresenta la tara? [7%] 3. Un negoziante acquista una partita di pantaloni a 38 euro al paio e li rivende a 49,90 euro. Qual è il guadagno percentuale per ogni paio di pantaloni? [30%] 4. Una giacca a vento del costo di 196 euro è stata venduta al prezzo di 166,60 euro. Qual è stato lo sconto effettuato? [15%] 3

15 COMPITI DI MATEMATICA PER LE VACANZE GEOMETRIA Risolvi sul quaderno i seguenti problemi dopo averli impostati correttamente. Equivalenza 1. Calcola il perimetro di un quadrato che ha l'area di 784 cm 2. [112 cm] 2. In un triangolo rettangolo di area 30 m 2 uno dei due cateti misura 12 m e l ipotenusa 130 dm. Calcola il perimetro del triangolo rettangolo. [30 m] 3. In un parallelogramma la base misura 2,4 dm e l area è di 360 cm 2. Calcola l altezza del parallelogramma. [15 cm] 4. La somma della base e dell'altezza di un triangolo è 30 cm e la loro differenza è 6 cm. Calcola l'area.. [108 cm] 5. In un triangolo isoscele la base misura 27 cm, i lati obliqui 22,5 cm e l altezza è i 2/3 della base. Calcola la misura del perimetro e dell area del triangolo. [72cm 243 cm 2 ] 6. In un rettangolo la differenza delle due dimensioni è pari a 40 mm. Calcola la misura del perimetro e dell area del rettangolo sapendo che una dimensione è i 3/5 dell altra. [140mm; 1000 mm 2 ] 7. In un rettangolo la somma delle lunghezze delle due dimensioni misura 35 dm ed una è i 4/3 dell altra. Calcola: a) la misura dell area e il perimetro del rettangolo; [300 dm 2 ; 70 dm] b) il perimetro di un quadrato equivalente al rettangolo. ; [69,28 dm] 8. In un rombo la diagonale maggiore è i 20/9 della minore e la loro differenza è 22 cm. Calcola: a) La misura dell area di un quadrato che è equivalente a 1/10 del rombo;[36 cm 2 ] b) La misura del lato e della diagonale del quadrato. [6 cm e 8,4 cm] 9. Un trapezio è equivalente ad un rombo che ha l altezza di 175 mm e lo stesso perimetro di un triangolo equilatero che ha il lato di 38,4 cm. La differenza delle basi del trapezio è 630 mm ed il loro rapporto è 3/5. Calcola l altezza del trapezio. [4 cm] 10. In un parallelogrammo un lato è la metà dell altezza ad esso relativa e l area è 512 cm2. Calcola la misura del lato e quella dell altezza relativa. [16 cm, 32 cm] 4

16 COMPITI DI MATEMATICA PER LE VACANZE Teorema di Pitagora 1. Un triangolo rettangolo ha i cateti di 45 cm e 60 cm. Determina il perimetro, l area e l altezza relativa all ipotenusa. (180 cm; 1350 cm 2; 36 cm) 2. Calcola l area ed il perimetro di un triangolo rettangolo che ha il cateto minore e l ipotenusa lunghi rispettivamente 27 dm e 45 dm. [486 dm; 108 dm] 3. In un triangolo rettangolo un cateto è! dell altro e la loro somma è 62 cm.!" Determina il perimetro e l area del triangolo ed esprimili in m. [1,12 m; 0,0336] 4. In un rettangolo la somma delle lunghezze delle due dimensioni è 35 cm e una è i 4/3 dell altra. Calcola la lunghezza della diagonale e l area del rettangolo. [25 cm; 300 cm 2 ] 5. Un triangolo equilatero ha il lato lungo 18 cm. Calcola il perimetro e l area del triangolo. [54 cm; ] 6. Un rombo ha una diagonale di 16 cm e l altra che ne è i!. Calcola perimetro e area! del rombo. (40 cm; 96 cm 2 ) 7. La diagonale di un quadrato misura 36 2 cm. Calcola il lato, il perimetro e l area del quadrato. (36 cm; 144 cm; 1296 cm 2 ) 8. Il perimetro di un triangolo equilatero è 30 cm. Calcola l altezza e l area del triangolo. (8,66 cm; 43,3 cm 2 ) 9. Un rettangolo ha le dimensioni di 10 cm e 24 cm. Calcola la sua diagonale, l area di un quadrato avente il lato che è i! della diagonale del rettangolo e l area di un!" rombo avente la diagonale che misura 10 cm e il lato che è metà della diagonale del rettangolo. (26 cm; 144 cm 2 ; 120 cm) Piano cartesiano 1. Disegna su di un piano cartesiano il poligono avente per vertici i seguenti punti A(+3; +2), B(+15; +2), C(+15; +7) e D(+3; +7). Di quale figura si tratta? Descrivi le proprietà della figura ABCD e determina il suo perimetro e la sua area (u=1 cm). Disegna il segmento BD. Che cosa rappresenta tale segmento della figura data e qual è la sua misura? 2. Disegna su di un piano cartesiano il poligono avente per vertici i seguenti punti A(+2; 0), B(+8; 0), C(+8; +4) e D(+2;+4). Descrivi le proprietà della figura ABCD e determina il suo perimetro e la sua area (u=1 cm). 5

17

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici.

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici. IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

ESERCIZI PER LE VACANZE

ESERCIZI PER LE VACANZE ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini

Dettagli

PROGRAMMA SVOLTO E COMPITI ESTIVI

PROGRAMMA SVOLTO E COMPITI ESTIVI Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

Esercizi per le vacanze estive.

Esercizi per le vacanze estive. Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7 COMPITI PER LE VACANZE ESTIVE ARITMETICA-GEOMETRIA Anno scolastico 016/17 Classe D I seguenti esercizi vanno svolti su un apposito quaderno con l indicazione del capitolo e del numero dell esercizio, o

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

COMPITI PER LE VACANZE ESTIVE

COMPITI PER LE VACANZE ESTIVE ISTITUTO SALESIANO «Beata Vergine di San Luca» via Jacopo della Quercia, 1-40128 BOLOGNA tel. 051/41.51.711 www.salesianibologna.net presideme.bolognabv@salesiani.it Il Preside Futura Classe: 3^C (a.s.

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici

Dettagli

MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI 2^ - Cognome

MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI 2^ - Cognome MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI ^ - Cognome INDICAZIONI: 1 Scarica sul PC il file stampa le pagine e 3 incollale su di un quadernone apposito per i compiti delle vacanze ed eseguili,

Dettagli

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!)

CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!) CLASSE 2^A (futura 3^A) Prof.ssa Cappello A.S. 2015/2016 Ciao ragazzi! Di seguito trovate un elenco di esercizi da svolgere. INVITO 1: non fate tutti gli esercizi a giugno, o tutti a settembre, ma cercate,

Dettagli

Nucleo concettuale : IL NUMERO

Nucleo concettuale : IL NUMERO Nucleo concettuale : IL NUMERO UAD 1: L INSIEME N E LA SUE OPERAZIONI Conoscere il significato di termini e simboli Saper applicare regole e che specificano i concetti di numerazione proprietà relative

Dettagli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

E periodico semplice?

E periodico semplice? COMPITI PER LE VACANZE gruppo A. Per affrontare bene il terzo anno è indispensabile rivedere alcuni argomenti; i compiti che seguono servono a questo. Sono da eseguire su un apposito quaderno che sarà

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

: : 2 (29)

: : 2 (29) COMPITI PER LE VACANZE ESTIVE ARITMETICA-GEOMETRIA Anno scolastico 011/1 Classe I sezione C ARITMETICA I seguenti esercizi vanno svolti su un apposito quaderno con l indicazione del capitolo e del numero

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Matematica I A COMPITI DELLE VACANZE (R. 2,98) 12x1= =. 38:0=. 15+0= 30:30=.. 37x0= 0:4=.. 0x1=. 17:0=

Matematica I A COMPITI DELLE VACANZE (R. 2,98) 12x1= =. 38:0=. 15+0= 30:30=.. 37x0= 0:4=.. 0x1=. 17:0= Matematica I A COMPITI DELLE VACANZE - ARITMETICA - Risolvi le seguenti espressioni sul quaderno svolgendo tutti i passaggi: anno scolastico 0/0. 0 :x x x. xx :0 x. : 0 : x x x x x :. x : :x : x:.. : x

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione

Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015 Liceo Scientifico Statale Albert Einstein Insegnante : Saccaro Arianna Programma di Matematica 1E a.s 2014/2015 I NUMERALI NATURALI E I NUMERI INTERI: Che cosa sono i numeri naturali Le quattro operazioni

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid

Dettagli

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam ALGEBRA Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam Teoria degli insiemi - insiemi e loro rappresentazioni; - sottoinsiemi propri

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI PROGRAMMAZIONE DIDATTICA PER COMPETENZE Indirizzo LICEO DELLE SCIENZE UMANE Classe I D disciplina Matematica Modulo A : INSIEMI UNITÁ A1 TEORIA DEGLI INSIEMI UNITÁ A2 GLI INSIEMI NUMERICI COMPETENZE DA

Dettagli

MATEMATICA. Indicazioni di lavoro:

MATEMATICA. Indicazioni di lavoro: MATEMATICA Indicazioni di lavoro: Organizza il lavoro tenendo in considerazione che all inizio dell anno scolastico verificherai gli argomenti studiati. Quindi comincia i compiti a luglio e lasciati gli

Dettagli

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Geometria Equivalenza e misura delle aree Parallelogramma. Esercizi risolti. - 1

Geometria Equivalenza e misura delle aree Parallelogramma. Esercizi risolti. - 1 Geometria Equivalenza e misura delle aree Parallelogramma. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul parallelogramma completi di soluzioni Area Measurement - Area

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

LE DISEQUAZIONI LINEARI LA RETTA. L equazione di una retta passante per l origine

LE DISEQUAZIONI LINEARI LA RETTA. L equazione di una retta passante per l origine LE DISEQUAZIONI LINEARI LA RETTA L equazione di una retta passante per l origine Scrivi l equazione della retta passante per l origine e per il punto A. Verifica se il punto B appartiene alla retta trovata.

Dettagli

Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella)

Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella) Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella) 1. Trasforma i seguenti numeri decimali in frazioni: 1,34 3,055 0,4 2. Trasforma i numeri decimali in frazioni e risolvi le espressioni:

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Prepararsi alla Prova di matematica

Prepararsi alla Prova di matematica Scuola Media E. Fermi Prepararsi alla Prova di matematica Prove d esame di matematica Prof. Vincenzo Loseto 2013/ 2014 PROVA NUMERO 1 QUESITO 1 In un triangolo rettangolo la somma di un cateto e dell ipotenusa

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Passaggio Primaria Secondaria di Primo Grado. Compiti delle vacanze MATEMATICA

Passaggio Primaria Secondaria di Primo Grado. Compiti delle vacanze MATEMATICA Passaggio Primaria Secondaria di Primo Grado Compiti delle vacanze MATEMATICA 1 Esegui in colonna con la prova, sul quaderno, le seguenti operazioni. 14275 + 2703 + 625 = 6416 + 52725 + 158 = 37215 + 836

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS ISTITUTO di ISTRUZIONE SUPERIORE A. VENTURI PROGRAMMA SVOLTO DI MATEMATICA CL. ^ D LICEO A.S. 205/206 DOCENTE: CAVANI IRIS Testo: LA Matematica a colori Edizione azzurra vol. di L. Sasso. Ed. Petrini Ripasso

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate.

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate. LINEE SEMPLICI INTRECCIATE Colora di giallo le linee semplici, di verde quelle intrecciate. Disegna di rosa le linee semplici, di azzurro quelle intrecciate. LINEE APERTE CHIUSE Colora di giallo le linee

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

2. Scrivi i numeri seguenti: 8h 2da 3u =... 12uk 1da 3c =... 3dak 34da 11m =... 22h 61u18d =...

2. Scrivi i numeri seguenti: 8h 2da 3u =... 12uk 1da 3c =... 3dak 34da 11m =... 22h 61u18d =... Compiti di matematica e scienze a. s. 2014 2015 classe 1 - COMPITO B Da eseguire su un quadernone. ARITMETICA Insiemi: ripassa a pag. 2, 4, 6, 8, 10 del libro. Es: 1. Dati gli insiemi A = {3; 4; 5; 6;

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm.

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00001 Determinare la superficie laterale di un cilindro a) 60 π cm 2. b) 42 π cm 2. c) 90 π cm 2. d) 81 π cm 2. a sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00002 In

Dettagli

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.

Dettagli

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr.

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr. Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 Nota bene: il numero di esercizi da svolgere dipende dal voto che hai avuto nella pagella del 2 quadrimestre in matematica, ed

Dettagli

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale.

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA NOME E FIGURA PROPRIETÀ FORMULE TRIANGOLO Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. P=somma delle misure dei 3lati SCALENO

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni. onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

MATEMATICA CLASSE QUARTA

MATEMATICA CLASSE QUARTA MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 01-01 ESERCIZIARIO di MATEMATICA ITAS TRENTIN Lonigo INDICE

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica 2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

CURRICOLO MATEMATICA SCUOLA SECONDARIA

CURRICOLO MATEMATICA SCUOLA SECONDARIA CURRICOLO MATEMATICA SCUOLA SECONDARIA CLASSE PRIMA Competenze Conoscenze Abilità IL SISTEMA DI NUMERAZIONE DECIMALE Distinguere l insieme dei numeri naturali e decimali Distinguere fra numeri cardinali

Dettagli