a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.."

Transcript

1 Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa area 2. Due figure congruenti : a. sono sempre equivalenti b. possono essere equivalenti c. non sono mai equivalenti 3. Due figure equivalenti: a. sono sempre isoperimetriche b. possono essere isoperimetriche c. non sono mai isoperimetriche 4. Osserva le seguenti figure: a. i due poligoni sono congruenti b. i due poligoni sono equivalenti c. i due poligoni sono isoperimetrici 5. Considerando un quadratino = 1 cm 2 stabilisci qual è il valore dell area dei poligoni indicati con la lettera A e B. Area del poligono A a. 8 cm 2 A B b. 0,8 dm 2 c 80 mm 2 Area del poligono B a. 0,12 dm 2 b. 0,012 m 2 c. 1,2 dm 2 6. Osserva e rispondi. A B a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

2 7. Segna il completamento corretto: a. Indicando con b la base e con h l altezza di un rettangolo, la formula per il calcolo dell area è: A = b h A = b + h A = (b h ) : 2 b. Indicando con b la base e con h l altezza di un triangolo, la formula per il calcolo dell area è: A = (b + h) 2 A = b h A = (b h ) : 2 c. Indicando con d 1 e d 2 le misure delle diagonali di un rombo, la formula del calcolo dell area è: A = (d 1 + d 2 ) : 2 A= (d 1 d 2 ) : 2 A= (d 1 + d 2 ) 2 d. Indicando con b 1, b 2 e h le misure delle basi e dell altezza di un trapezio la formula per il calcolo dell area è : A = b 1 b2 h A = b 1 b2 h A = b 1 b h 8. Completala seguente tabella. Poligono Formula dell area Formule inverse Rettangolo A= b h b = A:h h = A: b Parallelogramma A= b h b = A:h h = A: b Quadrato A = l 2 A= d 2 : 2 l = A d= 2A Triangolo A= b h : 2 b=2a :h h = 2A : b Rombo A =d d 1 :2 d = 2A : d 1 d 1 = 2A : d Trapezio A=(b +b 1 ) h :2 (b + b 1 ) = 2 A.h h = 2 A : (b +b 1 ) 9. Vero o falso? a. Un parallelogramma è equivalente ad un rettangolo avente la stessa base e la stessa altezza V b. Un triangolo è equivalente ad un parallelogramma avente la stessa base e la stessa altezza F c. Un rombo è equivalente ad un rettangolo avente le dimensioni congruenti alle due diagonali.f d. Un trapezio è equivalente ad un triangolo che ha per base la somma delle basi e per altezza la stessa altezza V Segna il completamento corretto. 10. La misura dell altezza di un rettangolo si può calcolare conoscendo: a. l area e il perimetro b. l area c. l area e la misura della base 11. La misura dell area di un triangolo rettangolo si può calcolare conoscendo: a. il perimetro b. la misura dei cateti c. il perimetro e la misura dell ipotenusa e la misura di un cateto 12. La misura dell area di un rombo si può calcolare conoscendo: a. un lato e l altezza b. un lato e una diagonale c. il perimetro e una ad esso relativa diagonale

3 1. Assumendo come unità i misura 1 quadratino = 1 cm 2, calcola l area delle figure assegnate, esprimendola nell unità di misura indicata. Area di A = 0,17 dm 2 Area di B = 14 cm 2 A Area di C = 0,0015 m 2 B Area di D = 0,15. dm 2 C D 2. Disegna due figure equivalenti a quelle assegnate F F 3. Calcola l area e il perimetro della figura sapendo che ogni quadrato ha il perimetro di 8 cm. 4. Completa la seguente tabella riferita ad alcuni rettangoli. [24 cm 2 ; 36 cm] Base (in cm) Altezza (in cm) Area (in cm 2 ) ,6 4,8 17,28

4 5. Completa la seguente tabella riferita ad alcuni triangoli. Base (in cm) Altezza (in cm) Area (in cm 2 ) ,8 12,3 41,82 6. Completa la seguente tabella riferita ad alcuni rombi. Diagonale minore Diagonale maggiore Area (in cm 2 ) (in cm) (in cm) , Osserva la figura e calcola l area della parte colorata, sapendo che l altezza del rettangolo misura 12 cm e che la base è il doppio dell altezza. [144 cm 2 ] 8. Un quadrato ha il perimetro lungo 96 cm. Calcola la misura dell altezza di un triangolo equivalente al quadrato, sapendo che la base è i 3 4 del lato del quadrato. (36 cm) 9. In un rettangolo il perimetro misura 80 cm e l altezza è i 2/3 della base. Calcola la base di un triangolo equivalente al rettangolo, sapendo che la sua base misura 12 cm. (64 cm) 10. L area di un trapezio isoscele è di 1904 cm 2. Sapendo che l altezza misura 34 cm e che la base maggiore è gli 11/5 della base minore, calcola l area delle due parti in cui il trapezio rimane diviso tracciando una sua diagonale. (1309 cm 2 ; 595 cm 2 )

5 PER IL RECUPERO 1. Osserva il disegno e stabilisci: A C D B a. Quali tra le figure disegnate sono congruenti. A e G b. Quali tra le figure disegnate sono equivalenti B, C, E c. Quali tra le figure disegnate non sono né equivalenti né congruenti D,F E F G 2. Osserva le figure e rispondi: a. Le due figure sono congruenti?.no Perché? Non sono sovrapponibili b. Le due figure sono equivalenti? sì Perché? Somma di parti rispettivamente congruenti 3. Completa. a. L area di un rettangolo si calcola moltiplicando la base per l altezza b. Per calcolare la base di un rettangolo bisogna dividere l area per l altezza c. Per calcolare l altezza bisogna dividere l area per la base. 4. Risolvi ora i seguenti problemi relativi al rettangolo. a. La base di un rettangolo misura 24 cm e l altezza è i 3/4 della base. Calcola l area. (432 cm 2 ) b. Un rettangolo ha l area di 1216 cm 2 e la base di 32 cm. Calcola la misura del perimetro. (140 cm 2 ) 5. Completa: a. Un parallelogramma è equivalente ad un rettangolo avente la stessa base e la stessa altezza, pertanto la sua area si calcola A= b h b. Un rombo è equivalente alla metà. di un rettangolo avente le dimensioni congruenti alle diagonali, pertanto l area di un rombo si calcola A =d d 1 :2 c. Per calcolare una diagonale di un rombo bisogna moltiplicare l area per 2 e dividere il prodotto ottenuto per l altra diagonale d. Il rombo è un parallelogramma particolare, pertanto la sua area si può anche calcolare moltiplicando la base per l altezza

6 6. Risolvi ora il seguente problema relativo al rombo: La somma e la differenza delle diagonali di un rombo misurano rispettivamente 42 cm e 6 cm. Calcolane l area. (216 cm 2 ) 7. Completa: a. L area di un quadrato si calcola moltiplicando il lato per se stesso b. Il lato di un quadrato si calcola estraendo la radice quadrata dell area c. Il quadrato è un rombo particolare, pertanto la sua area si calcola anche moltiplicando una diagonale per se stessa e dividendo il prodotto per 2 d. Per calcolare la diagonale di un quadrato bisogna estrarre la radice quadrata del doppio dell area 8. Completa: a. Un triangolo è equivalente alla metà di un.. parallelogramma.. avente la stessa base e la stessa altezza, pertanto la sua area si calcola moltiplicando la base per l altezza e dividendo il prodotto per 2 b. Per calcolare la base di un triangolo bisogna moltiplicare l area per 2 e dividere il prodotto per l altezza c. Per calcolare l altezza di un triangolo bisogna moltiplicare l area per 2 e dividere il prodotto per la base 9. Risolvi ora il seguente problema relativo al triangolo e al quadrato: La base di un triangolo è congruente al lato di un quadrato che ha il perimetro di 108 cm. Calcola la misura dell altezza del triangolo sapendo che la sua area misura 486 cm 2. (36 cm) 10. Completa: a. Un trapezio è equivalente ad un triangolo avente per base la somma delle basi e per altezza la stessa altezza. Pertanto la sua area si calcola moltiplicando la somma delle basi.per l altezza e dividendo il prodotto per 2 b. Per calcolare l altezza di un trapezio bisogna moltiplicare l area per 2 e dividere il prodotto per la somma delle basi c. Per calcolare la somma delle basi di un trapezio bisogna moltiplicare l area per 2 e dividere il prodotto per l altezza 11. Risolvi ora il seguente problema relativo al trapezio: Calcola l area di un trapezio sapendo che la base maggiore misura 81 m, la base minore è i 2/3 della base maggiore e l altezza è i 4/9 della base minore. (1620 cm 2 )

7 PER IL POTENZIAMENTO 1. Completa: a. Se un parallelogramma e un rettangolo sono equivalenti e la base del primo è doppia della base del secondo, allora l altezza del rettangolo è il doppio.. dell altezza del parallelogramma b. Se l area di un quadrato lato l è l 2, l area di un quadrato di lato 2l è 4l 2 c. Se un triangolo e un rettangolo sono equivalenti e la base del triangolo è doppia di quella del rettangolo allora l altezza del triangolo è congruente a quella del rettangolo d. Un triangolo e un parallelogramma aventi la stessa altezza sono equivalenti se la base del triangolo è. doppia della base del parallelogramma 2. Completa la seguente tabella relativa ad un insieme di rombi: (d 1 = diagonale minore; d 2 = diagonale maggiore; l = lato; h = altezza; A = area ) d 1 (in cm) d 2 (in cm) l (in cm) h (in cm) A (in cm 2 ) P (in cm) , , Nel seguente disegno sono rappresentati tre parallelogrammi aventi tutti la stessa base. Sapendo che le rette a e b sono parallele, rispondi: a F F F b a. I parallelogrammi sono congruenti?...no.., perché.non sono sovrapponibili b. I parallelogrammi hanno lo stesso perimetro? no, perché i lati obliqui non hanno la stessa lunghezza c. I parallelogrammi sono equivalenti?.sì..., perché hanno la stessa base e la stessa altezza Segna il completamento esatto. 4. L altezza relativa all ipotenusa di un triangolo rettangolo è data dalla formula c' i A c c' h i = h i = h i = c c i 5. Per applicare la formula di Erone di un triangolo bisogna conoscere: a. il perimetro b. la misura dei lati c. la misura della base e dell altezza ad essa relativa

8 6. Detti a, b e c i lati di un triangolo, quale scrittura rappresenta correttamente la formula di Erone? p p p p a b c p p p p a b c p p p p a b c Calcola l area e l altezza di un triangolo isoscele che ha il perimetro di 36 cm e la base di 16 cm. (48 cm 2 ; 6 cm) 8. Un rombo, un rettangolo sono equivalenti. Sapendo che la somma e la differenza delle dimensioni del rettangolo misurano rispettivamente 174 cm e 102 cm e che la diagonale maggiore del rombo misura 216 cm, calcola: a. il perimetro e l area del rettangolo; (548 cm; 4968 cm 2 ) b. la misura della diagonale minore del rombo; (46 cm) 9. In un triangolo rettangolo un cateto è i 3/4 dell altro e l area e l ipotenusa misurano rispettivamente 1350 cm 2 e 75 cm. Calcola: a. le lunghezze dei due cateti; (45 cm; 60 cm) b. l altezza relativa all ipotenusa; (36 cm) c. l area del rettangolo isoperimetrico al triangolo e avente la base di 36 cm (1944 cm 2 )

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Raccolta di problemi di geometra solida sul prisma con la risoluzione

Raccolta di problemi di geometra solida sul prisma con la risoluzione 3D Geometria solida - 1 Raccolta di problemi di geometra solida sul prisma con la risoluzione 1. Un prisma alto 9 cm ha per base un triangolo isoscele che ha l altezza relativa alla base di 8 cm e i lati

Dettagli

ABCD è un parallelogrammo 90. Dimostrazione

ABCD è un parallelogrammo 90. Dimostrazione EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE www.istitutocalabrese.vr.it e-mail vris@istruzione.it www.liceoprimolevi.it STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE Gli insegnanti di matematica delle Scuole Medie di BUSSOLENGO CAPRINO VERONESE

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

SIMULAZIONE QUARTA PROVA: MATEMATICA

SIMULAZIONE QUARTA PROVA: MATEMATICA SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA GEOMETRIA IL TEOREMA DI PITAGORA E LE SUE APPLICAZIONI PREREQUISITI l conoscere le rorietaá delle quattro oerazioni ed oerare con esse l conoscere il significato ed oerare con otenze ed estrazioni di radici

Dettagli

Appunti di Geometria

Appunti di Geometria ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

IL TEOREMA. Lezioni UNITÀ2. Geometria

IL TEOREMA. Lezioni UNITÀ2. Geometria 7_0_TEORI 9_ -0-007 6:8 Pagina 9 UNITÀ IL TEOREM I PITGOR Geometria Le conoscenze che devi avere Lezioni Le proprietà dei poligoni Il concetto di figure equivalenti Le abilità che devi avere Usare i procedimenti

Dettagli

COMPITI PER LE VACANZE ESTIVE 2014

COMPITI PER LE VACANZE ESTIVE 2014 Classe I SEZ. E Prof.ssa Verena Libardi COMPITI PER LE VACANZE ESTIVE 2014 Consolidamento IMPARIAMO A GUARDARE UNA FOGLIA In una foglia possiamo distinguere la lamina (1), che è la parte più larga che

Dettagli

matematica per la classe seconda media

matematica per la classe seconda media Matematica per la Scuola Media www.pernigo.com/math matematica per la classe seconda media 99 più esercizi di ripasso e consolidamento Ubaldo Pernigo, Gianfranco Caoduro e Stefano Cristani Versione 0.

Dettagli

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti Kangourou della Matematica 015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 015 Quesiti 1. La busta La figura mostra in che modo, ripiegando opportunamente un foglio di carta a forma di

Dettagli

Il più famoso teorema della geometria euclidea. Prof.ssa Laura Salvagno

Il più famoso teorema della geometria euclidea. Prof.ssa Laura Salvagno Il più famoso teorema della geometria euclidea 1 Il teorema di Pitagora è uno dei più importanti teorema della geometria euclidea che stabilisce la relazione fondamentale tra i lati di un triangolo rettangolo.

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno... VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. Rita e Marco DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA Rita e Marco 3 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3 INIE Unità 7 LL IRONFERENZ I POLIGONI REGOLRI, Il libro prosegue nel 7. IRONFERENZ E ERIO, ESERIZI da p. 7. PRTI ELL IRONFERENZ E EL ERIO, Le parti della circonferenza, Le parti del cerchio, 7. NGOLI E

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA 2 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione del testo di un

Dettagli

ESPERIENZE E STRUMENTI

ESPERIENZE E STRUMENTI ESPERIENZE E STRUMENTI DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

Anno scolastico 2008/2009. Silenzio ora, inizia il racconto!

Anno scolastico 2008/2009. Silenzio ora, inizia il racconto! Anno scolastico 2008/2009 Le classi quinte dell Europa Unita presentano: Messer Coniglio geometra. Cerca le parole calde e clicca il tasto sinistro tenendo premuto ctrl. Messer Coniglio ricorda una storia

Dettagli

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 0 Risoluzione dei problemi (l ordine si riferisce

Dettagli

Soluzioni del Certamen Mathematicum

Soluzioni del Certamen Mathematicum Soluzioni del Certamen Mathematicum dicembre 2004 1. Notiamo che un qualsiasi quadrato modulo 4 è sempre congruo o a 0 o a 1. Infatti, se tale numero è pari possiamo scriverlo come 2k, seè dispari invece

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 SCUOLE TECNICHE MATEMATICHE ELEMENTARI Primo Anno Aritmetica Sistema volgare di numerazione orale e scritta Le quattro

Dettagli

Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x

Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x Esame di stato scuola media Esempio di tema d esame 002 UbiMath - 1 Quesito 1 Piano cartesiano Fissando come unità di misura il metro (1 cm = 1 m = unità di misura) rappresenta in un piano cartesiano ortogonale

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Con carta e forbici alla scoperta del paese Geometria

Con carta e forbici alla scoperta del paese Geometria Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014 TEST PSICOMETRICO Corso preparatorio all esame in italiano del 2014 Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: gsassun@yahoo.it info@israeluni.it Realizzato grazie al contributo dell UNIONE DELLE

Dettagli

Elementi di Geometria. Lezione 03

Elementi di Geometria. Lezione 03 Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 7 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora sommario.

Dettagli

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO Soluzioni Giochi di Archimede 05 Fase Istituto GARA BIENNIO. Nel paese Gnallucci circolano quattro monete: dobloni, zecchini, talleri e fufignezi. Un doblone vale quanto uno zecchino più un tallero e un

Dettagli

CURRICOLO DISCIPLINARE DI MATEMATICA

CURRICOLO DISCIPLINARE DI MATEMATICA A.S. 2014/2015 MINISTERO DELL ISTRUZIONE DELL UNIVERSITÀ E DELLA RICERCA Istituto Comprensivo Palena-Torricella Peligna Scuola dell Infanzia, Primaria e Secondaria di 1 grado Palena (CH) SCUOLA SECONDARIA

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

Gilda Flaccavento Romano. Quaderno. studente. per lo

Gilda Flaccavento Romano. Quaderno. studente. per lo Gilda Flaccavento Romano Quaderno per lo studente indice esercizi di recupero I numeri relativi 6 Il calcolo letterale 8 Equazioni e disequazioni 11 La risoluzione algebrica dei problemi 13 La statistica

Dettagli

MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE

MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE CONCORSO PER IL RECLUTAMENTO DI VOLONTARI IN FERMA PREFISSATA QUADRIENNALE NELL ESERCITO, NELLA MARINA E NELL AERONAUTICA 2014 1 a Immissione

Dettagli

Classe 2ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1 e 2, Petrini con Quaderno di recupero

Classe 2ASU a.s. 2012/13 Matematica - prof.alberto Rossi. Testo: Nuova Matematica a colori Algebra e Geometria 1 e 2, Petrini con Quaderno di recupero ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC0701R Liceo delle Scienze Umane VAPM07011 Via G. Carducci 4 105 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 014 Risoluzione dei problemi (l ordine si riferisce

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Cognome e nome Data Matematica Teoria - Numeri III Base I Frazioni e numeri razionali I. Introduzione I.. Rappresentazione di frazioni FRAZIONE I.. Frazione come operatore 0? di 0 : Divido in ( ) : di

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

Dal Tangram alle conoscenze dichiarative in geometria

Dal Tangram alle conoscenze dichiarative in geometria Dal Tangram alle conoscenze dichiarative in geometria II Istituto Comprensivo di Padova R. Ardigò Insegnante: Cacco Loredana e-mail: loredana.cacco@istruzione.it Descrizione dell'esperienza Quadro di riferimento

Dettagli

Il teorema di Pitagora

Il teorema di Pitagora Didattica della matematica Il teorema di Pitagora Prof. ssa Maria Rosa Casparriello Scuola media Fontanarosa RIFERIMENTO AL PECUP: adoperare il linguaggio ed i simboli della matematica per indagare con

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

INDICAZIONI PER LO STUDIO ESTIVO CLASSE 4 A. Allievi con debito formativo.

INDICAZIONI PER LO STUDIO ESTIVO CLASSE 4 A. Allievi con debito formativo. INDICAZIONI PER LO STUDIO ESTIVO CLASSE A. Allievi con debito formativo. Svolgere gli esercizi n. 2 5 7-9 20 28 2 8 dalla scheda dei compiti assegnati al resto della classe. Svolgere i seguenti esercizi

Dettagli

ALCUNE OSSERVAZIONI SUI TRIANGOLI

ALCUNE OSSERVAZIONI SUI TRIANGOLI LUNE OSSERVZIONI SUI TRINGOLI ataloghiamo i triangoli seondo i lati seondo gli angoli 115 3 67 81 Esiste sempre il triangolo? Selte a aso le misure dei lati, è sempre possibile ostruire il triangolo? Quali

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Geometria piana. Veronica Gavagna E Albachiara Trapanese

Geometria piana. Veronica Gavagna E Albachiara Trapanese Geometria piana Veronica Gavagna E Albachiara Trapanese http://online.scuola.zanichelli.it/bergamini-files/biennio/schedelavoro/bergamini_scheda_lavoro_triangoli.pdf Disegna un triangolo. Quante e quali

Dettagli

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

2 Dato il triangolo rettangolo della figura, quale delle seguenti proporzioni esprime il primo teorema di Euclide?

2 Dato il triangolo rettangolo della figura, quale delle seguenti proporzioni esprime il primo teorema di Euclide? 1 Le seguenti affermazioni sono tutte vere, tranne una. Quale? due triangoli con un angolo retto sono sempre simili due triangoli equilateri sono sempre simili due triangoli isosceli sono simili se hanno

Dettagli

Seminario di didattica 1

Seminario di didattica 1 Seminario di didattica - Contents Seminario di didattica 1 Alessia Bonanini, Alessio Cirimele, Alice Bottaro, Laura Spada, Laura Tarigo 28 maggio 2012 1 Seminario di didattica - Contents Indice Introduzione...................................

Dettagli

Invitare a misurare l area delle seguenti figure verificando quante delle sottoindicate unità di misura sono contenute in ciascuna di esse.

Invitare a misurare l area delle seguenti figure verificando quante delle sottoindicate unità di misura sono contenute in ciascuna di esse. Laboratorio di geometria nella scuola secondaria di primo grado. Ricerca e sperimentazione di metodologie e attività orientative nello svolgimento dei curricoli di Matematica nella Scuola di Primo Grado

Dettagli

C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A.

C.d.L. Scienze della Formazione Primaria Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A. C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra Modulo di GEOMETRIA A. Gimigliano, A.A. 009/10 Note supplementari per il corso INDICE 0. INTRODUZIONE. 1. LA GEOMETRIA

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 In un piano, riferito

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

OROLOGIO SOLARE Una meridiana equatoriale

OROLOGIO SOLARE Una meridiana equatoriale L Osservatorio di Melquiades Presenta OROLOGIO SOLARE Una meridiana equatoriale Il Sole, le ombre e il tempo Domande guida: 1. E possibile l osservazione diretta del Sole? 2. Come è possibile determinare

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

TEOREMA DI PITAGORA Scuola italica

TEOREMA DI PITAGORA Scuola italica TEOREMA DI PITAGORA Pitagora figlio di Mnesarco, nato a Samo circa nella 49 a Olimpiade, si trasferì a Crotone nella 59 a o 60 a Olimpiade. Qui fondò la Scuola italica, in parte scientifica ma anche politico-religiosa,

Dettagli

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova) LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA Dario Palladino (Università di Genova) Seconda parte Momenti della storia dei tentativi di dimostrazione del V postulato di Euclide

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

I Giochi di Archimede-- Soluzioni triennio

I Giochi di Archimede-- Soluzioni triennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE I Giochi di Archimede-- Soluzioni triennio 17 novembre 2010 Griglia delle

Dettagli

Titolo: Il Teorema di Pitagora. Palmira Ronchi. Nucleo: Spazio e forme. PREREQUISITI: riconoscere e costruire poligoni equiscomponibili.

Titolo: Il Teorema di Pitagora. Palmira Ronchi. Nucleo: Spazio e forme. PREREQUISITI: riconoscere e costruire poligoni equiscomponibili. Titolo: Il Teorema di Pitagora Palmira Ronchi Nucleo: Spazio e forme PREREQUISITI: riconoscere e costruire poligoni equiscomponibili. Scheda di lavoro 1: Le mattonelle ATTIVITÁ Il Teorema di Pitagora Scheda

Dettagli

IGiochidiArchimede-GaraTriennio 22 novembre 2006

IGiochidiArchimede-GaraTriennio 22 novembre 2006 PROGTTO OLIMPII I MTMTI U.M.I. UNION MTMTI ITLIN SUOL NORML SUPRIOR IGiochidirchimede-GaraTriennio novembre 006 1) La prova consiste di 5 problemi; ogni domanda è seguita da cinquerisposteindicate con

Dettagli