L algoritmo per la classificazione delle superfici topologiche connesse e compatte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L algoritmo per la classificazione delle superfici topologiche connesse e compatte"

Transcript

1 Università degli studi di Torino Corso di Studi in Matematica Geometria 3 L algoritmo per la classificazione delle superfici topologiche connesse e compatte Alberto Albano Come notato varie volte a lezione, l algoritmo di taglia e incolla usato nella classificazione delle superfici topologiche ammette una scorciatoia che lo rende molto più rapido. Scopo di queste pagine è formulare con precisione la versione veloce dell algoritmo e dimostrare la sua correttezza. Questa versione può essere usata durante le prove d esame senza bisogno di essere giustificata. Queste note hanno come prerequisito essenziale la conoscenza dell algoritmo come presentato, per esempio, nelle note di Hitchin o nel libro di Massey. Indice 1 L algoritmo generale e la forma semplificata 1 2 La dimostrazione della proprietà ( ) 3 1 L algoritmo generale e la forma semplificata Rivediamo i passi dell algoritmo, così come sono presentati nelle note di Hitchin. Una superficie può essere costruita a partire da un poligono nel piano con un numero pari di lati, identificando i lati a due a due con le opportune orientazioni. Scegliendo un verso di percorrenza del perimetro del poligono e denotando i lati da identificare con la stessa lettera, la superficie è rappresentata da una sequenza di lettere abc 1... dove ogni lettera è ripetuta due volte, e l esponente indica se il verso assegnato al lato è lo stesso o l opposto del verso di percorrenza del perimetro. Per esempio, abbiamo le rappresentazioni 1. aa = piano proiettivo 1

2 1 L ALGORITMO GENERALE E LA FORMA SEMPLIFICATA 2 2. aba 1 b 1 = toro 3. abab 1 = bottiglia di Klein 4. aabb = somma connessa di due piani proiettivi e così via. Osserviamo però che le due ultime superfici sono in realtà omeomorfe e quindi la rappresentazione come poligono con i lati identificati non è unica. Usando questa rappresentazione, l operazione di somma connessa di superfici corrisponde alla giustapposizione delle corrispondenti sequenze. Per esempio 1. aabcb 1 c 1 = (piano proiettivo) (toro) 2. aabb = (piano proiettivo) (piano proiettivo) 3. aba 1 b 1 cdc 1 d 1 = (toro) (toro) Il teorema di classificazione afferma che: Teorema 1.1. Ogni superficie topologica connessa e compatta è omeomorfa ad una delle seguenti: 1. la sfera S 2, con sequanza vuota 2. la somma connessa di g tori, con sequenza a 1 b 1 a 1 1 b a g b g a 1 g 3. la somma connessa di n piani proiettivi, con sequenza a 1 a 1... a n a n L algoritmo del taglia e incolla ha come punto di partenza una sequenza arbitraria e come punto d arrivo una sequenza in forma canonica (una delle sequenze nell enunciato precedente) e consente di determinare il tipo topologico della superficie data da una sequenza qualunque. L algoritmo, così come esposto in Hitchin, ha quattro passi. Nella notazione delle sequenze di lettere, una lettera minuscula indica un solo lato, una lettera maiuscula indica una sequenza di lati. I lati indicati con le lettere minuscole non compaiono nelle sequenze indicate dalle lettere maiuscole. Passo 1 Si cancellano tutte le coppie del tipo aa 1. Se la sequenza risultante è vuota, allora la superficie è una sfera. Altrimenti si continua con il passo 2. Passo 2 Si rendono equivalenti tutti i vertici, usando una mosssa di taglia e incolla specifica. Dopo questo passo potrebbe essere necessario ripetere il passo 1. Dopo aver reso equivalenti tutti i vertici, se la sequenza risultante è vuota, allora la superficie è una sfera. Altrimenti si continua con il passo 3. Passo 3 Se è presente una coppia di lati con lo stesso orientamento, cioè se la sequenza ha la forma axay, si rendono adiacenti i lati uguali con una mossa specifica. Se sono presenti altre coppie, si ripete la mossa fino ad avere tutte le coppie con lo stesso nome adiacenti. Si ottiene quindi la sequenza a 1 a 1... a m a m X Se X è vuota, allora la superficie è la somma connessa di m piani proiettivi, altrimenti si continua con il passo 4. b 1 g

3 2 LA DIMOSTRAZIONE DELLA PROPRIETÀ ( ) 3 Passo 4 Le coppie presenti con lo stesso nome non adiacenti sono con l orientamento opposto. Si dimostra che X deve avere la forma X = ay bza 1 W b 1 T e con due mosse specifiche si trasforma la sequenza in cdc 1 d 1 U Se sono presenti altre coppie si ripete il procedimento fino ad ottenere la sequenza a 1 a 1... a m a m c 1 d 1 c 1 1 d c g d g c 1 g d 1 g che è la somma connessa di m piani proiettivi e g tori. Se m = 0, allora S è la somma connessa di g tori, altrimenti si usa il fatto che P T = P P P e si sostituisce ogni toro con la somma connessa di due piani proiettivi. Si ottiene quindi che la superficie è la somma connessa di (m+2g) piani proiettivi. L osservazione che permette di semplificare l algoritmo è: le mosse eseguite nei passi 3 e 4 non cambiano il numero dei lati nella sequenza (*) Dimostreremo questa affermazione nel prossimo paragrafo. Diamo ora solo la regola semplificata: 1. Eseguire i passi 1 e 2 dell algoritmo, ottenendo una sequenza X in cui tutti i vertici sono equivalenti e non ci sono coppie adiacenti che si possono semplificare. Se X è vuota, allora la superficie è una sfera, altrimenti si continua. 2. Se è presente una coppia di lati con lo stesso orientamento, allora la superficie è somma connessa di n piani proiettivi dove n = (numero di lati della sequenza X)/2 3. Altrimenti la superficie è somma connessa di g tori dove g = (numero di lati della sequenza X)/4 2 La dimostrazione della proprietà ( ) Sia W una sequenza di un numero pari di lettere (simboli) in cui ogni lettera compare esattamente due volte con esponenti 1 o 1. La sequenza rappresenta il bordo di un poligono, in cui ogni lettera corrisponde ad un lato e l esponente rappresenta l orientamento del lato rispetto ad un orientamento (orario o antiorario) fissato sul perimetro. Identificando i lati che corrispondono a lettere uguali, tenendo conto dell orientamento, si ottiene una superficie topologica S.

4 2 LA DIMOSTRAZIONE DELLA PROPRIETÀ ( ) 4 Applichiamo a W l algoritmo descritto nel paragrafo precedente per ottenere una sequenza in forma canonica. Supponiamo di aver eseguito i passi 1 e 2. In questo modo abbiamo una sequenza W con la proprietà tutti i vertici di W sono equivalenti fra loro (**) Dimostriamo ora la proprietà ( ) e cioè che le mosse 3 e 4 non cambiano il numero dei lati nella sequenza. In entrambi i casi la dimostrazione è per assurdo: se dopo una mossa fosse possibile semplificare due lati, allora prima della mossa la proprietà ( ) non era vera, contro l ipotesi. Scriviamo la dimostrazione usando la notazione delle sequenze introdotta sopra. Un utile esercizio è riscrivere la dimostrazione usando le figure come nelle note di Hitchin. Cominciamo con un lemma Lemma 2.1. Nelle sequenze W 1 = abxaby, W 2 = abxb 1 a 1 Y dove a, b non compaiono in X e Y e X, Y sono entrambe non vuote, il vertice P comune ai lati a e b della prima coppia è equivalente solo al vertice P comune ai lati della seconda coppia. In particolare, queste sequenze non soddisfano la proprietà ( ). Dimostrazione. La descrizione del vertice P è fine di a, inizio di b. Poiché il vertice P soddisfa entrambe le condizioni, non ci sono altri vertici che soddisfano almeno una delle condizioni e quindi non ci sono altri vertici equivalenti a P. Esercizio 2.2. Se X e Y sono vuote, che superfici sono W 1 e W 2? Proposizione 2.3. Se W ha la proprietà ( ) allora una mossa di tipo 3 non cambia il numero dei lati e lascia inalterata la proprietà ( ) Dimostrazione. Nella sequenza W sono presenti due lati uguali con lo stesso orientamento, quindi si può scrivere W = axay dove X e Y sono sequenze arbitrarie non vuote, perché altrimenti i lati a sarebbero già adiacenti. La mossa 3 è (Hitchin, pagina 20) W = axay W = ccxy 1 dove c è un lato nuovo, che non compariva né in X né in Y. Le eventuali cancellazioni di lati avvengono nei punti di contatto delle sequenze. Poiché c non è presente né in X né in Y, non si può semplificare. Dunque l unica semplificazione possibile è dove X e Y 1 si toccano. Deve quindi essere } X = Zb XY 1 = Zbb 1 T 1 = ZT 1 Y = T b Allora la sequenza originale era W = axay = azbat b = ZbaT ba

5 2 LA DIMOSTRAZIONE DELLA PROPRIETÀ ( ) 5 Se Z e T sono non vuote, per il Lemma 2.1 W non ha la proprietà ( ), contro l ipotesi. Lasciamo per esercizio l analisi del caso Z e T vuote. Inoltre, poiché non abbiamo introdotto nuovi vertici, questi sono ancora tutti equivalenti. Vediamo ora le mosse di tipo 4. Questo caso è un po più complicato perché una mossa di tipo 4 è data da due taglia e incolla, in successione. Proposizione 2.4. Se W ha la proprietà ( ) allora una mossa di tipo 4 non cambia il numero dei lati e lascia inalterata la proprietà ( ). Dimostrazione. Nella sequenza W sono presenti due coppie di lati uguali con orientamenti opposti e intervallati e quindi si può scrivere W = at bxa 1 Y b 1 Z dove T, X, Y e Z sono sequenze arbitrarie. Tre consecutive (T XY, XY Z, Y ZT, ZT X) non possono essere tutte vuote, altrimenti i lati a e b erano già in sequenza corretta per dare un toro. Il primo passo della mossa 4 è (Hitchin, pagina 21) W = at bxa 1 Y b 1 Z W = aca 1 Y Xc 1 T Z dove c è un lato nuovo, che non compariva nelle sequenze T, X, Y, Z. Come prima, le eventuali cancellazioni di lati avvengono nei punti di contatto delle sequenze. Poiché c non era presente, non si può semplificare. I contatti a 1 Y e Za non si possono semplificare perché erano già presenti nella sequenza iniziale. Dunque le semplificazioni possibili avvengono per Y X oppure T Z. Nel primo caso avremmo: } Y = Aγ X = γ 1 Y X = Aγγ 1 B = AB B Allora la sequenza originale era W = at bγ 1 Ba 1 Aγb 1 Z = at (bγ 1 )Ba 1 A(γb 1 )Z e la sequenza bγ 1 compare invertita, di nuovo contro il Lemma 2.1. Osserviamo che poiché almeno il lato a separa le sequenze bγ 1 e γb 1, le ipotesi del Lemma 2.1 sono automaticamente soddisfatte. Lasciamo per esercizio il caso T Z che è si dimostra con un ragionamento analogo. Il secondo passo della mossa 4 è (Hitchin, pagina 21) W = aca 1 Xc 1 Y W = dcd 1 c 1 Y X dove d è un lato nuovo, che non compariva nelle sequenze X e Y. Attenzione al fatto che X e Y indicano sequenze diverse dalla notazione precedente. Come sempre, le eventuali cancellazioni di lati avvengono nei punti di contatto delle sequenze. Poiché d non era presente, non si può semplificare. Il contatto c 1 Y non si può semplificare perché era già presente nella sequenza iniziale.

6 2 LA DIMOSTRAZIONE DELLA PROPRIETÀ ( ) 6 Dunque l unica semplificazione possibile avviene per Y X. poniamo: } Y = Aγ X = γ 1 Y X = Aγγ 1 B = AB B Allora la sequenza originale era Come prima W = aca 1 Xc 1 Y = aca 1 γ 1 Bc 1 Aγ = c(a 1 γ 1 )Bc 1 A(γa) e la sequenza γa compare invertita, di nuovo contro il Lemma 2.1. Come prima, poiché almeno il lato c separa le sequenze γa e a 1 γ 1, le ipotesi del Lemma 2.1 sono automaticamente soddisfatte.

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto.

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. QUARTA LEZIONE: i triangoli Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. Punto 2: primo criterio di uguaglianza dei triangoli Il

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Presentazioni di gruppi: generatori e relazioni

Presentazioni di gruppi: generatori e relazioni Presentazioni di gruppi: generatori e relazioni Note per il corso di Geometria 4 (relative alla parte dei 6 crediti) Milano, 2011-2012, M.Dedò N.B. Quanto segue si appoggia fortemente al testo [M] consigliato

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ..3. Prodotti notevoli Per quanto visto in precedenza, in generale per moltiplicare un polinomio di m termini per uno di n termini devono effettuarsi m n moltiplicazioni, così per esempio per moltiplicare

Dettagli

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754 Addizionatori: metodo Carry-Lookahead Costruzione di circuiti combinatori Standard IEEE754 Addizionatori Il circuito combinatorio che implementa l addizionatore a n bit si basa su 1-bit adder collegati

Dettagli

Anno 1. Criteri di uguaglianza dei triangoli

Anno 1. Criteri di uguaglianza dei triangoli Anno 1 Criteri di uguaglianza dei triangoli 1 Introduzione Di fondamentale importanza per la dimostrazione di numerose proprietà dei triangoli sono i criteri di congruenza. Questi si possono utilizzare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Grafi e gruppo fondamentale di un grafo

Grafi e gruppo fondamentale di un grafo Grafi e gruppo fondamentale di un grafo Note per il corso di Geometria IV (relative alla parte dei 6 crediti) Milano, 2010-2011, M.Dedò Come trovare un grafo omotopicamente equivalente all'oggetto 3d raffigurato

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

LA CARATTERISTICA DI EULERO

LA CARATTERISTICA DI EULERO LA CARATTERISTICA DI EULERO Triangolazioni Definizione. Una triangolazione di una superficie compatta S è data da una famiglia finita di suoi sottospazi chiusi {T 1,..., T n } che ricoprano S e da una

Dettagli

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12.

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12. Appendice A Temi d esame Topologia 1. Anno accademico 2011/12. 1.1. prima prova parziale. (a) Dare la definizione di omotopia e di nullomotopia per funzioni continue. (b) Dimostrare che due funzioni continue

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Seconda gara matematica ( ) Soluzioni

Seconda gara matematica ( ) Soluzioni Seconda gara matematica (9..00) Soluzioni 1. Dato un parallelepipedo solido cioè senza buchi al suo interno formato da 180 cubetti e avente spigoli di lunghezza a, b, c, il numero N di cubetti visibili

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

Anno 2. Criteri di similitudine dei triangoli

Anno 2. Criteri di similitudine dei triangoli Anno 2 Criteri di similitudine dei triangoli 1 Introduzione In questa lezione imparerai a riconoscere i triangoli simili considerando alcune particolari caratteristiche che essi presentano. Al termine

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Coniche metriche e affini

Coniche metriche e affini Coniche metriche e affini Carlo Petronio Dicembre 2007 Queste note riguardano le coniche non degeneri, le loro equazioni metriche e la loro classificazione affine. 1 Piano euclideo, isometrie e trasformazioni

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

C che hanno rispettivamente raggi di misura b e c e i cui centri sono rispettivamente sugli

C che hanno rispettivamente raggi di misura b e c e i cui centri sono rispettivamente sugli 4.3 Risposte commentate 4.1.1 Per rispondere alla domanda posta occorre ricordare la nota proprietà dei triangoli: in ogni triangolo ciascun lato è minore della somma degli altri due. Di conseguenza le

Dettagli

(l'uguaglianza degli angoli indica il parallelismo delle rette)

(l'uguaglianza degli angoli indica il parallelismo delle rette) SESTA LEZIONE-teoria delle parallele Riprendiamo la discussione del teorema degli angoli alterni interni. Questo teorema è alla base della teoria delle parallele. Da esso discendono i criteri di parallelismo.

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Il Teorema di Napoleone per i Quadrilateri Convessi

Il Teorema di Napoleone per i Quadrilateri Convessi Il Teorema di Napoleone per i Quadrilateri Convessi Serena Donisi Giovanni Vincenzi Gaetano Vitale 1. Introduzione Un famoso teorema di Geometria sintetica afferma che assegnato un qulunque triangolo ABC,

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

Calcoli dei sequenti classici e lineare

Calcoli dei sequenti classici e lineare Calcoli dei sequenti classici e lineare Gianluigi Bellin November 5, 2009 Scheda per il compito 2, scadenza rinviata al marteedì 10 novembre 2009 1 Calcolo dei sequenti classico 1.1 Linguaggio ed interpretazione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004 ESAME DI STATO DI LICEO SCIENTIFICO 00-004 Corso Sperimentale PNI Tema di MATEMATICA - 7 giugno 004 Svolgimento a cura della profssa Sandra Bernecoli e del prof Luigi Tomasi (luigitomasi@liberoit) RISOLUZIONE

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

IL TEOREMA DI PITAGORA E IL QUADRATO DI BINOMIO

IL TEOREMA DI PITAGORA E IL QUADRATO DI BINOMIO IL TEOREMA DI PITAGORA E IL QUADRATO DI BINOMIO Parole cardine Triangolo: poligono formato da tre angoli e da tre lati. Triangolo rettangolo: è un triangolo in cui l angolo formato da due lati, detti cateti,

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

Ragionamento Automatico Calcolo dei Sequenti. Lezione 5 Ragionamento Automatico Carlucci Aiello, 2004/05 Lezione 5 0. Il calcolo dei sequenti

Ragionamento Automatico Calcolo dei Sequenti. Lezione 5 Ragionamento Automatico Carlucci Aiello, 2004/05 Lezione 5 0. Il calcolo dei sequenti Il calcolo dei sequenti Ragionamento Automatico Calcolo dei Sequenti Materiale cartaceo distribuito in aula Il calcolo dei sequenti nella logica proposizionale Il calcolo dei sequenti nella logica predicativa

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

9.4 Esercizi. Sezione 9.4. Esercizi 253

9.4 Esercizi. Sezione 9.4. Esercizi 253 Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Criteri di Scelta Finanziaria

Criteri di Scelta Finanziaria 3 Criteri di Scelta Finanziaria 3.1 Introduzione Spesso occorre confrontare operazioni definite su scadenzari diversi. Nel seguito presentiamo due criteri, quello del valore attuale netto (VAN) e quello

Dettagli

IIASS International Institute for Advanced Scientific Studies. Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio

IIASS International Institute for Advanced Scientific Studies. Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello per gli studenti delle Scuole

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS ISTITUTO di ISTRUZIONE SUPERIORE A. VENTURI PROGRAMMA SVOLTO DI MATEMATICA CL. ^ D LICEO A.S. 205/206 DOCENTE: CAVANI IRIS Testo: LA Matematica a colori Edizione azzurra vol. di L. Sasso. Ed. Petrini Ripasso

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Bioscienze e Tecnologie agro-alimentari e ambientali e Facoltà di Medicina Veterinaria C.L. in Biotecnologie Università degli Studi di Teramo 1 DEFINIZIONE

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

Funzioni booleane. Vitoantonio Bevilacqua.

Funzioni booleane. Vitoantonio Bevilacqua. Funzioni booleane Vitoantonio Bevilacqua bevilacqua@poliba.it Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 1C

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 1C Don Bosco, A.S. 01/14 Compiti per le vacanze - 1C 1. Rappresenta per elencazione ciascuno dei seguenti insiemi: A { x x è una lettera della parola cattedra } B { x N x < 7 } C { x N x è pari x 10 } D {

Dettagli

1.5 DIVISIONE TRA DUE POLINOMI

1.5 DIVISIONE TRA DUE POLINOMI Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché?

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché? 1 Eulero e i poliedri è nota la relazione V + F - S = 2 V = numero dei vertici F = numero delle facce S = numero degli spigoli perché? per quali poliedri? conseguenze? 2 Perché V + F - S = 2? Vari modi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Appunti sullo sviluppo piano di figure solide

Appunti sullo sviluppo piano di figure solide Appunti sullo sviluppo piano di figure solide Indice 1. Cosa è un prisma 2. Prisma retto, parallelepipedo e cubo. 3. Sviluppo piano di un prisma 1. Cosa è un prisma Per effettuare lo sviluppo piano di

Dettagli

ù ={0,1,2,3, } la cui prima funzione è contare.

ù ={0,1,2,3, } la cui prima funzione è contare. ESERCITAZIONE N.3 1 ottobre 007 I NUMERI NATURALI L'insieme dei numeri naturali è l insieme infinito ù {0,1,,3, } la cui prima funzione è contare. Abbiamo già visto che la scrittura ù {0,1,,3, } è scorretta,

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013 Teorema di Ceva Tesina per il corso di Didattica dell algebra e della geometria Francesco Biccari 23 gennaio 2013 Il teorema di Ceva è un teorema di geometria euclidea piana dimostrato nel 1678 dall italiano

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

I due Teoremi di Euclide

I due Teoremi di Euclide a.a 2014-15 I due Teoremi di Euclide Did. della Matematica 2 I.Capoccetta F.Spilabotte Prerequisiti: Conoscere il significato di congruenza ed equivalenza Conoscere ed operare col Teorema di Pitagora Saper

Dettagli

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione Algebra Booleana: operazioni e sistema algebrico Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche

Dettagli

Codi-Amo con Musica & Gioco

Codi-Amo con Musica & Gioco Codi-Amo con Musica & Gioco Musica & Gioco divertiamoci alla ricerca dell algoritmo Codi-Amo con Musica & Gioco 1 DURATA DELLA LEZIONE : 60 MIN OBIETTIVI DELLA LEZIONE L obiettivo della lezione è scoprire

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Esercizi di Algebra II

Esercizi di Algebra II Esercizi di Algebra II 18 Novembre 2016 # 6 Esercizio 1. Siano a := 4+13i, b := 8+i Z[i]. Determinare q, r Z[i] tali che a = bq + r con r = 0 o rδ < bδ (dove δ denota l usuale funzione euclidea per Z[i]).

Dettagli

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012 Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario I sistemi di numerazione Il sistema binario Altri sistemi di numerazione Algoritmi di conversione Esercizi 07/03/2012 2 Sistemi

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli