Diagrammi polari, di Nyquist e di Nichols

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Diagrammi polari, di Nyquist e di Nichols"

Transcript

1 Diagrammi polari, di Nyquist e di Nichols

2 Diagramma polare La risposta in frequenza si analizza tramite G(s) s jω G(jω) M( ω) e G(jω) jϕ( ω) e ω < Un altra rappresentazione grafica di G(jω) si ottiene riportando M(ω) e ϕ(ω) su un riferimento polare del piano complesso, 0 j G( jω) Diagramma polare di G(jω) 2

3 3 Rappresentazione polare per ωω (1/2) Punto sul piano complesso * * * * j * ) ( j * ) G( j j * e M e ) M( e ) G(j ) G(j ϕ ω ϕ ω ωω ω ω ω

4 Rappresentazione polare per ωω (2/2) I M * ϕ * C R 4

5 Rappresentazione polare per ωω (2/2) I C R 5

6 Rappresentazione polare per ωω (2/2) I C ϕ * R 6

7 Rappresentazione polare per ω (0, ) (1/2) G(jω) G(jω) e j G( jω) M( ω) e jϕ( ω) per ω (0, ) Luogo di punti sul piano complesso 7

8 Rappresentazione polare per ω (0, ) (2/2) I ωω 4 ωω 3 C ωω 5 ωω 2 ωω 1 ωω 0 R 8

9 Proprietà importanti (1/4) Per sistemi senza poli nell origine il diagramma polare parte (ω 0 + ) da un punto sull asse reale; la fdt in BF è infatti approssimabile con una costante Per sistemi con i poli nell origine il diagramma polare parte da un punto infinitamente lontano dall origine, con fase 0 o ±π π ϕ + i + arg(k) ω 0 2 la fdt in BF è infatti approssimabile con K i s 9

10 Proprietà importanti (2/4) Per sistemi con poli nell origine: G a (jω) ω 0 + R( ω) ω 0 ji( ω) ω 0 con n 0, m > 0 oppure n > 0, m K ω R n + K j ω I m Il quadrante di partenza (ω 0 + ) dipende dai segni di K e di R K I 10

11 Proprietà importanti (3/4) Per sistemi con poli nell origine il diagramma polare per ω 0 + assume un particolare andamento asintotico. Esempi: n0, m>0 asintotoretta verticale, R K R n>0, m0 asintotoretta orizzontale, I K I n4, m2 asintotoparabola, R forma generale dell asintoto: R HI K K n /m R 2 I I 2 o I HR n /m 11

12 Proprietà importanti (4/4) Per sistemi strettamente propri il diagramma polare termina (ω ) nell origine (modulo nullo) con fase multipla di ±90 ; la fdt in AF è infatti approssimabile con H k s, k n.o poli n.o zeri > 0 Per sistemi non strettamente propri il diagramma polare termina (perpendicolarmente) in un punto sull asse reale diverso dall origine; in tal caso la fdt in AF è infatti approssimabile con una costante 12

13 Tracciamento qualitativo (1/3) È possibile tracciare qualitativamente l andamento del diagramma polare a partire dai DdB della funzione: Si determina il comportamento iniziale del diagramma polare per ω 0 + : tenendo conto dell eventuale presenza di poli nell origine calcolando la fase iniziale in caso di poli nell origine, determinando il quadrante di partenza (senza calcolare esplicitamente l asintoto) dal comportamento della fase in BF (crescente o decrescente rispetto al valore asintotico iniziale) 13

14 Tracciamento qualitativo (2/3) Si determina il comportamento finale del diagramma polare per ω per i sistemi strettamente propri il diagramma termina nell origine con fase corrispondente al valore per ω, calcolabile anche come: ω ω 0 + ove: n n # poli a parte reale 0 n p # poli a parte reale > 0 m n # zeri a parte reale 0 m p # zeri a parte reale > 0 o ( n p) ( p n) ϕ ϕ o 90 n + m + 90 n + m (esclusi poli nell origine) 14

15 Tracciamento qualitativo (3/3) Si completa l andamento qualitativo del diagramma polare da ω 0 + a ω, sulla base del comportamento di modulo e fase riportato nei DdB 15

16 Esempio 1 (1/5) G(s) 2 s(s 200(s + 0.1) + 0.2s + 1)(s + 10) G(s) BF 2 s 2 j ω G(s) AF s ( j) ω 16

17 Esempio 1 (2/5) G(s) BF 2 s 2 j ω n 0 m 1 K K R I asintoto retta verticale 17

18 Esempio 1 (3/5)

19 Esempio 1 (3/5)

20 Esempio 1 (4/5) E B C 50 Esempio1 - DdB Esempio1 - diagramma polare Modulo (db) A B C D E F 270 Fase ( ) F D A ω 20

21 Esempio 2 (1/5) (s) G 2 s 10(s + 1) (s + 2)(s + 4) G(s) BF s ( j) ω G(s) AF 10 3 s ( j) ω 21

22 Esempio 2 (2/5) G(s) BF s ( j) ω + 1 j 3.2ω n 2 m 1 K R 1.25 K I 1 / 3.2 asintoto parabola R 12.8 I 2 22

23 Esempio 2 (3/5)

24 Esempio 2 (4/5) Modulo (db) Esempio2 - DdB B A C D Fase ( ) ω 10 1 A B C D Esempio2 - diagramma polare 24

25 Diagrammi polari, di Nyquist e di Nichols

26 Dominio della variabile s (1/3) Il diagramma di Nyquist (DdN) di una fdt consiste nella rappresentazione grafica sul piano C di G(s) G(jω) per ω (, + ) s jω Variazione della variabile indipendente: C raggio R, R 26

27 Dominio della variabile s (2/3) Problema: presenza di poli sull asse immaginario Soluzione: C jω o raggio ρ, ρ 0 Naturalmente s lim j ρ 0 jα ( ω + ρe ), α ( π / 2, π / 2) G(s) o 27

28 Dominio della variabile s (3/3) s varia su un percorso chiuso Il DdN della G(s) consiste in un luogo di punti anche esso chiuso 28

29 Poli sull asse immaginario (1/3) Particolare attenzione ai punti in cui G(jω) (presenza di poli sull asse immaginario) + ω o ω o Se s varia da j a j percorrendo una semicirconferenza di raggio infinitesimo in verso antiorario, allora + G(s) varia da G(j ω o ) a G(j ω o ) percorrendo una semicirconferenza di raggio infinito in verso orario Se il polo in jω o ha molteplicità i allora da G(j ω o ) a + G(j ω o ) verranno percorse, sempre in verso orario, i semicirconferenze di raggio infinito 29

30 Poli sull asse immaginario (2/3) NB: il percorso orario di una semicirconferenza di + raggio infinito, per ω da ω o a ω o, equivale a una rotazione di fase di 180 in un intervallo infinitesimo di ω la fase di G(jω) presenta una discontinuità di 180 in ω o È facile dimostrare infatti che in presenza di fattori con poli sull asse immaginario, del tipo per ωo 0 oppure per ω 2 2 s s + ωo s + ωo la fase presenta una discontinuità di 180 da o 0, + ω o a ω o 30

31 Poli sull asse immaginario (3/3) Se il polo in jω o ha molteplicità i allora la fase presenterà una discontinuità di i180 in ω o Per ciò che è stato fin qui detto valgono ovviamente le seguenti eguaglianze: lim G(jω ) lim G(jω) + ω ωo ω ωo Esempio per i1 C I ω ωo 60 R ω ω + o 120 raggio R 31

32 Zeri sull asse immaginario La presenza di i zeri sull asse immaginario (in jω o ) induce in ωω o una discontinuità di +i180 nella fase e un modulo nullo ( db) il DdN attraversa l origine del piano complesso proprio per ωω o C I R ωω o 32

33 33 Costruzione del DdN (1/4) Risultato importante: ω ω ω ω ω ω ) G(j ) j G( ) G(j ) j G( ) G(j ) j G( G(s) G(s) G(s) coniugato(x) x definito sia

34 G(jω) per ω (,0) coincide con G( jω) per ω (,0) ovvero con G(jω) per ω (,0) Costruzione del DdN (2/4) Sia ω (0, ); il luogo dei punti G( jω) sul piano complesso C è il luogo simmetrico, rispetto all asse reale, a quello dei punti G(jω) NB: non è difficile dimostrare che G( j ) G(j ) 34

35 Costruzione del DdN (3/4) Per tracciare il DdN di una fdt G(s) è sufficiente seguire poche regole pratiche tracciare il diagramma polare di G(jω) tracciare il diagramma simmetrico al precedente rispetto all asse reale (basta ribaltare il diagramma polare rispetto all asse reale) nel caso siano presenti rami all infinito ovvero poli sull asse immaginario, congiungere i rami all infinito con un opportuno numero di semicirconferenze orarie di raggio R così come illustrato nelle diapositive precedenti 35

36 Costruzione del DdN (4/4) mettere in evidenza il verso di percorrenza (da ω0 + a ω+ / a ω0 ) verificare che il DdN sia costituito da una curva chiusa 36

37 G(s) 2 s(s 200(s + 0.1) + 0.2s + 1)(s + 10) Esempio 1 (1/2) ω ω ± ω

38 Esempio 1 in Matlab (1/3) Il DdN può essere tracciato in ambiente Matlab utilizzando il comando nyquist (per la sintassi consultare il relativo help) Nel caso della fdt precedente, ad esempio, i comandi Matlab che permettono di tracciare il DdN nel modo più semplice sono i seguenti: >> stf( s ) >> G200*(s+0.1)/s/(s^2+0.2*s+1)/(s+10) >> nyquist(g) >> axis equal 38

39 Esempio 1 in Matlab (2/3) 39

40 Esempio 1 in Matlab (3/3) Si noti che in ambiente Matlab i DdN possono non essere completi perché mancanti delle eventuali semicirconferenze all infinito I dettagli del DdN possono essere meglio analizzati con successive operazioni di zoom sul diagramma stesso 40

41 ω 0 10(s + 1) G(s) 2 s (s + 2)(s ) Esempio 2 (1/2) ω ω ± 41

42 Esempio 2 in Matlab (1/3) I comandi Matlab che permettono di tracciare il DdN nel modo più semplice sono i seguenti: >> stf( s ) >> G10*(s+1)/s^2/(s+2)/(s+4) >> nyquist(g) >> axis equal 42

43 Esempio 2 in Matlab (2/3) 43

44 Esempio 2 in Matlab (3/3) Anche in questo caso il DdN non è completo perché mancante delle semicirconferenze all infinito I dettagli del DdN possono essere meglio analizzati con successive operazioni di zoom sul diagramma stesso 44

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Il criterio di Nyquist

Il criterio di Nyquist 0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

Tracciamento diagrammi di Nyquist

Tracciamento diagrammi di Nyquist Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it Tracciamento diagrammi di Nyquist Prerequisiti Due Amenità sui numeri complessi Formula di Eulero: Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi. .. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist Capitolo 8 Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist 8. Proprietà generali del diagramma di Nyquist Il diagramma di Nyquist (o polare ) della funzione W (jω) è definito

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio

Dettagli

Diagrammi di Nyquist. Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω))

Diagrammi di Nyquist. Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω)) Diagrammi di Nyquist Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω)) Imaginary Axis.1.8.6.4.2 -.2 -.4 -.6 -.8 TextEnd G(jω 4 ) G(jω 1 )

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi Università degli Studi di Firenze Luogo delle Radici L. Chisci, P. Falugi Corso di Fondamenti di Automatica per CdL Ing. dell Informazione e Ing. dell Ambiente e delle Risorse Anno Accademico 005/06 Fondamenti

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Controllo CONNESSIONI DI SISTEMI DINAMICI. CONNESSIONE IN SERIE (o in cascata) y 1 =u 2 G 2 (s)

Controllo CONNESSIONI DI SISTEMI DINAMICI. CONNESSIONE IN SERIE (o in cascata) y 1 =u 2 G 2 (s) 5 Capitolo Controllo CONNESSIONI DI SISTEMI DINAMICI CONNESSIONE IN SERIE (o in cascata) G(s) u=u 1 G 1 (s) y 1 =u 2 G 2 (s) y 2 =y La funzione di trasferimento del sistema complessivo è: G(s)=G 1 (s)g

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Ipotesi: il sistema ha f.d.t. G(s)=N(s)/D(s) e la corrispondente

Dettagli

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Diagrammi Di Bode Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Diagrammi di Bode e polari Problema della rappresentazione grafica di funzioni complesse di variabile reale

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Tracciamento dei Diagrammi di Nyquist

Tracciamento dei Diagrammi di Nyquist Fondamenti di Automatica Tracciamento dei Diagrammi di Nyquist L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Ultima modifica November

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html DIAGRAMMI DI BODE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

Esercitazione di Controlli Automatici 1 n 2

Esercitazione di Controlli Automatici 1 n 2 7 marzo 013 Esercitazione di Controlli Automatici 1 n a.a. 01/013 Riferendosi al sistema di controllo della temperatura in un locale di piccole dimensioni discusso nella esercitazione precedente, e di

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza LabCont: Laboratorio di Controlli II Trim. 2007 Lezione 6 7 Febbraio Docente: Luca Schenato Stesori: Fiorio Giordano e Guiotto Roberto 6. Progettazione nel dominio della frequenza Il metodo più usato per

Dettagli

INTRODUZIONE. G(s) H(s)

INTRODUZIONE. G(s) H(s) INTRODUZIONE Sia il generico sistema in retroazione in figura. È noto che la stabilità di un sistema di questo genere dipende dalla posizione nel piano di Gauss dei poli in anello chiuso della funzione

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti e polari

Dettagli

Diagrammi di Bode. Lezione 16 1

Diagrammi di Bode. Lezione 16 1 Diagrammi di Bode Lezione 16 1 Funzione di trasferimento da considerare Tracciare il diagramma di Bode (solo spettro di ampiezza) della funzione di trasferimento: H() s = Punti critici: ss ( + 500) ( s+

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Sintesi di reti correttrici e progetto analitico di controllori PID

Sintesi di reti correttrici e progetto analitico di controllori PID Sintesi di reti correttrici e progetto analitico di controllori PID A. Ferrante January 4, 204 Il materiale esposto in questa nota è tratto da [] cui si rimanda per maggiori dettagli. Sintesi di Bode Si

Dettagli

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio Parte 7, 1 Parte 7, 2 - Risposta allo scalino Studio dei sistemi dinamici tramite FdT - Risposta allo scalino In sistemi asint. stabili descrive la transizione da un equilibrio ad un altro Parte 7, 3 -

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Appunti di Controlli Automatici 1 Capitolo 7 parte I Criterio di stabilità di Nyquist dispositivo di controllo criterio di stabilità di Nyquist

Appunti di Controlli Automatici 1 Capitolo 7 parte I Criterio di stabilità di Nyquist dispositivo di controllo criterio di stabilità di Nyquist Appunti di Controlli Automatici Capitolo 7 parte I Criterio di stabilità di Nyquist Introduzione... Premesse teoriche... Enunciato del criterio di stabilità di Nyquist... 5 Criterio di Nyquist in forma

Dettagli

Sistema lineare stazionario TC:

Sistema lineare stazionario TC: Cotrolli Automatici (AUT) - 9AKSBL Regime permaete armoico Risposta i frequeza Rappresetazioi grafiche della risposta i frequeza Risposta i frequeza () Sistema lieare stazioario TC: q q bqs + bq s + +

Dettagli

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA ANALISI ARMONICA I procedimenti per la soluzione delle equazioni differenziali lineari e tempoinvarianti, basati in particolare sulla trasformazione di Laplace, hanno come obiettivo la deduzione della

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con

Dettagli

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA #

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # # EETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # Consideriamo il sistema di controllo a controreazione con la seguente. di T. a ciclo aperto: 5 ( = (1 + (1 + (1 ; Il diagramma di Nyquist della (jω)

Dettagli

Tracciamento dei Diagrammi di Bode

Tracciamento dei Diagrammi di Bode Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche

Dettagli

Lezione 8. Stabilità dei sistemi di controllo

Lezione 8. Stabilità dei sistemi di controllo Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il luogo diretto è costituito da due rami posizionati sull asse reale. Uno di essi si sposta dal polo in a e l altro percorre il segmento

Dettagli

Il luogo delle radici. G(s) - H(s)

Il luogo delle radici. G(s) - H(s) Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento:

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento: Esame di Fondamenti di Automatica Corsi di Laurea in Elettronica, Meccanica, Diploma di Elettronica giugno (L+D) Il sistema in figura è composto da un motore in c.c. controllato in corrente (inerzia Jm

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale LUOGO DELLE RADICI

CONTROLLI AUTOMATICI Ingegneria Gestionale  LUOGO DELLE RADICI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm LUOGO DELLE RADICI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no.

10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no. Edutecnica Diagrammi di Bode Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no. soluzione a pag. + Esercizio no. soluzione a pag.3 0 + Esercizio no.3

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Controlli automatici

Controlli automatici Controlli automatici Luogo delle radici Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Introduzione Il luogo delle radici è un

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Funzioni di trasferimento

Funzioni di trasferimento 1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

Problemi con discussione grafica

Problemi con discussione grafica Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli