Strutture TEM. La costante di propagazione vale, per qualunque struttura TEM. β = β 0

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Strutture TEM. La costante di propagazione vale, per qualunque struttura TEM. β = β 0"

Transcript

1 Strutture TEM La costante di propagazione vale, per qualunque struttura TEM β = β 0 dove β 0 è la costante di propagazione della linea in aria e ε r la costante dielettrica del materiale ce riempie la struttura, eventualmente complessa per tener conto delle perdite nel materiale stesso. Impedenza Z 0 e resistenza distribuita R sono invece specifice della singola ztruttura. Cavo coassiale Nella resistenza distribuita Z 0 = ζ log r e π r i R = R s π ( r e + r i ) con σ c conducibilià del metallo. R s = σ c δ δ = ωµ 0 σ c MICROSTRIP propagazione La propagazione in una microstrip a bassa frequenza può essere considerata quasi TEM, con parametri β = β 0 εe Z 0 = ζ εe e La costante dielettrica efficace vale ε e = ε r + + ε r + ( + Ξ ) dove In tutte queste formule i logaritmi sono sempre naturali (base e)

2 ( ( ) 0.04 Ξ = 0 ) < Per quanto riguarda la largezza efficace, per >, si a [ ( )] e = log e, per <, e = π [ 8 log + ] 4 La differenza normalizzata tra la largzza efficace e quella vera e riportata (per microstrip large) nel grafico ce segue. 3.6 allargamento di una microstrip (e-)/ / Conviene introdurre il fattore di riempimento q definito da ε e = q ε r + ( q) ce consente ance di calcolare la attenuazione dovuta al dielettrico. Basta utilizzare come conducibilità efficace σ e = q σ d + ( q) 0 = q σ d

3 essendo σ d la conducibilità del dielettrico (ed essendo nulla quella del vuoto) Le formule di sintesi, inverse delle precedenti, sono, per Z 0 εe > 89.9 con mentre per Z 0 εe < 89.9 risulta con = π = 8 exp A exp (A) A = Z ε [ r ] 60 ε r + ε r { B log (B ) + ε [ r log (B ) ]} ε r ε r B = 60π Z 0 Al crescere della fraquenza vanno considerati gli effetti della dispersione. Per la costante dielettrica efficace una espressione semplice ma notevolmente accurata è: dove ε e (f) = ε r + ε e(0) ε r + G f f p f p = c 0 εe (0) e (0) G = Z Z 0 con Z 0 impedenza caratteristica (a frequenza zero) misurata in Ω e c 0 velocità della luce nel vuoto. Per quanto riguarda l impedenza (e la largezza efficace) una espressione ragionevolmente accurata è: dove Z(f) = Z s + Z 0 Z s + G M f f g mentre Z s = ζ + 4 log () π f g = c 0 3

4 G G M = Z ε r > Z 0 ε r 3 discontinuità Terminazione aperta: Allungamento della linea di l dato da l = 0.4 ε e ε e Se necessario, occorre aggiungere alla terminazione ance una resistenza pari a ( ) λ0 R i = 90 [Ω] e ce tiene conto delle perdite per irradiazione della termianzione. Salto di impedenza: Siano e e e le largezze efficaci delle due linee, di largezza fisica rispettiva e, con >. Detto l 0 l allungamento di una terminazione aperta, di largezza pari a, la linea di largezza si allunga di mentre quella di largezza si accorcia di e l = l 0 e + e e l = l 0 e + e Giunzione a T simmetrica: Il braccio derivato della T, di impedenza caratteristica Z, si accorcia di { ζ d = Z [ ( )]} Z log Z εe, Z Z essendo Z l impedenza della linea principale e ε e, la sua costante dielettrica efficace. Le perdite dovute ai conduttori, in una linea di impedenza Z 0 e largezza efficace e, producono una attenuazione addizionale esprimibile come α c = R s Z 0 e K i ce va aggiunta alla parte immaginaria della costante di propagazione. Nella espressione precedente R s è la resistenza superficiale del conduttore, di condubilità σ c, e vale 4

5 R s = σ c δ δ = ωµ 0 σ c La grandezza δ è detta profondità di penetrazione (o skin dept) e per i materiali metallici è inferiore a µm alle frequenze delle microonde. La espressione precedente di α c vale purcè il conduttore abbia uno spessore superiore a circa 0 δ. Per spessori inferiori la attenuazione cresce molto rapidamente. K i tiene conto della distribuzione non uniforme della corrente sul conduttore. Il valore di K i dipende tra l altro ance dallo spessore del conduttore. Per spessori del conduttore compresi tra 30 µm e 50 µm (ce sono valori tipici per substrati dielettrici) e spessori del dielettrico almeno 0 volte maggiori una buona approssimazione di K i è ) exp ( 4π e K i = 8 4π e ( ) ( +.8 ) Va notato ce la costante di attenuazione è direttamente proporzionale ad ε e (tramite Z 0 ). Quindi al crescere della costante dielettrica, aumenta la attenuazione. Ciò percè al crescere di ε e si riduce Z 0 e pertanto, a parità di flusso di potenza, cresce la corrente sui conduttori e quindi la dissipazione. GUIDE D ONDA La costante di propagazione del modo fondamentale di una guida metallica ciusa vale k = β ε r k t dove β è la costante di propagazione nel vuoto alla medesima frequenza e ε r la costante dielettrica relativa, complessa, del mezzo ce riempie la guida e k t un parametro geometrico. La presenza di perdite nel dielettrico viene automaticamente tenuta in conto in k dall uso della costante dielettrica complessa. L impedenza corrispondente vale Z 0 = ωµ 0 k Per una guida rettangolare di lati a, b( a/) risulta k t = π a Dalla espressione di k si vede ce si a propagazione solo se, per dielettrico privo di perdite, 5

6 β ε r > k t = f > f c = ck t π ε r ovvero solo se la lungezza d onda è paragonabile alle dimensioni della struttura. Se la conducibilità delle pareti σ c non è infinita, e le perdite del dielettrico sono piccole alla costante di propagazione k va aggiunta una ulteriore parte immaginaria jα c con α c = R s ζb + b a ( ) fc Nelle espressioni di jα c e f c, con ε r si intende la parte reale della costante dielettrica del materiale ce riempie la guida. f ( fc f ) Se le perdite del dielettrico sono grandi, l attenuazione aggiuntiva dovuta alle pareti è del tutto trascurabile 6

34 STRUTTURE TEM. β = β 0. log r e. 1 Si ricorda che, salvo chiara indicazione contraria, i logaritmi sono sempre naturali (base e)

34 STRUTTURE TEM. β = β 0. log r e. 1 Si ricorda che, salvo chiara indicazione contraria, i logaritmi sono sempre naturali (base e) 34 STRUTTURE TEM Finora abbiamo studiato le proprietà delle cosiddette equazioni dei telegrafisti, e determinato le proprietà delle relative soluzioni, quasi senza riferimento alle sottostanti strutture

Dettagli

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a BUON CONDUTTORE Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a σ ωε (137). Mentre in un materiale con conducibilità infinita il campo deve essere nullo, la presenza di

Dettagli

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a 1 BUON CONDUTTORE Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a σ ωε (1). Mentre in un materiale con conducibilità infinita il campo deve essere nullo, la presenza di

Dettagli

11 PROPAGAZIONE NEI MATERIALI DISPERSIVI E CON PERDITE

11 PROPAGAZIONE NEI MATERIALI DISPERSIVI E CON PERDITE perchè tale termine dovrebbe essere di variazione di energia immagazzinata,e per segnali sinusoidali, il valor medio delle variazioni è nullo. Ricapitolando, il teorema di Poynting può essere interpretato

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Circuito a costanti concentrate

Circuito a costanti concentrate Circuito a costanti concentrate periodo Il contributo dei cavetti di collegamento a resistenza, capacita' ed induttanza del circuito e' trascurabile: resistenza, capacita' (ed induttanza) sono solo quelle

Dettagli

Mezzi non omogenei. Corso di Microonde I A.A. 2004/2005

Mezzi non omogenei. Corso di Microonde I A.A. 2004/2005 Mezzi non omogenei Nelle microonde si usano spesso mezzi trasmissivi non omogenei; Lo studio di questi mezzi viene ricondotto al caso equivalente TEM mediante la definizione di opportuni parametri caratteristici;

Dettagli

Ingegneria dei Sistemi Elettrici_6f

Ingegneria dei Sistemi Elettrici_6f Ingegneria dei Sistemi Elettrici_6f Guide d onda e cavità risonanti Sono state studiate le proprietà caratteristiche delle onde elettromagnetiche trasversali guidate da linee di trasmissione. Una delle

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 3 Caratteristiche principali delle linee di trasmissione Linee

Dettagli

Capitolo 4. Linee a microstriscia

Capitolo 4. Linee a microstriscia Capitolo 4 Linee a microstriscia 4.1 Introduzione In questo capitolo viene analizzata la linea a microstriscia, sia da un punto di vista tecnologico ce teorico. Sono poi fornite equazioni semplificate

Dettagli

2.1 Valutazione della conduttanza e della resistenza per unita di lunghezza di una linea

2.1 Valutazione della conduttanza e della resistenza per unita di lunghezza di una linea Capitolo Linee con perdite In una linea di trasmissione reale la non perfetta conducibilita dei conduttori e le perdite di volume (cioe le perdite dovute alla isteresi dielettrica e alla conducibilita

Dettagli

Parametri di Diffusione

Parametri di Diffusione Parametri di Diffusione Linee di trasmissione: richiami Onde di tensione e corrente Coefficiente di riflessione Potenza nelle linee Adattamento Parametri di Diffusione (S) Definizione Applicazioni ed esempi

Dettagli

Soluzioni Eletromagnetiche per l Hi-Tech

Soluzioni Eletromagnetiche per l Hi-Tech Soluzioni Eletromagnetiche per l Hi-Tech Materiale di supporto: cavi coassiali e guide circolari Prof. Luca Catarinucci Innovation Engineering Department University of Salento - Lecce - Italy Cavo coassiale

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

Verifiche sperimentali legge di Coulomb. c a p i t o l o

Verifiche sperimentali legge di Coulomb. c a p i t o l o Verifiche sperimentali legge di Coulomb c a p i t o l o 3 Fino a che punto si può aver fiducia nella legge di Coulomb? Era noto che: Una buccia sferica omogenea di materia dà, al suo interno, un contributo

Dettagli

1 SCHERMAGGIO 2 SCHERMO LARGO

1 SCHERMAGGIO 2 SCHERMO LARGO 1 SCHERMAGGIO Uno schermo elettromagnetico è un dispositivo che riduce, in maniera significativa, il campo elettromagnetico in una data zona dello spazio. Il parametro caratterizzante uno schermo è la

Dettagli

Correnti indotte nel terreno da linee elettriche

Correnti indotte nel terreno da linee elettriche Correnti indotte nel terreno da linee elettriche Ing. Nicola Zoppetti Istituto di Fisica Applicata Nello Carrara IFAC-CNR, Firenze Finalità dello studio Fornire un quadro di riferimento che faciliti l

Dettagli

Appello del 17/2/ Soluzioni

Appello del 17/2/ Soluzioni Compito A - Testo Dipartimento di Ingegneria Enzo Ferrari Corso di Campi Elettromagnetici - a.a. 2014/15 Appello del 17/2/2015 - Soluzioni Esercizio 1. Un onda elettromagnetica con frequenza 300 MHz si

Dettagli

e' la componente di P normale alla superficie Σ ed U energia del campo elettromagnetico entro V, vale : U = Ue + Um = ½ εe 2 dv + ½ μh 2 dv

e' la componente di P normale alla superficie Σ ed U energia del campo elettromagnetico entro V, vale : U = Ue + Um = ½ εe 2 dv + ½ μh 2 dv VETTORE DI POYNTING P = E x H puo' essere scritto come P = η H 2 = P = E 2 /η Σ e rappresenta la densita' di potenza ( W/m 2 ) associata all'onda elettromagnetica Dato un volume V attraversato da un onda

Dettagli

Parametro di guida V. V frequenza normalizzata. d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico.

Parametro di guida V. V frequenza normalizzata. d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico. Parametro di guida V V frequenza normalizzata V = " d! n core # n cladding = " d! N.A. dove d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico Parametro di guida

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

La linea di trasmissione può essere vista mediante questo schema:

La linea di trasmissione può essere vista mediante questo schema: 0 NOME: Lorenzo Pintaudi & Giuseppe Sansone Antonio CLASSE: 5 A DATA: 22/05/2012 ESERCITAZIONE: ANALISI LINEE DI COMUNICAZIONE STRUMENTI ADOPERATI: Cavo coassiale RG58 c/v 50Ω 100 metri Oscilloscopio Generatore

Dettagli

Elettromagnetismo Applicato

Elettromagnetismo Applicato Elettromagnetismo Applicato Prova scritta del 23 febbraio 2017 Il candidato risponda ai quesiti riportando i risultati negli appositi spazi sul secondo foglio. 1. Un onda sinusoidale si propaga in un mezzo

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA TRASMISSIONE DEL CALORE: RESISTENZA DI CONTATTO Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Esercitazione 2: Strutture a 2 e 3 porte

Esercitazione 2: Strutture a 2 e 3 porte Esercitazione : trutture a e porte trutture a porte Isolatori L isolatore, idealmente dalle caratteristiche specificate in Fig. c), è un componente di grandissimo interesse allo scopo di disaccoppiare

Dettagli

Progetto di filtri numerici IIR da filtri analogici

Progetto di filtri numerici IIR da filtri analogici Filtri selettivi 1. Butterworth: monotono nella banda passante e nella banda oscura 2. Chebyshev: oscillazione uniforme nella banda passante e monotona nella banda oscura 3. Ellittico: oscillazione uniforme

Dettagli

Parliamo di efficienza d antenna di Gioacchino Minafò IW9DQW

Parliamo di efficienza d antenna di Gioacchino Minafò IW9DQW Efficienza di un antenna filare Per stabilire l effetto della lunghezza dell antenna sulla potenza irradiata senza ricorrere all analisi qualitativa, possiamo legare la resistenza di radiazione R i alla

Dettagli

Risonatori a microonde

Risonatori a microonde Risonatori a microonde Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 11 Ottobre 6 Indice Circuiti risonanti serie e parallelo Fattore di qualità esterno: Q e Risonatori realizzati

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

Resistenza di terra, resistività del terreno Metodi di Misura

Resistenza di terra, resistività del terreno Metodi di Misura Resistenza di terra, resistività del terreno Metodi di Misura Resistenza di terra Immaginiamo di iniettare una corrente I nel suolo (omogeneo, di conducibilità σ, resistività ρ = 1/ σ ) mediante un elettrodo

Dettagli

PRINCIPI OPERATIVI. Fig. 1 Schema a blocchi semplificato di un sistema georadar.

PRINCIPI OPERATIVI. Fig. 1 Schema a blocchi semplificato di un sistema georadar. GEORADAR Il metodo georadar è un metodo di indagine non distruttivo che impiega onde elettromagnetiche per ricerche di oggetti sepolti o per definire la struttura interna di un oggetto. Un tipico georadar

Dettagli

Laboratorio di Elettronica Dispositivi elettronici e circuiti Linee di trasmissione. Misure su linee di trasmissione. Amplificatore operazionale e reazione. Applicazioni dell'amplificatore operazionale.

Dettagli

Fondamenti di Acustica

Fondamenti di Acustica Fondamenti di Acustica Fisica Tecnica Corso di Laurea Scienze dell Architettura Definizione di suono Per suono in un punto si intende una rapida variazione di pressione, intorno alla pressione atmosferica,

Dettagli

Ingegneria dei Sistemi Elettrici_6b

Ingegneria dei Sistemi Elettrici_6b Ingegneria dei Sistemi lettrici_6b Campi armonici nel tempo Le funzioni temporali relative alle grandezze che definiscono un campo dipendono dalle funzioni delle sorgenti ρ e J. In ingegneria le funzioni

Dettagli

Antenne a microstriscia per applicazioni wireless

Antenne a microstriscia per applicazioni wireless Antenne a microstriscia per applicazioni wireless Annamaria Cucinotta annamaria.cucinotta@unipr.it http://www.tlc.unipr.it/cucinotta 1 Comunicazioni wireless Nell ambito delle comunicazioni wireless è

Dettagli

εr = 3.5 εe = Terminazione aperta in microstriscia Introduzione al software PRELUDE Frequenza = 5 GHz h = 1 mm

εr = 3.5 εe = Terminazione aperta in microstriscia Introduzione al software PRELUDE Frequenza = 5 GHz h = 1 mm 1.1 Terminazione aperta in microstriscia Introduzione al software PRELUDE Frequenza = 5 GHz εr = 3.5 h = 1 mm Su questo substrato si vuole realizzare una linea con impedenza caratteristica 75 Ω. La larghezza

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Principio di Huygens (1678)

Principio di Huygens (1678) Principio di Huygens (1678) Tutti i punti di un fronte d onda possono essere considerati come sorgenti secondarie di onde sferiche; in un generico punto P l onda risultante si può ottenere come sovrapposizione

Dettagli

Valori numerici dei parametri di collisione

Valori numerici dei parametri di collisione Valori numerici dei parametri di collisione Nella Lezione 9 si è mostrato che in un plasma le collisioni a grande angolo sono prevalentemente il risultato di collisioni multiple a piccolo angolo. Dato

Dettagli

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME SOLUZIONE DELL EUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME Luca Ghezzi May 2 Abstract L equazione del calore di Fourier è risolta analiticamente nel caso di un mezzo

Dettagli

Fondamenti di Acustica

Fondamenti di Acustica Fondamenti di Acustica Fisica Tecnica Corso di Laurea in Ingegneria dei trasporti Definizione di suono Per suono in un punto si intende una rapida variazione di pressione, intorno alla pressione atmosferica,

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

Fluidodinamica applicata Esercizi Proposti (Da Risolvere)

Fluidodinamica applicata Esercizi Proposti (Da Risolvere) MARTEDÌ 1..000 ESERCIZI PROPOSTI 1) una parete verticale separa due invasi pieni d acqua. Noti i livelli dell acqua nei due invasi 1 ed, con 1 < e la densità ρ dell acqua, calcolare la forza per unità

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Metodologie Elettromagnetiche per la geofisica. Proprietà elettromagnetiche di suoli e rocce (II)

Metodologie Elettromagnetiche per la geofisica. Proprietà elettromagnetiche di suoli e rocce (II) Metodologie Elettromagnetiche per la geofisica Proprietà elettromagnetiche di suoli e rocce (II) Anno Accademico 2009/2010 Docente:Elena Pettinelli Dielettrici e conduttori σ s ε e = ε + ω σ è la conducibilità

Dettagli

ESERCIZIO 7 - TUTORATO PROPAGAZIONE A.A. 06/07

ESERCIZIO 7 - TUTORATO PROPAGAZIONE A.A. 06/07 ESERIIO 7 - UORAO PROPAAIONE A.A. 6/7 -/4/7 Esercizio ( punti / 8) Prova scritta di propaazione ( parte) - 5 4 V l d f 5Hz V V z 5 5 5.6 mm ( ) d mm (4) Nel circuito in fiura, alimentato alla frequenza

Dettagli

Micro Electro Mechanical Systems RF MEMS Switches Modello Elettromagnetico

Micro Electro Mechanical Systems RF MEMS Switches Modello Elettromagnetico Micro Electro Mechanical Systems RF MEMS Switches Modello Elettromagnetico Augusto Tazzoli E-Mail: augusto.tazzoli@dei.unipd.it Tel: 049 827 7664 DEI Department of Information Engineering University of

Dettagli

ONDE SUPERFICIALI effetti della superficie libera

ONDE SUPERFICIALI effetti della superficie libera ONDE SUPERFICIALI Alla superficie libera di un mezzo elastico si realizzano condizioni particolari nel campo di sforzi, essendo nulli gli sforzi di taglio. Nel caso della Terra, dal momento che le misure

Dettagli

Circuiti Elettrici Lineari Risposta in frequenza

Circuiti Elettrici Lineari Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici ineari isposta in frequenza Circuiti Elettrici ineari a.a. 89 Prof.

Dettagli

INTERAZIONE TRA ONDE E SUPERFICI

INTERAZIONE TRA ONDE E SUPERFICI INTERAZIONE TRA ONDE E SUPERFICI Quando un onda elettromagnetica incide sulla superficie di separazione tra l aria e un materiale supposto omogeneo le correnti di conduzione e/o di polarizzazione i che

Dettagli

Risposte allo scalino di sistemi del I e II ordine. Marcello Farina

Risposte allo scalino di sistemi del I e II ordine. Marcello Farina Risposte allo scalino di sistemi del I e II ordine Sommario 2 Struttura generale delle funzioni di trasferimento Caratteristiche della risposta allo scalino di principale interesse Risposte allo scalino

Dettagli

b/a Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( r =1 )

b/a Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( r =1 ) /b GUIDE D ONDA - Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI I cavi coassiali oltre al modo di propagazione TEM consentono la propagazione anche con modi tipici delle guide d'onda. Due distinti

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017 Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/017 Esercizio 1 1) Durante il salto dell uomo non sono presenti forze esterne impulsive, per cui la quantità di moto

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

IL CAMPO ELETTRICO. Test

IL CAMPO ELETTRICO. Test Test 1 Quali delle seguenti affermazioni sul concetto di campo elettrico è corretta? A Il campo elettrico in un punto dello spazio ha sempre la stessa direzione e lo stesso verso della forza elettrica

Dettagli

Linee di trasmissione

Linee di trasmissione Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 12 m. Quando si muove in aria alla velocità di 150 km/h e sviluppa un

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

Dispersione modale. Dispersione modale

Dispersione modale. Dispersione modale Dispersione modale Se determiniamo l allargamento dell impulso per unità di lunghezza della fibra otteniamo l indice di dispersione modale σ ns m km A causa dell allargamento dell impulso la banda di frequenza

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Corrente elettrica Consideriamo il moto non accelerato e con velocità piccole rispetto a quella della luce nel vuoto di un insieme di particelle dotate di carica elettrica: possono ritenersi valide le

Dettagli

ing. Patrizia Ferrara I Condensatori

ing. Patrizia Ferrara I Condensatori I Condensatori Definizione Il condensatore è un componente elettrico caratterizzato da un ben determinato valore di capacità Struttura I condensatori sono in genere strutturati da 2 superfici parallele

Dettagli

Perdite di carico in tubi cilindrici (i.e. correnti in pressione)

Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Le perdite di carico in tubi cilindrici sono classificabili in due grosse categorie: - Perdite di carico distribuite: traggono origine

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 8/9/2017

Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 8/9/2017 Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 8/9/2017 Nome: Cognome: N. matricola: * Segnare con una x la risposta corretta, svolgere i problemi nei fogli allegati scrivendo le formule

Dettagli

Gli effetti di interazione tra campo EM e mezzo. Si analizzeranno in particolare gli effetti

Gli effetti di interazione tra campo EM e mezzo. Si analizzeranno in particolare gli effetti Gli effetti di interazione tra campo M e mezzo Si analizzeranno in particolare gli effetti dovuti al campo elettrico e quindi il comportamento della ε. Infatti quasi sempre risulta μ = μ I principali effetti

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

Modi di Trasmissione del Calore

Modi di Trasmissione del Calore Modi di Trasmissione del Calore Trasmissione del Calore - 1 La Trasmissione del calore, fra corpi diversi, o all interno di uno stesso corpo, può avvenire secondo 3 diverse modalità: - Conduzione - Convezione

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 Conduzione elettrica nei metalli (conduttori e semiconduttori) Corso di Laboratorio di Didattica

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

Sistemi trifase: generatori

Sistemi trifase: generatori 4 Sistemi triase Un sistema triase è costituito da generatori indipendenti di tensione sinusoidali isorequenziali, collegati a stella (osservazione sul triangolo), e da uno o più carichi collegati ai morsetti

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTROICA IDUSTRIALE Trasformatori ad alta frequenza Trasformatori ad alta frequenza Motivazioni per l uso di trasformatori ad AF Richiami sul trasformatore ideale Relazioni tra le tensioni Relazioni

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Si consideri una regione dello spazio in cui il mezzo sia lineare, omogeneo, stazionario, isotropo, non dispersivo sia nello spazio che nel tempo

Si consideri una regione dello spazio in cui il mezzo sia lineare, omogeneo, stazionario, isotropo, non dispersivo sia nello spazio che nel tempo Onde Piane Con il termine onda piana si individua il più semplice tipo di propagazione in cui l onda è funzione di una sola coordinata spaziale e della coordinata temporale. Sebbene, a rigore, le onde

Dettagli

Ingegneria dei Sistemi Elettrici_6e Teoria e applicazioni delle linee di trasmissione_1

Ingegneria dei Sistemi Elettrici_6e Teoria e applicazioni delle linee di trasmissione_1 Ingegneria dei Sistemi Elettrici_6e Teoria e applicazioni delle linee di trasmissione_1 Sono state studiate le onde elettromagnetiche che si propagano nei dielettrici spazialmente illimitati, senza contorni,

Dettagli

Quando la trasmissione della potenza elettromagnetica avviene nello spazio aperto, si può focalizzare la radiazione mediante l interferenza tra più

Quando la trasmissione della potenza elettromagnetica avviene nello spazio aperto, si può focalizzare la radiazione mediante l interferenza tra più Guide d Onda Finora si è parlato di onde elettromagnetiche che si propagano dalla sorgente in modo uniforme in tutte le direzioni. Nelle applicazioni pratiche abbiamo però bisogno di indirizzare il flusso

Dettagli

Equazioni di Maxwell. Relazioni costitutive del mezzo: ( mezzi conduttivi)

Equazioni di Maxwell. Relazioni costitutive del mezzo: ( mezzi conduttivi) Equazioni di Maxwell D B0 B E t H J D t Relazioni costitutive del mezzo: B H D E J E ( mezzi conduttivi) Condizioni al contorno Tra due mezzi generici ( 1, 1,, ): Si conserva la componente tangenziale

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica.

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica. Appendice C 233 1) Misurare la lunghezza elettrica T L della linea. 2) Dal valore di T L e dalla lunghezza geometrica calcolare la velocità di propagazione dei segnali lungo la linea e la costante dielettrica

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA TESI DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI STUDIO E SIMULAZIONE DI ANTENNE STAMPATE RELATORE: Prof. Marco Donald Migliore CORRELATORE:

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica graria ed Impianti Irrigui Docente: Ing. Demetrio ntonio Zema Lezione n. 8: Foronomia nno ccademico 2011-2012 2012 1 Generalità La foronomia studia l'efflusso di una corrente liquida

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni, per descrivere a livello qualitativo l andamento di una funzione y = f() : 1. campo di esistenza ( insieme di definizione ) 2. segno:

Dettagli

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e costituiscono il modello matematico della teoria elettromagnetica.

Dettagli

Limite Destro Finito

Limite Destro Finito Limite Destro Finito Quando la variabile assume valori via via più vicini ad a (ma sempre maggiori di a), i corrispondenti valori di f() si avvicinano sempre più al valore L. y scelta di ε y = f () y scelta

Dettagli

Compitino di Fisica II 15 Aprile 2011

Compitino di Fisica II 15 Aprile 2011 Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)

Dettagli

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità...

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità... Indice 1 Definizioni e relazioni fondamentali 9 1.1 Definizioni di E e B............................ 9 1.2 Equazioni di Maxwell........................... 10 1.3 Cariche e dielettrici............................

Dettagli

Fisica 2A. 12 novembre 2004

Fisica 2A. 12 novembre 2004 Fisica 2A 2 novembre 2004 Rispondere alle domande e risolvere i problemi in modo chiaro, esauriente ma sintetico. Spiegare e motivare sinteticamente tutte le assunzioni e i passaggi. Leggere attentamente

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

La Produzione dei Raggi X

La Produzione dei Raggi X La Produzione dei Raggi X Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione 2 Dr. Rocco Romano (Dottore di Ricerca) Facoltà di Farmacia, Università degli Studi

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 DOWNLOAD Il pdf di questa lezione (onde2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 10/10/2017 LE ONDE NELLO SPAZIO Finora si è considerata

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli