Lavoro di una forza. Si definisce lavoro elementare della forza F agente sul punto materiale P che si sposta di dr la quantità scalare:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lavoro di una forza. Si definisce lavoro elementare della forza F agente sul punto materiale P che si sposta di dr la quantità scalare:"

Transcript

1 Loro i un forz Consierio un punto terile P in oto lungo un cur L per effetto i un forz F, si r il ettore posizione el punto in un siste i riferiento inerzile: in un interllo i tepo t il punto copie uno spostento r. Si efinisce loro eleentre ell forz F gente sul punto terile P che si spost i r l quntità sclre: W F r Fr cos

2 Loro i un forz Siccoe l ccelerzione el punto terile può espriersi trite l coponente tngenzile t e quell norle n ll triettori, i conseguenz l forz F può espriersi coe: F ˆ t ˆ t n n Ft Fn per cui W F r F F r F F ˆs t t n oe lo spostento infinitesio è stto espresso einte l sciss curiline infinitesi e il ersore ell cur t; esseno F n perpenicolre ll cur e, quini l ersore t, si euce che il loro eleentre è ugule l prootto ello spostento infinitesio per l coponente ell forz lungo tle spostento W F t s t n

3 Loro i un forz Se si olesse eterinre il loro copiuto un forz F che spost un punto terile un posizione inizile P un posizione finle P lungo un cur L si orebbero sore tutti i contributi infinitesii W einte un opertore che prene il noe i integrle P i line W F r L P Nel siste SI il loro iene isurto in Joule (J): J è il loro ftto un forz i N in per uno spostento i el suo punto i ppliczione nell irezione ell forz. Il loro goe ell proprietà iti: il loro ell risultnte i più forze è ugule ll so ei lori effettuti singolrente ciscun elle forze.

4 Loro i un forz Riesinno l relzione originle W F r Fr cos si possono effetture le seguenti consierzioni: se 90 il loro eleentre W è positio e si efinisce loro otore Se il loro eleentre W è negtio e si efinisce loro resistente se 90 il loro eleentre W è nullo

5 Potenz Per crtterizzre un siste l punto i ist energetico, oltre ll cpcità i copiere un certo loro, è opportuno stbilire l rpiità con cui tle loro può essere eseguito W si efinisce potenz ei, l quntità P ei t si efinisce potenz istntne, l quntità P W t ricorno l efinizione i loro istntneo si h: F r r W F r P F F t t Nel siste SI l potenz si isur in Wtt (W=J/s) È possibile nche espriere il loro coe potenz per interllo i tepo; ciò eri l unità kilowttor (kwh) opert per l isur el loro elettrico

6 Energi cinetic Se consierio un punto terile i ss soggetto un forz F, ricorno l efinizione i loro infinitesio si h: nel cso i uno spostento finito el punto i ppliczione ell forz F P P si h: i r ire l cos tn te se prootto el ifferenzile t t W r r r F P P W L

7 Energi cinetic Per un punto terile i ss che si uoe con elocità, l quntità Ek prene il noe i energi cinetic e si può scriere: W Ek Ek oero: il loro ftto ll risultnte elle forze genti su un corpo è ugule ll rizione ell su energi cinetic. Quest conseguenz ell secon legge i Newton prene il noe i teore ell energi cinetic o teore elle forze ie L unità i isur ell energi cinetic è l stess i quell el loro

8 Energi cinetic (cso prticolre) Nel cso seplice i un punto terile che si uoe i oto rettilineo sotto l zione i un forz costnte prllel ll triettori (oto i cut i un gre) O F t t t o o o cc.) (oto unif. cost. F F F o o o o o t

9 Energi cinetic (cso prticolre) o o o o o o o o o o F o o oero, ncor: il loro ftto ll risultnte elle forze genti su un corpo è ugule ll rizione ell su energi cinetic.

10 Energi cinetic L energi cinetic rppresent l cpcità che h un corpo in oiento copiere el loro oero trsferire il oiento ltri corpi (es. L corrente el fiue che f uoere le cine i un ulino)

11 Loro e energi cinetic Il oulo e l irezione ell forz gente su un corpo non ipenono l siste i riferiento inerzile consierto, lo stesso non le per lo spostento. Il loro esercitto un forz su un corpo ipene l prticolre siste i riferiento utilizzto (forz gente su un corpo in oto elocità costnte: per un ossertore solile con il corpo, il loro solto ll forz è nullo in qunto è null l elocità relti) L energi cinetic ipene l siste i riferiento (consierno ifferenti sistei i riferiento inerzili in oto reltio tr loro con ifferenti elocità, si isurno elocità ierse per uno stesso corpo in oto) Nonostnte l ipenenz i loro e energi cinetic l siste i riferiento, il teore ell energi cinetic (o elle forze ie) rest lio per qulsisi ossertore inerzile

12 Forze consertie Alcune forze (forz elstic, forz peso) sono crtterizzte l ftto che il loro clcolto tr ue punti ipene lle sole coorinte i tli punti e risult inipenente l prticolre percorso che congiunge i punti stessi Altre forze (forze i ttrito) sono crtterizzte l ftto che il loro clcolto tr ue punti ipene ll triettori seguit Le forze per le quli il loro non ipene l cino percorso sono ette forze consertie entre quelle per le quli non le tle proprietà sono ette forze non consertie.

13 Forze consertie Per le forze consertie il loro è espriibile coe ifferenz ei lori che ssue un prticolre funzione nei punti finle e inizile ell triettori consiert. Nel cso in cui si inertno il punto inizile e finle, oero si inerte l irezione i percorrenz ell triettori, cbi solo il segno el loro eseguito. Un qulunque percorso chiuso può essere pensto coe l so i percorso tr i nt tr ue punti qulunque ell triettori e un percorso i ritorno tr gli stessi punti. Il loro eseguito un forz conserti lungo un qulunque percorso chiuso è nullo

14 Energi potenzile L funzione elle coorinte trite cui è possibile espriere il loro i un forz conserti si efinisce energi potenzile L energi potenzile è, per l precisione, efinit coe un funzione elle coorinte spzili el tipo E p (,y,z) per l qule risulti che il loro effettuto un forz conserti per nre un punto inizile P un punto finle P è ugule ll rizione i energi potenzile tr il punto finle P e quello inizile P cbit i segno oero W E p Ep Ep Ep p E

15 Conserzione energi eccnic Se consierio conteporneente l espressione el loro einte rizione i energi cinetic e qull einte rizione i energi potenzile si ottiene l relzione W Ek Ek Ep Ep Ek Ep Ek Ep L so ell energi cinetic E k e ell energi potenzile E p i un corpo soggetto un forz conserti è ett energi eccnic E L energi eccnic i un punto terile in oto sotto l zione i forze consertie si ntiene costnte urnte il oto, ossi si conser. L energi eccnic i un punto terile in oto sotto l zione i forze consertie e non consertie non rine costnte urnte il oto e, in prticolre, l su rizione risult pri l loro elle forze non consertie.

16 Loro e energi I corpi possono scbirsi l energi: Il loro rppresent un oo ttrerso cui i corpi si scbino energi. Se l risultnte elle forze esterne copie un loro positio (forz otrice, concore con il oto), llor l energi cinetic potenzile el punto terile uent: Si ice che l biente esterno h copiuto un loro sul punto terile e che il punto terile h cquisito energi cinetic o potenzile ll biente esterno. Se l risultnte elle forze esterne copie un loro negtio (forz resistente, oppost l oto), llor l su energi cinetic o potenzile iinuisce: Si ice che il punto terile h effettuto el loro sull biente esterno spese ell su energi cinetic o potenzile

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B Eercizio n. Un punto terile i Fcoltà i Ingegneri pro intrcoro i Fiic I 5--00-Copito = 5kg i uoe lungo l e x con legge orri x( t) α t 8 =, oe x è epreo in etri, t in econi e α =. Deterinre: l poizione el

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

Trigonometria 1 Teorema 2 Teorema

Trigonometria 1 Teorema 2 Teorema r cos Trigonometri Teorem In un tringolo rettngolo, l misur i un cteto è ugule l prootto ell misur ell ipotenus per il coseno ell ngolo icente oppure per il seno ell ngolo opposto. r sin cos sin r Teorem

Dettagli

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito)

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito) Cp. 6 Proble 67: potenz per spinere un css velocità costnte (con ttrito DATI velocità dell css costnte, orizzontle, di odulo v =.6 /s ss dell css = 95 coefficiente di ttrito dinico css-pviento =.78 spostento

Dettagli

Omotopia, forme chiuse e esatte

Omotopia, forme chiuse e esatte Omotopi, forme chiuse e estte Per curv intenimo un curv orientt regolre trtti. Dt un curv enoteremo con l curv ottenut cmbino orientzione, si h ω = ω per ogni form ω (1) Due curve, tli che il punto finle

Dettagli

Cinematica. Le equazioni del moto di A sono: v A = v 0 a A t ; s A = d + v 0 t ½ a A t 2

Cinematica. Le equazioni del moto di A sono: v A = v 0 a A t ; s A = d + v 0 t ½ a A t 2 Esercitzione n FISIC SPERIMENTLE I (C.L. In. Ei.) (Prof. Gbriele F).. / Cinemtic. Due uto e B iino con l stess elocità = 7 km/h su un str pin e rettiline, istnz l un ll ltr. un certo istnte t = il uitore

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA TERMODINAMICA E TERMOFLUIDODINAMICA Cp. 13 LA TERMODINAMICA DELL ARIA UMIDA T bu T ARIA UMIDA gocce d cqu liquid (rugid) T

Dettagli

LEGGI DELLA DINAMICA

LEGGI DELLA DINAMICA 1) Nel SI l unità di misur dell forz è il Newton (N); 1 N è quell forz che: [A] pplict su un oggetto dell mss di 1 kg lo spost di 1m; [B] pplict su un oggetto che h l mss di 1g lo cceler di 1m/s 2 nell

Dettagli

Sia A un sottoinsieme limitato del piano e f ( x, y ) una funzione definita in A e limitata. L integrale doppio

Sia A un sottoinsieme limitato del piano e f ( x, y ) una funzione definita in A e limitata. L integrale doppio Prte secon : Clcolo integrle. Integrle oppio su un rettngolo Si A un sottoinsieme limitto el pino e f ( x, ) un funzione efinit in A e limitt. L integrle oppio A f ( x, ) x è un numero efinito in moo tle

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche, Corso i Lure in Mtemtic Prim prov in itinere i Fisic 2 (Prof. E. Sntovetti) 18 novemre 2016 Nome: L rispost numeric eve essere scritt nell pposito riquro e giustifict cclueno i clcoli reltivi. Prolem 1.

Dettagli

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a Definizione 1. Si R un insieme otto i ue leggi i composizione interne e. Si ice che l struttur lgebric (R,, ) è un reticolo (lgebrico) se e verificno le proprietà: (1) x, y, z R, (x y) z = x (y z); (x

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Esercizi 5 Campo magnetico

Esercizi 5 Campo magnetico Esercizi 5 mpo mgnetico 1. Due lunghi fili rettilinei e prlleli, posti istnz, sono percorsi correnti uguli e opposte. lcolre il cmpo mgnetico nei punti equiistnti i fili. I θ I1 L sol componente che soprvvive

Dettagli

Dinamica Relativistica

Dinamica Relativistica L Generlizzzione Reltiistic delle Leggi dell Meccnic Principio d inerzi ereditto dll meccnic clssic: Dinmic Reltiistic Reltiità Energi e Ambiente Fossombrone PU Polo Scolstico L. Donti 3 mggio http://www.ondzioneocchilini.it

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

Linguaggi e Traduttori Esercizi LR(1) e SLR(1)

Linguaggi e Traduttori Esercizi LR(1) e SLR(1) Linguggi e Truttori Esercizi LR(1) e LR(1) Esercizio 1 Prof. Mrco Gvnelli 10 giugno 2018 i consieri l grmmtic G = {,,},{,,},P,, ove: P = ǫ i ic se l grmmtic è LR(1). Qulor l grmmtic risulti LR(1), si mostri

Dettagli

Risultati esame scritto Fisica 1-06/02/2017 orali: 14/02/2017 alle ore presso aula S

Risultati esame scritto Fisica 1-06/02/2017 orali: 14/02/2017 alle ore presso aula S isultti esme scritto Fisic - 6//7 orli: 4//7 lle ore. presso ul li studenti interessti isionre lo scritto sono preti di presentrsi il iorno dell'orle mtricol oto 5 8 mmesso 7 59 9 mmesso 956 nc 957 mmesso

Dettagli

III - Lavoro ed energia. Conservazione dell energia.

III - Lavoro ed energia. Conservazione dell energia. III - Lavoro e eneria. Conservazione ell eneria. Il lavoro W copiuto a una forza F variabile che aisce su un punto ateriale spostanolo a un punto a un punto luno una linea γ è ato a: W F l,γ ove l è lo

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

In presenza di c. elettrico e magnetico: espressione generale della f. di Lorentz

In presenza di c. elettrico e magnetico: espressione generale della f. di Lorentz Dll ntichit : Osservzioni su terili cpci di ttirre il ferro/esercitre forze su terili siili (pochi csi, nche se diffusi su tutto il pinet) Forze fr terili gnetici descritte in terini del cpo gnetico Es:

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1 Fisic II - Ing. Mrittim e Sicurezz, prof. Schivi A.A. 2003-2004 Foglio i Esercizi n. 1 1.1. (**) Un cric elettrosttic è istribuit uniformemente, con ensità linere, su un semirett che gice sull sse i un

Dettagli

Maurizio Piccinini A.A Fisica Generale A. Urti. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico

Maurizio Piccinini A.A Fisica Generale A. Urti. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Fisica Generale A Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accadeico 05 06 Definizione Si ha un urto quando due corpi, che si uoono a elocità dierse, interagiscono (p.es. engono a contatto)

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

Misura della densità di un solido.

Misura della densità di un solido. Progetto Luree Scientifiche Diprtiento di Fisic- Università Ro Tre Geologi del Siste Solre Prov di Lbortorio Misure Geofisiche Misur dell densità di un solido. L densità di un solido, o ss voluic, è il

Dettagli

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

PROBLEMA DEI DUE CORPI E MASSA RIDOTTA

PROBLEMA DEI DUE CORPI E MASSA RIDOTTA PROBLMA DI DU CORPI MASSA RIDOTTA Consieiao ue paticelle P e P, i asse e, soggette soltanto alla loo utua inteazione gaitazionale. Le equazioni el oto elle ue paticelle, pe un osseatoe ineziale O, sono:

Dettagli

L induttanza. Prof. A. Zenoni 2017/18

L induttanza. Prof. A. Zenoni 2017/18 induttnz n condenstore igzzin energi nel cpo elettrico fr le rture n induttore è un eleento circuitle che igzzin energi nel cpo gnetico che circond i suoi fili percorsi d corrente n induttore (rppresentto

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Termodinamica delle miscele Aria-Vapore

Termodinamica delle miscele Aria-Vapore Università degli Studi di Bologn Corso di Lure in Ingegneri Edile Sede di Rvenn Terofisic ed custic delle costruzioni Terodinic delle iscele Ari-Vpore FISICA TECNICA E IMPIANTI T - Ingegneri Edile Prof.

Dettagli

Trasformazioni reversibili

Trasformazioni reversibili rsformzioni ersiili Amiente circostnte usilirio del sistem o resto dell Universo h P sistem Ciò che circond loclmente il sistem Sertoio Supponimo si verifichi un trsformzione: ) Il sistem pss d uno stto

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

FISICA GENERALE I - A A.A Settembre 2012 Cognome Nome n. matricola

FISICA GENERALE I - A A.A Settembre 2012 Cognome Nome n. matricola FISI GENERLE I -.. 0-0 9 Settembre 0 ognome Nome n. mtricol orso di Studi Docente Voto: 9 crediti 0 crediti crediti Esercizio n. Un utomobile di mss M fren, prtire dll velocità inizile v 0, fino d rrestrsi.

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO Ottimizzzione nell gestione dei progetti Cpitolo 5: progrmmzione multiperiodle modello di flusso CARLO MANNINO Uniersità di Rom L Spienz Diprtimento di Informtic e Sistemistic Richimi: -tglio in un grfo

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Calcolo a fatica di componenti meccanici. Prima parte

Calcolo a fatica di componenti meccanici. Prima parte Clcolo ftic di coponenti eccnici Pri prte Prii studi sperientli L esperienz, nell prtic costruttiv, di rotture iprovvise, dovute crichi che si ripetono ciclicente, è ori secolre. Tuttvi, solo qundo il

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m.

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m. ESERCIZIO Due asse = 5 kg e = 0 kg sono inizialente fere su un piano orizzontale liscio e appoggiate agli estrei i una olla i costante elastica k = 000 N/, antenuta copressa. A un certo istante, la olla

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni ) Iniviu tr questi grfici quelli in cui è rppresentt un situzione i irett e un situzione i invers; poi inic il rispettivo nome ei grfici scelti. c e ) Per ognun elle seguenti telle te, stilisci il tipo

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio : Strumenti di misur dell umidità relti: psicrometro bulbo bgnto e entilto. Deduzione dell equzione psicrometric. Tempertur del bulbo bgnto e umidità relti. Relzione con il punto di ruggid. Lo psicrometro

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005)

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005) Deterinazione el oento inerzia i un penolo (3 febbraio 005) Consieriao un corpo esteso (vei figura seguente) che possa ruotare attorno a un asse fisso passante per il punto i sospensione PS; si iagini

Dettagli

Calcolo a fatica di componenti meccanici. Prima parte

Calcolo a fatica di componenti meccanici. Prima parte Clcolo ftic di coponenti eccnici Pri prte Prii studi sperientli L esperienz, nell prtic costruttiv, di rotture iprovvise, dovute crichi che si ripetono ciclicente, è ori secolre. Tuttvi, solo qundo il

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Teoremi per l second prov. Dimostrzioni. Federico Lstri, Anlisi e Geometri Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni.

Dettagli

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito)

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito) Cap. 6 Problea 67: potenza per spingere una cassa a elocità costante (con attrito) DATI elocità della cassa costante, orizzontale, di odulo = 0.6 /s assa della cassa = 95 g coefficiente di attrito dinaico

Dettagli

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009 OPTOLTTRONC FOTONC Prov scritt del 7 luglio 9 COGNOM Nome Mtricol Posto n dell fil n s Un sistem untistico (che rppresent un sort di ttrzione centrle su un prticell d prte di, dove è un costnte rele con

Dettagli

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v.

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v. Esercizio a) Il sistema elle ue masse è sottoposto a una risultante elle forze nulla in irezione orizzontale nell istante ell urto. Si conserva la quantità i moto in tale irezione. Assumeno come positiva

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

4 I Condensatori. 4.1 Struttura dei condensatori. Condensatore sferico

4 I Condensatori. 4.1 Struttura dei condensatori. Condensatore sferico 4 I Conensatori 4. Struttura ei conensatori Consieriamo un sistema costituito a ue lastre conuttrici sagomate a isco, i raggio R e spessore molto piccolo rispetto al raggio. Le lastre + si trovano affacciate

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Soluzioni. Capitolo. 3. Essendo identiche: Q Q Q e quindi anche all inizio: ( ) C 7 10 C

Soluzioni. Capitolo. 3. Essendo identiche: Q Q Q e quindi anche all inizio: ( ) C 7 10 C pitolo 7 Soluzioni. sseno ientiche: f f A Tot cui Tot 4. e uini nche ll inizio: i i Tot A 6 ( 4 ) 7 4. Per risponere è sufficiente iviere l eccesso i cric per uell i un elettrone: 4.8.6 9. elettroni 6.

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi: (*) fcile, (**) non difficile

Dettagli