FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012"

Transcript

1 FISIC ELL ERI CONENS Proff. P. Clvni e. Cpizzi II prov di esonero - 4 ennio 0 Esercizio. Un cristllo di Pb, l cui densità è 40 /m, h un struttur cubic fcce centrte con bse monotomic. L bnd custic, che si ssume triplmente deenere, è descritt d C & '( ) sin$, % dove C,4 N/m e 07 u. m.. è l mss tomic del Pb. ) Clcolre l velocità del suono v s. ) Clcolre il vlore del vettore d'ond di ebye ( 6 n) (dove n è il numero di tomi per m ) e commentrne il vlore in relzione lle dimensioni dell prim zon di rillouin (vedi Fiur). eterminre il vlore di tle vettore d ond nel cso di bse bitomic con prmetro reticolre immutto. b) Clcolre l tempertur di ebye del Pb. ) Clcolre l cpcità termic per unità di mss del piombo K, ssumendo che 0, K i contributi ll cpcità termic del reticolo e deli elettroni sino uuli: C r C el Si ricord che l formul del contributo reticolre per unità di volume è c v 4 & % ( n 5 $ ' J K - ; ħ J s; u.m

2 Esercizio. ) Nell Ins intrinseco l concentrzione dei porttori liberi due temperture è dt d n i (00)7.6 0 cm - ; n i (00) cm - mentre l p interbnd vri con l tempertur secondo l lee E ( ) E0. 8 Si determini il vlore dell p (in K) 400 K, spendo che nell formul che fornisce l dipendenz esponenzile di n i dll tempertur si h N c ().68 0 / cm - ; N v () / cm - ) L mobilità totle µ t delle lcune è let l contributo µ imp dell diffusione dlle impurezze e quello µ ret dell diffusione di fononi dll lee (dell composizione delle probbilità di eventi indipendenti) /µ t / µ imp / µ ret. Queste loro volt vrino con l tempertur come µ imp / m V - s - ; µ ret -/ - m V - s dove,0 0-4 e,0 0 nelle unità del SI. eterminre: ) l tempertur ll qule l mobilità totle µ t ssume il suo vlore mssimo; b) il vlore di µ t ( ). ) (Solo per li studenti del Prof. Cpizzi) In un semiconduttore droto, l tempertur vri con il droio. tre diverse concentrzioni di ccettori si trov 70 K per N m - 00 K per N.6 0 m - 00 K per N m - sndosi su questi dti, determinre l dipendenz di µ imp dll concentrzione di impurezze N e (fcolttivo) commentrl.

3 Soluzioni Esercizio ) 07,67 0 $7,46 0 $5 4,8 0$5 0, 0 $7 0,496 0 $9 m 40 v s d d C,4 0,496 0 $9 $4 900 m/s 0,46 0 ) ( 6 n) ( 4 / ),97 è prticmente uule l vettore di bordo zon nell direzione [00] ed equivlenti. le risultto er prevedibile in qunto l Z dell'fcc è circ isotrop (vedi fiur), di form simile un sfer, e con soli modi custici, essendo l bse monotomic. Pertnto, l sfer di ebye, costruit prtire d soli modi custici, deve vere contenere tutti li stti possibili nell Z e quindi vere rio pressoché equivlente quello di bordo zon. Nel cso di bse bitomic, l formul prevede che prmetro reticolre invrito tle rio dovr umentre di un fttore / in modo d rddoppire il volume dell sfer di ebye e tenere conto del rddoppio dei modi di vibrzione ( custici e ottici) del cristllo. $ v,05 0 0, ,97,8 0 4 s 9 85,4 K ) 0. K il contributo reticolre è Cr 4 4 ) % ) ( 0, % 4 4 n,8 0, & * ,4 (0,496 0 ) ( & ' $ ' $ Ce J/K K, C e è cresciuto di 5 volte, mentre C r è cresciuto di 5 volte. Quindi C tot (K) 0 C r(0,k),56 0 J/K Esercizio ) n ( ) N ( ) N ( ) i C V e E ( )/( ) E ( )/( ) / E 00 ( ) 600ln / K e

4 E ( 00) 400ln / K E0 ' 8 & 00 46' 406 $ % 8.9 E ( 400) E 754K 0.eV E0 ' 8 00 ' K ) µ / / / / I mssimi e minimi di un funzione si sovrpponono i mssimi e minimi dell su funzione invers, per cui ) ) & $ ( ) % µ ( 5 / / 0 ( ' ( 0 ' & $ % ( / 00K b) µ ( ) 0, ,0 0 0 µ 0.05 m V s ) L diffusione d reticolo non dipende dll concentrzione di impurezze, per cui si h cost e K N, si ottiene ln K / K ln N ( K N ) cost / K N /

5 cost cost cost Pertnto α ~ - e l mobilit dovut lle impurezze dipende dll inverso dell loro concentrzione. In un modello semplice di diffusione ll Rutherford, tle dipendenz dovrebbe essere dll inverso dell rdice cubic dell concentrzione, ossi dll distnz medi fr le impurezze. L discrepnz con il modello teorico suerisce che ltri meccnismi di diffusione, non considerti qui, intervenno determinre l dipendenz dll tempertur e concentrzione di impurezze dell mobilit delle lcune nell Ins.

ES. D4 Un solido monoatomico ha la struttura cristallina esagonale mostrata in figura.

ES. D4 Un solido monoatomico ha la struttura cristallina esagonale mostrata in figura. DIFFRAZIONE NEI SOLIDI ES. D1 Eseguendo un esperimento di diffrzione con il metodo delle polveri con rdizione elettromgnetic di lunghezz d ond λ = 1 Å su un cristllo monotomico, i primi mssimi di diffrzione

Dettagli

). Poiché tale funzione è una parabola, il suo

). Poiché tale funzione è una parabola, il suo PROBLEMA ) Il rggio dell circonferenz di centro B vri tr i vlori: x b) ( x x ) ( PQCR) = ( ABC) ( APR) ( BPQ) = ( x) x = + 8 6 8 I vlori di x che rendono minim o mssim l funzione rendono, rispettivmente,

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Funzioni esponenziali e logaritmi

Funzioni esponenziali e logaritmi Funzioni esponenzili e ritmi L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente ovvero

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorto di Anlisi - AA /5 Emnuele Fbbini 8 prile 6 Curve in R ed R 3.. Prmetrizzzione. Scrivere un prmetrizzzione regolre per le seguenti curve:. Segmento di estremi A ; ) e B ; 3). Esiste un formul di

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione.

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione. L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente > = = = o L funzione esponenzile

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

ESERCITAZIONE SECONDO PREESAME

ESERCITAZIONE SECONDO PREESAME ESERCITAZIE SECD REESAME 1) Clcolre il peso molecolre di un sostnz A poco voltile che form un soluzione con il benzene spendo che qundo 18.5 g di A sono sciolti in 85.8 g di benzene, l soluzione congel

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

Reticoli e Diffrazione - Soluzioni degli esercizi. Fisica della Materia Condensata

Reticoli e Diffrazione - Soluzioni degli esercizi. Fisica della Materia Condensata Reticoli e Diffrzione - Soluzioni degli esercizi Fisic dell Mteri Condenst A.A. 015/016 Reticoli e Diffrzione Esercizio 1 Esercizio Esercizio 4 Esercizio 4 6 Esercizio 5 10 Esercizio 6 1 Esercizio 7 1

Dettagli

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz REGOLE PRATICHE PER LA VALUTAZIONE DELL INCERTEZZA NELLE MISURE INDIRETTE Ricordimo preliminrmente il concetto di misure indirette :

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Fisic dello Stto Solido Lezione n. Reticolo reciproco Corso di Lre Specilistic Ingegneri Elettronic..06-07 Prof. Mr Brzzi Lezione n. - Fisic dello Stto Solido Lre specilistic in Ingegneri Elettronic..06-07

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 3

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 3 Definizione (W, F, P[.]) spzio di proilità : W R è un vriile letori r R A r ={w W : (w) r} F W w w w 3 3 R W A r r R Esempio Esperimento: lncio di un monet W = {T, C} : W R (T) = (C) = r< W T C r A r =

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:

Dettagli

ESERCITAZIONE 2. e si calcoli l effetto della non linearità sulla probabilità di errore di simbolo della costellazione ridotta.

ESERCITAZIONE 2. e si calcoli l effetto della non linearità sulla probabilità di errore di simbolo della costellazione ridotta. ESERCITAZIONE Si consieri l seguente costellzione 16 QAM: jϕk s = ρ e, k =1,...,16 k k Si suppong che il moultore si progettto in moo tle che quno le conizioni i propgzione sono problemtiche si usino solo

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

La cinetica chimica studia: 1) la velocità con cui avviene una reazione chimica e i fattori da cui dipende la velocità.

La cinetica chimica studia: 1) la velocità con cui avviene una reazione chimica e i fattori da cui dipende la velocità. Cinetic chimic L termodinmic ci permette di predire se un rezione è spontne o non è spontne oppure se è ll equilibrio. Non d informzione sui tempi di rezione. Un rezione può essere: molto veloce: combustioni,

Dettagli

Unità Didattica N 02. I concetti fondamentali dell aritmetica

Unità Didattica N 02. I concetti fondamentali dell aritmetica 1 Unità Didttic N 0 I concetti fondmentli dell ritmetic 01) Il concetto di potenz 0) Proprietà delle potenze 0) L nozione di rdice ritmetic 0) Multipli e divisori di un numero 05) Criteri di divisibilità

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Teoria di Gamow dei decadimenti α

Teoria di Gamow dei decadimenti α Istituzioni di Fisic Nuclere e Sunuclere Prof. A. Andrezz Lezione 4 Teori di Gmow dei decdimenti α Legge di Geiger-Nuttll Il decdimento α è un decdimento due corpi: Energi fisst: E α ~Q α Si osserv un

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

ab b b 2. Per calcolare la media bisogna procedere per dati ragruppati, ossia usare i centri delle classi

ab b b 2. Per calcolare la media bisogna procedere per dati ragruppati, ossia usare i centri delle classi Soluzioni. Si h t x F( t) = dx = =, t ( + x ) ( + x ) ( + t ) D cui 2 f ( t) t R( t) =, t e Z( t) = = ( + t ) R( t) ( + t ) Allo stesso modo per l second funzione si h t t b b b F( t) = dx =, t + = ( b

Dettagli

Scritto Appello IV, Materia Condensata. AA 2017/2018

Scritto Appello IV, Materia Condensata. AA 2017/2018 Scritto Appello IV, Materia Condensata AA 017/018 17/07/018 1 Esercizio 1 Un metallo monovalente cristallizza nella struttura cubica a corpo centrato La densità degli elettroni del metallo è n el = 65

Dettagli

4^C - MATEMATICA compito n

4^C - MATEMATICA compito n 4^C - MATEMATICA compito n 6-2017-18 Dti i punti A 2,0, 1, B 0,1,3, C 5, 2,0, determin: le equzioni dell rett AB; b l'equzione del pino pssnte per A, B, C; c l'equzione del pino b pssnte per P 1,2, 1 e

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come Interli Punti principli dell lezione precedente - Problem dell misurzione delle ree. - Per un unzione continu su un intervllo [, b], deinizione di Interle () d (medinte somme ineriori e somme superiori).

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Cinetica chimica. Studia la velocità ed i meccanismi con cui avvengono le reazioni chimiche.

Cinetica chimica. Studia la velocità ed i meccanismi con cui avvengono le reazioni chimiche. Cinetic chimic Studi l velocità ed i meccnismi con cui vvengono le rezioni chimiche. Velocità con cui vri l concentrzione dei regenti o dei prodotti nel tempo: scomprs dei regenti e comprs dei prodotti

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R Curve prmetriche April 6, 01 Esercizi sulle curve scritte in form prmetric. 1. Elic cilindric Dt l curv di equzioni prmetriche r(t) x(t) = cos t y(t) = sin t t [0, T ], > 0, b R z(t) = bt (0.1) clcolre

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed incertezze di misur Misurzione e Misur Misurre signiic quntiicre un grndezz isic chimt misurndo trmite un processo (misurzione) il cui risultto detto misur. L misur deve poter essere ripetut

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta 29/01/2009

Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta 29/01/2009 Metodi e Modelli Mtemtici di Probbilità per l Gestione Prov scritt 29/0/2009 Esercizio (4 punti). Un ufficio dell ngrfe effettu due tipi di servizio, che richiedono tempi (letori esponenzili) T id e T

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze.

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze. Generlità sulle Misure di Grndezze Fisiche - Misurzioni indirette - Esempi di stim di incertezze 1 Testi consigliti Norm UNI 4546 - Misure e Misurzioni; termini e definizioni fondmentli - Milno - 1984

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

Problemi di Fisica La dinamica

Problemi di Fisica La dinamica Problemi di isic L dinmic Un corpo di mss m4 kg viene spostto con un forz costnte 13 N su un superficie priv di ttrito per un trtto s,3 m. Supponendo che il corpo inizilmente è in condizione di riposo,

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Elementi di strutturistica cristallina Ii

Elementi di strutturistica cristallina Ii Chimic fisic superiore Modulo Elementi di strutturistic cristllin Ii Sergio Brutti Reticoli idimensionli I reticoli possiili in un tssellzione dello spzio idimensionle sono 5. Oliquo primitivo 2. Rettngolre

Dettagli

LEGGI DELLA DINAMICA

LEGGI DELLA DINAMICA 1) Nel SI l unità di misur dell forz è il Newton (N); 1 N è quell forz che: [A] pplict su un oggetto dell mss di 1 kg lo spost di 1m; [B] pplict su un oggetto che h l mss di 1g lo cceler di 1m/s 2 nell

Dettagli

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009 OPTOLTTRONC FOTONC Prov scritt del 7 luglio 9 COGNOM Nome Mtricol Posto n dell fil n s Un sistem untistico (che rppresent un sort di ttrzione centrle su un prticell d prte di, dove è un costnte rele con

Dettagli

Y[cm] X[cm] Cap 20 Problema 28. DATI q=2 μc=2x10-6 C a=2.5 cm= 2.5x10-2 m A=(-5 cm,0) B=(0,+5 cm) P=(0,0) a) nel punto A.

Y[cm] X[cm] Cap 20 Problema 28. DATI q=2 μc=2x10-6 C a=2.5 cm= 2.5x10-2 m A=(-5 cm,0) B=(0,+5 cm) P=(0,0) a) nel punto A. p 0 Problem 8 DATI = μ=x10-6 =.5 cm=.5x10 - m A=(-5 cm,0) B=(0,5 cm) P=(0,0) Y[cm] 5 B 4 3 A 1 X[cm] 5 ) nel punto A E(A) = E (A) E (A) E ˆ ˆ (A) = k i E (A) k i = (3) ˆ ˆ 1 ˆ 8 E(A) = E (A) E (A) k i

Dettagli

APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A SISTEMI COMPLESSI

APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A SISTEMI COMPLESSI 1 APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A ITEMI COMPLEI L risoluzione dei problemi inerenti gli equilibri in soluzione implic l'impostzione e risoluzione di un sistem di n equzioni in n incognite. Generlmente,

Dettagli

Definizione. R Ax R A H B1. R Ay V B1 A M

Definizione. R Ax R A H B1. R Ay V B1 A M zioni interne efinizione Se interrompimo l continuità di un st, dell ule sono note le zioni e le rezioni, per l euilirio, nell sezione effettut, doimo introdurre 3 zioni interne,,, uguli e contrrie sui

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

CAPITOLO RETICOLO RECIPROCO

CAPITOLO RETICOLO RECIPROCO 27 CAPITOLO 2 2.1 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

Diffrazione e Interferenza delle onde luminose

Diffrazione e Interferenza delle onde luminose Diffrzione e Interferenz delle onde luminose 1. Diffrzione d singol fenditur Scopo dell esperimento Anlizzre l figur di diffrzione prodott dll luce verde di un lser che illumin fenditure di divers lrghezz

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli