Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Elettrotecnica: circuiti in regime stazionario"

Transcript

1 Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre l resistenz uivlente vist i cpi del genertore Utilizzndo l uivlenz serie e prllelo, il circuito di resistenze visto d si può ridurre d un unico resistore ttrverso i seguenti pssi: S lcolre l resistenz uivlente vist dl genertore Utilizzndo l uivlenz serie e prllelo, il circuito di resistenze visto d si può ridurre d un unico resistore ttrverso i seguenti pssi: //

2 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver -007 S - lcolre l isultto: 7, 00 D S - lcolre l isultto: 07, 0 D vist i morsetti - e quell vist i morsetti -D vist i morsetti - e quell vist i morsetti -D S - lcolre il vlore di tle che i morsetti - si i isultto: S - lcolre l D D 0 vist i morsetti - e quell vist i morsetti -D D 0 m m, 0 / m m, 08 m S 7 - lcolre l tensione v usndo il prtitore di tensione Il prtitore di tensione si pplic due resistori in serie, quindi occorre preliminrmente ricondursi ll rete uivlente seguente: pplicndo or il prtitore di tensione si h: v 0 V S 8 - lcolre l corrente i usndo il prtitore di corrente Il prtitore di corrente si pplic due resistori in prllelo, quindi occorre riferirsi ll rete uivlente seguente: pplicndo or il prtitore di corrente si h (tenuto conto dei versi): i 8 m v v i i 0 V 0 00 // 0 0 m μ μ 8 μ isultto: 07 m, 0 m D

3 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver -007 S 9 - lcolre l potenz t dl genertore e quell ssorit dl resistore S - lcolre l potenz t dl genertore e quell ssorit d ogni resistore Verificre l conservzione delle potenze i i 0 V Scegliendo le correnti come in figur, le potenze richieste sono dte d: P i, P i L i si vlut prtire dl clcolo dell resistenz uivlente vist i cpi del genertore: isultto: P 088 kw, P 00 kw, P 000 kw, P 0 kw, P S - lcolre l corrente i cc che circol nel corto-circuito 0 kw i // // i 088 i cc 0 V 0 0 k k d cui si ricv: P 880 W Not l corrente i, si può ricvre l i pplicndo due volte il prtitore di corrente Dpprim ricvimo i dll rete uivlente seguente i quindi ricvimo i riprtendo i tr i resistori ed : i i 09 P 70 mw i i i isultto: i 87 cc S - lcolre l tensione v 0 sul circuito perto in figur isultto: v 0 V v S 0 - lcolre l potenz t dl genertore e quell ssorit dl resistore S - Vlutre l potenz ssorit di resistori dell rete in figur 0 V 0 00 isultto: P W, P 7W isultto: P P 0, P 00 W

4 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver -007 Sovrpposizione degli effetti S - lcolre l potenz totle t di genertori S - lcolre l potenz totle t di genertori 0 V,, 0 V 0 V 0 isultto: P 7 W, P 0 kw dottndo l convenzione del genertore sui due genertori dell rete, l potenz t d ciscuno di essi srà dt d:, P v P i L tensione v e l corrente i si possono vlutre pplicndo l sovrpposizione degli effetti, risolvendo i due circuiti usiliri ottenuti considerndo un solo genertore cceso: on riferimento l primo circuito usilirio, il contriuto v è ottenuto vlutndo l resistenz uivlente vist dl genertore: // ) // 79 v 80 ( V Per vlutre i si può utilizzre l tensione v sul prllelo // : v v v i (nell ultimo pssggio si è tenuto conto dell convenzione dottt su ) Nel secondo circuito usilirio, il contriuto i è ottenuto vlutndo l resistenz uivlente vist dl genertore: ) // 0 i / ( Per vlutre v è utile pssre ttrverso il clcolo dell corrente i dell serie : Se ne conclude che: v v i i v i V i P i ( i i ) 770 W, P v ( v v ) 07 kw (Si osservi che in quest rete il genertore di tensione st ssorendo potenz elettric positiv) v i i S - lcolre l potenz totle t di genertori isultto: P 0 09 kw, P kw S - lcolre l tensione v e l corrente i isultto: v 0 V, i V 0 0 S - Utilizzndo l sovrpposizione degli effetti, dimostrre l Formul di Millmnn v i v V, V v 7 8

5 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver -007 S - Determinre l potenz t dl genertore Genertori uivlenti di Thévenin e di Norton isultto: P 0 W V,,,, S - lcolre l uivlente di Thévenin visto i cpi dei morsetti - S 7 - Utilizzndo il principio di sovrpposizione degli effetti, determinre l tensione v isultto: v 08 V S 8 - Utilizzndo il principio di sovrpposizione degli effetti, determinre l corrente i e l potenz ssorit d isultto: i 7 m, P 7mW i v V, m k, k, 0V, m k, k, S 9 - Vlutre l corrente i e l potenz t dl genertore i k k L resistenz uivlente si ottiene spegnendo l unico genertore, quindi studindo l rete seguente L tensione vuoto 0 si ottiene vlutndo l tensione tr i morsetti perti Tenuto conto che in queste condizioni non circol corrente sul resistore è evidente che l 0 è nche l tensione su Poiché ed sono in serie, l tensione 0 si può ricvre d un semplice prtitore di tensione: i S - lcolre l uivlente di Norton visto i cpi dei morsetti - // 0 0 V isultto: i 08, 8W P 0 V,, 0 V 0, 0 L resistenz uivlente si ottiene spegnendo i genertori: //[ //( )] L corrente è l corrente che circol d qundo i due morsetti sono in corto-circuito pplicndo il principio di sovrpposizione degli effetti, il contriuto dovuto l solo genertore di corrente si vlut sostituendo il genertore di tensione con un corto-circuito e pplicndo l formul del prtitore di corrente: 9 0

6 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver (si noti che ed sono cortocircuitte) Il contriuto dovuto l genertore di tensione si vlut sostituendo il genertore di corrente con un circuito perto In questo circuito è proprio l corrente che circol nel genertore di tensione (si noti che su tle genertore è ftt l convenzione dell'utilizztore):, dove ( ) // Pertnto l srà Icc S - Utilizzndo l'uivlente di Norton clcolre l corrente che circol in iducendo l rete vist i cpi di con il teorem di Norton, si ottiene l rete seguente, dll qule si evince che i I cc i V 0 i 0 // ) ( Il contriuto dovuto l genertore di tensione si vlut sostituendo il genertore di corrente con un circuito perto pplicndo il prtitore di tensione si può ricvre l tensione sul prllelo p // e quindi ricvre l corrente richiest (che circol in ) Si ottiene in definitiv v v p 7 p p p Icc Icc 87 i 000 S - Utilizzndo il teorem di Thévenin clcolre l potenz ssorit dl resistore isultto: P 08 mw V m k k k I circuiti per vlutre i prmetri di Norton sono riportti di seguito: S - Utilizzndo il teorem di Thévenin clcolre l corrente i i V 0 k 0 k 0 k Si vrà llor // 0 L corrente si può vlutre pplicndo il principio di sovrpposizione degli effetti Il contriuto dovuto l solo genertore di corrente si vlut sostituendo il genertore di tensione con un corto-circuito e pplicndo l formul del prtitore di corrente: isultto: i 8 m

7 Mffucci: ircuiti in regime stzionrio ver -007 Mffucci: ircuiti in regime stzionrio ver -007 S - Utilizzndo il teorem di Norton clcolre l potenz ssorit dl resistore sercizi di riepilogo V μ M 800 k 00 k S - lcolre l potenz t di due genertori e l potenz ssorit di resistori (verificre l conservzione delle potenze) 0 V isultto: P 0μW S 7 - Utilizzndo il teorem di Thévenin clcolre l potenz ssorit d isultto: dottndo l convenzione del genertore sui due genertori e quell normle sui resistori si h: P 0 kw 8000 kw P P 0 kw P kw 00 P kw 9800 P kw 700 isultto: P 87 μw m m k k 0 k S - lcolre l corrente in i 0 S 8 - Verificre che il resistore non è percorso d corrente se tr le resistenze vi è l seguente relzione (ponte di Whetstone): isultto: i S - lcolre l potenz t d ciscun genertore dell rete 0 0 m, mv 0 0 (Suggerimento: pplicre Norton i cpi di ed imporre che si null l corrente ) isultto: P μw, P 0 μw, P μw

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Mffucci: ircuiti in regime sinusoidle ver - 4 sercizi introduttivi S sprimere l corrente i ( in termini di fsore nei seguenti tre csi: ) i ( = 4sin( ωt 4) ) i ( = sin( ωt π) c) i ( = 8sin( ωt π / ) isultto:

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

PROGRAMMA di ELETTRONICA ed ELETTROTECNICA & SCHEDE OPERATIVE PER ALLIEVI CON SOSPENSIONE DI GIUDIZIO. Classe TERZA AE A.S.

PROGRAMMA di ELETTRONICA ed ELETTROTECNICA & SCHEDE OPERATIVE PER ALLIEVI CON SOSPENSIONE DI GIUDIZIO. Classe TERZA AE A.S. PROGRMM di ELETTRONIC ed ELETTROTECNIC & SCHEDE OPERTIVE PER LLIEVI CON SOSPENSIONE DI GIUDIZIO Classe TERZ E.S. 2015/2016 Per il ripasso degli argomenti teorici e lo svolgimento degli esercizi utilizzare

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Rappresentazione doppi bipoli. Lezione 21 1

Rappresentazione doppi bipoli. Lezione 21 1 Rppresentzione doppi bipoli Lezione 21 1 Connessioni doppi bipoli Lezione 21 2 Connessioni Generlità I bipoli hnno solo due possibilità di connessione: serie prllelo Avendo due porte i doppi bipoli hnno

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 utomi stti finiti utomi stti finiti non deterministici utomi e grmmtiche regolri notzioni sul livello degli esercizi:(*)fcile,

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi:(*)fcile, (**) non difficile

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

3 Esercizi. disegno in scala

3 Esercizi. disegno in scala olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

ESERCITAZIONE SECONDO PREESAME

ESERCITAZIONE SECONDO PREESAME ESERCITAZIE SECD REESAME 1) Clcolre il peso molecolre di un sostnz A poco voltile che form un soluzione con il benzene spendo che qundo 18.5 g di A sono sciolti in 85.8 g di benzene, l soluzione congel

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli