Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini."

Transcript

1 Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa, se elemeno è deo valuazone d f ( X ) n α. n f ( X ) = a X, s pone = n f ( α) = aα L. Queso = Defnzone. Sa f ( X ) K[ X ]. S dce funzone polnomale (da L a L) assocaa a f ( X ) l'applcazone F : L L defna ponendo, pe ogn α L, F( α) = f ( α). Ossevazone. Funzon polnomal assocae a polnom dsn non sono necessaamene dsne. Sa, ad esempo, K = L =Z e sano f( X ) = X + X, f( X ) =. Alloa le funzon polnomal F, F da Z a Z assocae, spevamene, a f ( X ) e f ( ) X sono enambe cosan d cosane valoe []. Infa F ([] ) = [], F ([] ) = [] + [] = []. Dunque F = F, pu essendo f( X ) f( X ). Defnzone.3 Sa f ( X ) K[ X ] e sa α L. Alloa α s dce una adce d f ( X ) se f ( α ) =. Esempo.4 Sa f ( X ) = X Q [ X ]. Alloa α = R è una adce d f ( X ). Anche α = R è una sua adce. Invece 7 non è adce d f ( X ), poché f (7) = 47. Noa Le adc d f ( X ) K[ X ] n L sono le soluzon n L dell'equazone (algebca) f ( x ) =, ove x, che sosusce l'ndeemnaa X, è l'ncogna. S ossev che f ( X ) L[ X ], e qund l'equazone è a coeffcen n L. La nozone d adce è seamene legaa a quella d dvsblà, a cu è saa dedcaa la Lezone. Lo mosa l seguene sulao, la cu dmosazone ulzza l Teoema d dvsone eucldea (Teoema.). Teoema.5 (Teoema d Ruffn) Sa f ( X ) K[ X ] e sa α L. Alloa α è una adce d f ( X ) se e solo se l polnomo X α dvde f ( X ) n L[ X ]. Dmosazone: Supponamo dappma che X α dvda f ( X ) n L[ X ]. Alloa esse q( X ) L[ X ] ale che f ( X ) = ( X α ) q( X ). Peano

2 f ( α) = ( α α) q( α ) = q( α) =. Cò pova che α è una adce d f ( X ). Vcevesa, supponamo che α sa una adce d f ( X ). Sano q( X ) ed ( X ), spevamene, l quozene ed l eso della dvsone eucldea d f ( X ) pe X α n L[ X ]. Alloa f ( X ) = ( X α ) q( X ) + ( X ), () ove ( X ) =, oppue ( X ) e deg( ) < deg( X α) = ; la seconda condzone equvale a deg( ) =, qund, n ogn caso, ( X ) è un polnomo cosane, ossa ( X ) = a L. Dalla () cavamo dunque, consdeando la valuazone n α : f ( α) = ( α α) q( α) + a. () Ma, pe poes f ( α ) =, mene l secondo membo della () è uguale ad a. Segue che a =, coè ( X ) =. Cò, alla luce della (), pova che X α dvde f ( X ) n L[ X ]. 3 Esempo.6 Sa f ( X ) = X 3X + X + Q [ X ]. Alloa f () = =. Qund l polnomo X dvde f ( X ) n Q [ X ]. In effe, 3 X X X X X X = ( )( ). Coollao.7 (Pmo coollao al Teoema d Ruffn). Sa f ( X ) K[ X ]. Alloa f ( X ) ha una adce n K se e solo se è dvsble n K[ X ] pe un polnomo avene gado. Dmosazone: Se f ( X ) ha una adce α K, alloa, n base al Teoema d Ruffn, è dvsble n K[ X ] pe l polnomo X α, che ha gado. Vcevesa, sa g( X ) = ax + b, ( a, b K, a ) un polnomo d gado pe l quale f ( X ) è dvsble. Alloa esse q( X ) K[ X ] ale che f ( X ) = g( X ) q( X ). Inole poso α = ba K, s ha g( α ) =. Segue che f ( α) = g( α) q( α ) =, e qund α è una adce d f ( X ). Ossevazone.8 Poché, come sablo dal Coollao.3, ogn polnomo d gado è ducble, l'enuncao del Coollao.7 s può fomulae nel modo seguene: un polnomo d K[ X ] ha una adce n K se e solo se ha n K[ X ] un faoe ducble d gado. Coollao.9 (Secondo coollao al Teoema d Ruffn). Sa f ( X ) K[ X ] e sa deg( f ) {,3}. Alloa f ( X ) è ducble n K[ X ] se e solo se non ha adc n K. Dmosazone: Supponamo che f ( X ) sa ducble n K[ X ]. Alloa, pe l'uncà della faozzazone, f ( X ) non ha n K[ X ] fao ducbl d gado. Peano, pe l Coollao.7, non ha adc n K. Vcevesa, supponamo che f ( X ) sa ducble n K[ X ]. Alloa essono a( X ), b( X ) K[ X ] non nvebl (ossa aven gado maggoe o uguale a ) al che f ( X ) = a( X ) b( X ). In vù della fomula del gado pe l podoo (Poposzone. (b)), s ha deg( f ) = deg( a) + deg( b). Se deg( f ) =, cò mplca che deg( a) = deg( b) =. Se deg( f ) = 3, cò

3 mplca che { deg( a),deg( b )} = {,}. Qund, n enamb cas, uno a a( X ) e b( X ) ha gado. Dal Coollao.7 segue alloa che f ( X ) ha una adce n K. Ossevazone. Il Coollao.9 non s esende a polnom d gado supeoe a 3. Lo mosa 4 l seguene esempo. Sa f ( X ) = X 4 Q[ X ]. Queso è un polnomo d gado 4, pvo d adc n Q (4 non ha adc quae n Q ). Tuava è ducble n Q [ X ], n quano f X X X ( ) = ( )( + ). Il Teoema d Ruffn ed suo coolla sono un ule sumeno pe deemnae una faozzazone d un polnomo a coeffcen n un campo. Eseczo. Sa n Q [ X ] e n R [ X ]. 3 f ( X ) = X 3X + X + Q [ X ]. Deemnae una faozzazone d f ( X ) Svolgmeno: Nell'Esempo.6 abbamo vso che f ( X ) = ( X )( X X ). Ponamo q( X ) = X X. Essendo deg( q ) =, a q( X ) s applca (sa n Q [ X ] sa n R [ X ]) l Coollao.9. Noamo che l dscmnane d q( X ) è = = 8 >, qund q( X ) ha due adc eal dsne, e, pecsamene, α = + 8 = +, α =. Poché quese non sono azonal, q( X ) non ammee adc n Q, e qund q( X ) è ducble n Q [ X ]. Dunque la faozzazone d f ( X ) n Q [ X ] è f X X X X ( ) = ( )( ). Invece, n base al Teoema d Ruffn, n R [ X ] q( X ) ammee fao ducbl (non assoca) X α, X α, qund l podoo ( X α)( X α) è pae della faozzazone d q( X ) n R [ X ]. Dunque q( X ) = h( X )( X α)( X α) pe qualche h( X ) R[ X ]. Ma dalla fomula del gado pe l podoo segue che deg( h ) =. Qund polnomo h( X α)( X α) q( X ) ( X α)( X α) faozzazone d f ( X ) n R [ X ]: h R *. D'ala pae h è l coeffcene deoe del q X Ma alloa h =. Dunque, qund è l coeffcene deoe d ( ). = è una faozzazone d q( X ) n R [ X ]. Oenamo, così, la seguene f X X X X ( ) = ( )( )( + ). Ossevazone. Sa f ( X ) K[ X ] non nullo, sa α K una adce d f ( X ). Alloa, n base al Teoema d Ruffn, X α dvde f ( X ) n [ ]. K X Qund ( X α ) s dvde f ( X ) n K[ X ] pe s =. D'ala pae, se ( X α ) s dvde f ( X ) n K[ X ] pe qualche neo s, alloa, n base alla s fomula del gado pe l podoo, s = deg(( X α) ) deg( f ). Rassumendo, l'nseme { s N * ( X α ) s dvde f ( X ) }

4 è un soonseme non vuoo e supeomene lmao d N. Qund è fno, e peano ammee un massmo. Defnzone.3 Sa f ( X ) K[ X ] non nullo, sa α K una adce d f ( X ). Alloa l numeo s dce moleplcà della adce α d f ( X ). * s { s N X α f X } max ( ) dvde ( ) Noa In al emn, l numeo neo posvo è la moleplcà della adce α d f ( X ) se e solo se ( X α) dvde f ( X ), mene ( X α ) + non dvde f ( X ). Noa Una adce d moleplcà (, 3) s dce semplce (doppa, pla). La nozone d moleplcà d una adce c consene d pefezonae la elazone che abbamo gà ndvduao a le adc d un polnomo e la sua faozzazone. Poposzone.4 (Radc e faozzazon d polnom) Sa f ( X ) K[ X ] non nullo e sano α, α,..., α K sue adc a due a due dsne, ove, pe ogn =,..,, la moleplcà d α è. Alloa ( X α ) ( X α ) ( X α ) dvde f ( X ) n K[ X ]. Dmosazone: Pocedamo pe nduzone su. Pe = la es segue banalmene dalla Defnzone.3. Sa oa e supponamo la es vea pe. Poché α è una adce d f ( X ) d moleplcà, s ha che f ( X ) = ( X α ) q( X ) (3) pe qualche q( X ) K[ X ]. Sa oa {,..., }. Alloa X α ed X α sono fao ducbl non assoca d f ( X ) n K[ X ], qund sono copm, e lo sesso vale dunque pe ( X α ) e ( ) X α. Poché ( X α ) dvde ( X α ) q( X ), come nella Poposzone 6.4 segue dunque che ( X α ) dvde q( X ). Dunque pe ogn =,...,, α è una adce d q( X ) avene moleplcà. Al polnomo q( X ) s applca qund l'poes nduva. Segue che ( X α ) ( X α ) ( X α ) dvde q( X ) n K[ X ]. Alla luce della (3), cò mplca la es. Nelle poes della Poposzone.4 s ha una decomposzone f ( X ) = ( X α ) ( X α ) ( X α ) g( X ) (4) pe qualche g( X ) K[ X ]. Tenendo cono della fomula del gado pe l podoo d polnom, s deduce subo l seguene sulao.

5 Coollao.5 (Radc e gado d un polnomo) Sa f ( X ) K[ X ] non nullo e sano α, α,..., α K sue adc a due a due dsne, ove, pe ogn =,..,, la moleplcà d α è. Alloa deg( f ). = Noa L'enuncao del Coollao.5 s può fomulae come segue: un polnomo d gado n ha al pù n adc (conae con le speve moleplcà). Ossevazone.6 Nell'enuncao del Coollao.5 vale l'uguaglanza se e solo se nella (4) g( X ) è cosane. In al caso la (4) è una faozzazone d f ( X ), n cu u fao ducbl sono lnea. Cò non avvene sempe: nell'eseczo. abbamo vso, ad esempo, che la 3 faozzazone del polnomo f ( X ) = X 3X + X + n Q [ X ] conene un faoe d gado. Eseczo.7* De se seguen polnom sono ducbl n Q [ X ], R [ X ], C [ X ] : (a) (b) X X + ; ; (c) X.

Lezione 11. Polinomi a coefficienti in un campo.

Lezione 11. Polinomi a coefficienti in un campo. Lezone Prerequs: Lezone 0. Polnom a coeffcen n un campo. Sa K un campo. In quesa lezone sudamo le propreà armeche dell'anello d polnom K[ X ], che sono analoghe a quelle valde nell'anello Z e da no consderae

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Lezione 14. Polinomi a coefficienti interi

Lezione 14. Polinomi a coefficienti interi Peequt: Nume m Lezo - Lezoe 4 Polom a coeffcet te I queta lezoe tudamo le fattozzazo d olom a coeffcet azoal Cacuo d quet uò eee tafomato u olomo a coeffcet te tamte la moltlcazoe e u umeo teo o ullo Qud

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

ESPERIMENTO CASUALE. P(X) è la funzione di probabilità secondo la quale ad ogni numero reale di X si assegna una misura di probabilità.

ESPERIMENTO CASUALE. P(X) è la funzione di probabilità secondo la quale ad ogni numero reale di X si assegna una misura di probabilità. ESPERIMENTO CASUALE S Spazo camponao : è l nseme d event necessa e ncompatbl che s pesentano come sultat dell ESPERIMENTO CASUALE. X è l nseme de nume eal assocato ad S, n modo che ad ogn elemento (evento)

Dettagli

IL Potenziale elettrostatico

IL Potenziale elettrostatico Ve.. d 27/5/9 IL Potenzale ettostatco ) La oza ettca è consevatva Patamo col vecae che la oza ettca è consevatva, lmtandoc nzalmente al caso d cache ettche puntom. Posta una caca +Q ema n un punto ogne,

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot Sessone lve #1 Settmana # dal 10 al 16 mazo Statstca descttva: Indc d poszone, dspesone e foma Istogamma fequenze, box plot Lezon CD: 1 - - 3 Eseczo 1 S consde la seguente dstbuzone delle nduste tessl

Dettagli

r r r r r r r r r r r r r r r r r r r v r r

r r r r r r r r r r r r r r r r r r r v r r CAMPI CALARI, VETTORIALI E TENORIALI. CAMPI CALARI. alvo esplco avvso conao s faà femeno all'nseme R de nume eal; n esso sono defne le opeazon d somma e d podoo che godono delle ben noe popeà ( l'nseme

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Condizioni di equilibrio TD nelle reazioni chimiche

Condizioni di equilibrio TD nelle reazioni chimiche Condzon d equlbo TD nelle eazon chmche Voglamo studae l metodo geneale pe la detemnazone delle condzon d equlbo d un sstema fomato da N spece chmche dvese n pesenza d una eazone chmca. S utlzza una funzone

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d leroecnca: crcu n eoluzone dnamca nono Maffucc maffucc@uncas er oobre 7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa la correne nell nduore all sane caare

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo orso d ELERONIA INDUSRIALE Raddrzzaor con carco capacvo. Impao sulla ree e flrao passvo Aromen raa Anals d un raddrzzaore a semonda Raddrzzaor a doppa semonda Impao sulla ree Defnzone d Power Facor Defnzone

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algotm e Stuttue d Dat Quck-sot m.patgnan Nota d copyght queste sldes sono potette dalle legg sul copyght l ttolo ed l copyght elatv alle sldes (nclus, ma non lmtatamente, mmagn, foto, anmazon, vdeo, audo,

Dettagli

Sommario. Facoltà di Economia E E2 E 5 E 4. S x1. Le Variabili Casuali o Variabili Aleatorie. francesco mola. Lezione n 13.

Sommario. Facoltà di Economia E E2 E 5 E 4. S x1. Le Variabili Casuali o Variabili Aleatorie. francesco mola. Lezione n 13. Coso d Statstca Facoltà d conoma a.a. - fancesco mola Sommao Le Vaabl Casual o Vaabl Aleatoe Lezone n Lez._a.a. 9- statstca-fancesco mola Vaabl Casual Vaabl Casual (cont. Una Vaable Casuale è una egola

Dettagli

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t Il meodo d Runge-Kua Rassumendo possamo de che l meodo d Runge- Kua d odne due consse nell esegue una esapolazone del pmo odne da a x(/ nel aluae la deaa x (/ e nell ulzzala pe oenee una sma d x( esaa

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti Rea di minima disana sfee e ciconfeena nello spaio Alcuni esecii svoli. Sabilie se le ee ed s sono complanai o sghembe. Nel pimo caso pecisae se esse sono paallele oppue incideni e ovae l equaione di un

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. Le Variabili Casuali o Variabili Aleatorie. Lezione n 16. Francesco Mola. Variabili Casuali (cont

Sommario. Corso di Statistica Facoltà di Economia. Le Variabili Casuali o Variabili Aleatorie. Lezione n 16. Francesco Mola. Variabili Casuali (cont Coso d Statstca Facoltà d conoma Lezone n 6 z Sommao Le Vaabl Casual o Vaabl Aleatoe a.a. - Fancesco Mola a.a. - statstca-fancesco mola Vaabl Casual Vaabl Casual (cont cont.) Una Vaable Casuale è una egola

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

Equazioni differenziali lineari a coefficienti costanti.

Equazioni differenziali lineari a coefficienti costanti. Equazon dfferenzal lnear a coeffcent costant. In questa nota esponamo alcun metod per l trattamento delle equazon dfferenzal ordnare lnear a coeffcent costant d ordne qualsas, omogeneee e non omogeneee,

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Convertitore DC-DC Flyback

Convertitore DC-DC Flyback Conerore C-C Flyback era al buck-boos e al poso ell nuore c è un rasforaore n ala frequenza: Fgura : schea prncpo el flyback conerer Prncpo funzonaeno: TO: la correne ene a enrare al pallno superore el

Dettagli

Equazioni di stato per circuiti del I ordine

Equazioni di stato per circuiti del I ordine Lezone 5 Equazon d sao per crcu del ordne Lezone n.5 Equazon d sao per crcu del ordne. Equazone d sao per crcu del ordne. Dmensone fsca de coeffcen dell equazone d sao. Esercz. sere e parallelo. L sere

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d Teora de rcu: crcu n eoluzone dnamca prof nono Maffucc maffucc@uncas er oobre 7 Maffucc: rcu n eoluzone dnamca er-7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo orso d ELERONA NDUSRALE Raddrzzaor con carco capacvo. mpao sulla ree e flrao passvo Aromen raa Anals d un raddrzzaore a semonda Raddrzzaor a doppa semonda mpao sulla ree Defnzone d Power Facor Defnzone

Dettagli

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici Inroduzone a Modell d Duraa: Alun Modell Paramer a.a. 2009/2010 - Quaro Perodo Prof. Flppo DOMMA Corso d Laurea Spealsa/Magsrale n Eonoma Applaa Faolà d Eonoma UnCal 1. Esponenzale Modell Paramer Le funzon

Dettagli

INFORMAZIONE IMPORTANTE. Per questioni organizzative, le iscrizioni per l esame scadranno una settimana prima del dell esame stesso!!!

INFORMAZIONE IMPORTANTE. Per questioni organizzative, le iscrizioni per l esame scadranno una settimana prima del dell esame stesso!!! INFOMAZIONE IMPOTANTE Per queston organzzatve, le scrzon per l esame scadranno una settmana prma del dell esame stesso!!! Eserczo Supponamo d avere un segnale snusodale d ampezza 0., ma con frequenza f=

Dettagli

3.1 Modellistica di un attuatore elettromeccanico

3.1 Modellistica di un attuatore elettromeccanico 3 PRINCIPI DI CONVERSIONE ELETTROMECCANICA DELL ENERGIA 3. Moellsca un auaoe eleomeccanco Pe noue fonamen ella convesone eleomeccanca ell enega conseamo la suua elemenae llusaa n Fg. 3., noa come auaoe

Dettagli

ESERCITAZIONE DEL 10 MARZO 2005

ESERCITAZIONE DEL 10 MARZO 2005 ESERCITAZIONE DEL 10 MARZO 005 Poblema pano n.5 Dato l sstema composto da un asta gda vncolata con una cenea n O e un dsco gdo d aggo R vncolato all asta da un contatto blateo con puo otolamento, detemnae

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Economia del turismo

Economia del turismo Unvestà degl Stud d Cagla Facoltà d Economa Coso d Lauea n Economa e Gest. de Sev. Tustc A.A. 2013-2014 Economa del tusmo Pof.ssa Cala Massdda Economa del Tusmo Pof.ssa Cala Massdda Sezone 8 I MODELLI

Dettagli

Modello fisico-matematico per la simulazione dinamica

Modello fisico-matematico per la simulazione dinamica Modello sco-maemaco e la smulazone dnamca 1 Fomulazone geneale delle equazon d blanco aocco ulzzao e la deazone delle equazon geneal d blanco è d o lagangano. Inole, s edenza l ao ce le equazon saanno

Dettagli

1 Bimatrix Games e Best Response Condition

1 Bimatrix Games e Best Response Condition Strument della Teora de Goch per l Informatca A.A. 2009/10 Lecture 5: 29 Ottobre 2010 Calcolo d Equlbr Nash Mst per Goch a due Gocator Docente Prof. Vncenzo Auletta Note redatte da: Roberto D Russo Sommaro

Dettagli

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Gianpiero Groppi

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Gianpiero Groppi Dpatmento d Enega oltecnco d Mlano azza eonado da nc - 01 MINO Esectazon del coso FONDMENI DI ROESSI HIMII of. Ganpeo Gopp ESERIIONE 8 alcolo della tempeatua d bolla e d ugada d una mscela n-butano/n-esano

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d Bot-Savat e d Ampèe d P R dl Ossevazon spemental Legge d Bot-Savat db ds espemento: X db... assumendo n fomula Legge d Bot-Savat db ds pemeabltà magnetca X db Il campo magnetco è dstbuto ntono al

Dettagli

Strani spazi vettoriali

Strani spazi vettoriali Stran spaz vettoral Enrco Gregoro 19 novembre 2009 Consderamo l nseme S delle successon d numer compless; gl element d S saranno ndcat con smbol come a[ ]. Le parentes quadre servono per denotare gl element

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Propagazione in mezzi dielettrici, omogenei e isotropi in direzione. n &

Propagazione in mezzi dielettrici, omogenei e isotropi in direzione. n & Popagazoe mezz delec, omogee e soop dezoe z k k O k y x pao cdeza k veoe d oda * omale alla supefce d sepaazoe Oxy Pao d cdeza π - Legge flessoe se se Legge fazoe Oda cdee, oda flessa e oda faa gaccoo

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Elementi di Calcolo delle Probabilità

Elementi di Calcolo delle Probabilità Element d Calcolo delle obabltà Coso d Calcolo delle obabltà ed Infeenza a.a. 2011/2012 - mo Semeste of. Flppo DOMM Coso d Lauea Magstale n Economa pplcata Facoltà d Economa UnCal Calendao - Lezon: dal

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua nduzone Defnzone d mutua nduzone Una nduttanza poduce un campo magnetco popozonale alla coente che v scoe. Se le lnee d foza d questo campo magnetco ntesecano una seconda nduttanza, n questo d poduce

Dettagli

Comunicazioni Elettriche

Comunicazioni Elettriche Pocessi casuali I pocessi casuali anche dei pocessi socasici sono un meodo maemaico pe appesenae delle funzioni del empo che abbiano caaeisiche socasiche. I pocessi casuali sono uili a appesenae fenomeni

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Elementi di Calcolo delle Probabilità

Elementi di Calcolo delle Probabilità Element d Calcolo delle obabltà Coso d Calcolo delle obabltà ed Infeenza a.a. 2013/2014 - mo Semeste of. Flppo DOMM Coso d Lauea Magstale n Economa pplcata Dpatmento d Economa, Statstca e Fnanza Unvestà

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Elementi di Calcolo delle Probabilità

Elementi di Calcolo delle Probabilità Element d Calcolo delle obabltà Coso d Calcolo delle obabltà ed Infeenza a.a. 2015/2016 - mo Semeste of. Flppo DOMM Coso d Lauea Magstale n Economa pplcata Dpatmento d Economa, Statstca e Fnanza Unvestà

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dffeenzal Poese aee l mpessone d non sapee nulla sulle equazon dffeenzal e d non aene ma nconaa una. In ealà quesa mpessone è sbaglaa peché la legge d Neon F ma s può scee nella

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 Enega cneca oazonale e l oeno d neza: N o c v E 1 1 ω v N N o c E 1 1 ) ( 1 1 ω ω 1 v E c 1 ω I E o c N I 1 oeno d neza [ I ] SI kg Moen d neza: Eseczo. Conoscendo 1 5 kg, k, M 1 kg, deenae la velocà de

Dettagli

Equazioni differenziali lineari. 1 Introduzione Dimensione dello spazio delle soluzioni di una equazione lineare omogenea. 3

Equazioni differenziali lineari. 1 Introduzione Dimensione dello spazio delle soluzioni di una equazione lineare omogenea. 3 15 Dcembre 2014 Equazon dfferenzal lnear. Indce 1 Introduzone. 2 2 Dmensone dello spazo delle soluzon d una equazone lneare omogenea. 3 3 Equazon lnear del secondo ordne. 4 4 Caso Generale Omogeneo. 5

Dettagli

Campi Elettromagnetici e Circuiti I Potenza in regime sinusoidale

Campi Elettromagnetici e Circuiti I Potenza in regime sinusoidale Facolà d ngegnera Unersà degl sud d aa Corso d aurea rennale n ngegnera Eleronca e nformaca Camp Eleromagnec e Crcu oenza n regme snusodale Camp Eleromagnec e Crcu a.a. 05/6 rof. uca erregrn oenza n regme

Dettagli

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1 Demodulazione I & Q Telecomunicazioni pe l Aeospazio P. Lombado DIET, Univ. di oma La Sapienza DEMODULAZIONE I&Q - 1 Fase di aivo e popagazione I Si considei il segnale eale g Il suddeo segnale è asmesso

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

E inc. Sistemi a Radiofrequenza II. Incidenza Obliqua. Esercizio 3.5. ε r 2. Politecnico di Torino CeTeM

E inc. Sistemi a Radiofrequenza II. Incidenza Obliqua. Esercizio 3.5. ε r 2. Politecnico di Torino CeTeM seco.5 ( a b Un onda pana de sulla suua d fgua con un campo dene che vale ( dove Da:. Calcolae l campo magneco oale e flesso all nefacca. f G,, 8, a. e Soluone.5 Campo eleco dene a ( a b ( e Pagna d 7

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo La funzone d domanda ndvduale e l denttà d Slutsky. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fa:

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Lezione 9. N-poli. N-poli passivi. Pilotato in tensione

Lezione 9. N-poli. N-poli passivi. Pilotato in tensione Lezone 9 N-pol 4 Fn oa c samo lmtat a bpol. Esstono peò anche dspostv che non sono conducbl a bpol, nel senso che non nteagscono con l esteno attaveso due sol pol. In fgua è appesentato un quadpolo, ma

Dettagli

Appunti sui problemi di turnazione dei veicoli e del personale

Appunti sui problemi di turnazione dei veicoli e del personale II UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Dpameno d Ingegnea Cvle Coso d Gesone ed eseczo de ssem d aspoo Docene: Ing. Pelug Coppola Appun su poblem d unazone de vecol e del pesonale (Bozza n coso

Dettagli

Ubicazione degli impianti. industriali

Ubicazione degli impianti. industriali Meod d d ubcazone degl pan ndusral Ubcazone degl pan Macroscela Deernare l area geograca nella quale poszonare l pano ndusral Tp d scela da aronare Mcroscela Rappresena l aspeo opograco coè dove nsallare

Dettagli

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max Code a prortà (Heap) Defnzone Heapfy (mantenmento coda a prortà) Costrure un Heap Insert, Maxmum e Extract-Max Coda a prortà (Heap) Una coda a prortà può essere rappresentato da un albero bnaro completo.

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Lezione 18. Orbite e cicli di una permutazione.

Lezione 18. Orbite e cicli di una permutazione. Lezoe 8 Peequst: Lezo 4, 7. Obte e ccl d ua pemutazoe. I questa lezoe toducamo, pe u'abtaa pemutazoe, la cosddetta decomposzoe ccl dsgut, che e vela la stuttua, agevolado la detemazoe del suo peodo e della

Dettagli

PROPRIETÀ DEL CAMPO ELETTROSTATICO (PARTE 2) G. Pugliese 1

PROPRIETÀ DEL CAMPO ELETTROSTATICO (PARTE 2) G. Pugliese 1 PROPRIETÀ DEL CMPO ELETTROSTTICO (PRTE 2) G. Puglese Campo elettostatco & elettco F 0 E S pala d foza elettostatca uando sa le cache che geneano l campo (elettostatco) che 0 sono fsse e costant Quando

Dettagli