TESTI E SOLUZIONI DEI PROBLEMI

Documenti analoghi
TESTI E SOLUZIONI DEI PROBLEMI

K + U g = L n.c. 1 2 m 2v 2 2f +m 2gl 0 sinθ = f k l 0 = µ k m 2 gl 0 cosθ, dalla quale si ricava

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

v 2 0 = GM R R = GMm R 2 2π (1 giorno) = 2π R = rad/s. ω terra = = rad/s; ω s = v 0

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

a Vm g Essendo il lato del corpo pari a l = 10.0 cm, il volume dell acqua presente nel recipiente è = m 3 V m,i V m

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 Appello generale 26 Giugno 2014

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

Lavoro nel moto rotazionale

Soluzione della prova scritta di Fisica 1 del 2/03/2010

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 2015

Soluzione della prova scritta di Fisica 1 del 12/01/2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009

Soluzione della prova scritta di Fisica 1 del 1/07/2013. d cm. l l/2 l/2. Figura 1: Quesito 1

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione della prova scritta di Fisica 1 del 12/07/2011. h T. Figure 1: Quesito 1

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Università degli Studi di Enna KORE Facoltà di Ingegneria e Architettura. 5 febbraio 2015 Prof.ssa M. Gulino

Soluzioni Compito di Fisica I I Sessione I Appello Anno Accademico

Esame 24 Luglio 2018

Cognome...Nome...matricola...

Compito 19 Luglio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 Giugno 2010

Compito 21 Giugno 2016

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 5 Luglio 2010

Esame 28 Giugno 2017

ESERCIZIO 1 SOLUZIONI

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

Meccanica 15Aprile 2016

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014

mv x +MV x = 0. V x = mv x

Esercitazione 13/5/2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta di Fisica Generale

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 II Compitino 21 Giugno 2013

Fisica Generale I (primo e secondo modulo) A.A , 14 febbraio 2011 Versione A

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

PRIMA PARTE - Per gli studenti che non hanno superato la prova di esonero del

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 1 luglio 2016

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0.

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a III Appello, 4 febbraio 2014

Fisica Generale I (primo e secondo modulo) A.A , 20 giugno Esercizi di meccanica relativi al primo modulo del corso di Fis. Gen.

VII ESERCITAZIONE - 29 Novembre 2013

Corso di Laurea in Biotecnologie Agro-Industriali Prova scritta di Fisica - A.A giugno 2018

Appello Invernale del corso di Fisica del

Esonero 20 Gennaio 2016

Energia interna. 1 se non durante gli urti

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Dinamica del Corpo Rigido

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali Soluzione della Prova Scritta di Fisica a.a a =

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

Gas ideale: velocità delle particelle e pressione (1)

FISICA (modulo 1) PROVA SCRITTA 08/09/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

Fisica Generale I (primo e secondo modulo) A.A , 14 Gennaio 2010

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

VII ESERCITAZIONE. Soluzione

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 12/09/2012.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Risultati esame scritto Fisica 1 15/06/2015 orali: alle ore presso aula G2

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 19/02/2013.

Esercitazioni del 09/06/2010

Fisica Generale I (primo e secondo modulo) A.A , 25 agosto 2011

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 28 gennaio 2014

Transcript:

Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale A.A. 05/06 Sessione di Giugno/Luglio 06 Esame di FISICA GENERALE CFU) Primo Appello PROVA SCRITTA 3 Giugno 06 TESTI E SOLUZIONI DEI PROBLEMI PROBLEMA A 0 punti) Si consideri il sistema rappresentato in figura in cui m 8.0 kg m 6.0 kg e i coefficienti di attrito dinamico fra le masse e il tavolo sono µ 0.50 e µ 0.30 per m e m rispettivamente. Le masse sono collegate m m da cavi inestensibili e di massa nulla. Si supponga che la puleggia abbia massa nulla e sia senza attrito. g g g a) Trovare il valore della massa m affinché il sistema si muova di moto uniforme. m b) In tali condizioni si determini il valore della tensione. Sempre nelle condizioni di cui il punto a) si supponga che la velocità del sistema sia v 0.0 m/s. La massa m raggiunge il pavimento diventa nulla e l attrito arresta il moto delle due masse sul tavolo. c) Quando si sono fermate la distanza tra di esse si è accorciata? E se sì di quanto? Soluzione Le equazioni del moto per le tre masse sono m a µ N m a µ N ma mg con N m g reazione vincolare agente sulla massa e analogamente N m g. Le tre accelerazioni sono uguali in quanto la corda è inestensibile e senza massa: a a a. Sommando le tre equazioni si ottiene da cui a 0 moto uniforme) se In tali condizioni la tensione m +m +m)a mg µ m g µ m g m µ m +µ m 5.8 kg µ m g 7.7 N in quanto deve valere la prima equazione con a 0. Quando la massa m tocca terra le due masse proseguiranno il loro moto con la stessa velocità iniziale e con un accelerazione dovuta alla forza di attrito pari a µ g per la massa µ g per la massa. Dato che µ > µ il corpo si avvicinerà al corpo e la corda non sarà più tesa 0). Il corpo si fermerà dopo un tempo t tale per cui ovvero percorrendo uno spazio Per il corpo valgono considerazioni analoghe: Il corpo si avvicina quindi di 7 cm al corpo. v 0 µ gt 0 t v 0 /µ g 0.34 s s v 0 t µ gt / s v 0/µ g 0.7 m. t v 0 /µ g 0.0 s s v 0/µ g 0.0 m. PROBLEMA A 0 punti) Una sbarra rigida di sezione trascurabile lunga l.80 m e di massa M 0.0 kg è imperniata nel centro libera di ruotare in un piano orizzontale inizialmente ferma. Contro un suo estremo viene lanciato un oggetto di dimensioni trascurabilie di massa m.0 kg con velocità v.00 m/s in direzione ortogonale alla sbarra. Dopo l urto l oggetto rimbalza con velocità v sempre in direzione ortogonale alla sbarra. Supponendo che l urto tra l oggetto e sbarra sia perfettamente elastico si calcolino: a) la velocità angolare ω della sbarra dopo l urto b) la velocità v dell oggetto dopo l urto. Infine si determini: c) la velocità angolare ω che avremmo ottenuto se l oggetto invece di rimbalzare fosse rimasto attaccato alla sbarra.

Soluzione Per la conservazione del momento angolare calcolato rispetto al punto di incernieramento possiamo scrivere m l v Iω +ml v v v Iω ml dove I Ml 5.40 kg m è il momento d inerzia dell asticella. D altra parte l elasticità dell urto elastico comporta anche conservazione dell energia cinetica del sistema e cioè dovrà valere anche la seguente mv mv + Iω Pertanto inserendo l espressione di v ottenuta sopra si ha [ mv m v Iω +Iω ml [ ) 4I ml + ω 4v l ω 0 dalla quale otteniamo E quindi ω 4mlv 0.678 rad/s. 4I +ml v v Iω ) ml v 8I 4I +ml.39 m/s. Se l oggetto fosse rimasto attaccato alla sbarra la conservazione del momento angolare darebbe [I +ml/ ω mvl/ dove la quantità fra parentesi quadrate è il momento d inerzia della sbarretta con la particella attaccata. Da qui: ω mvl [I +ml/ 0.340 rad/s. PROBLEMA A3 0 punti) Un gas ideale biatomico segue il ciclo reversibile schematizzato in figura costituito dalle seguenti trasformazioni: isobara alla pressione p p 3 isocora con volume V 3 politropica pv k cost.) con k. Nello stato è p.50 p atm e V 0.0 dm 3. Sapendo che in un ciclo viene prodotto un lavoro L p V determinare: a) il volume b) i calori Q Q 3 e Q 3 scambiati dal gas in ogni trasformazione specificandone con attenzione il segno p 3 c) il rendimento η del ciclo. [Nei calcoli di cui al punto a) si suggerisce di esprimere V x e ricavare x V Soluzione Prima di tutto stabiliamo le relazioni che intercorrono tra le pressioni le temperature e i volumi nei tre stati. Per le tre trasformazioni abbiamo: isobara) 3 isocora) V V p p T 3 p T 3 p 3 politropica) p V k p V k p p dove le pressioni e i volumi sono state indicate come in figura mentre e T 3 corrispondono alle rispettive temperature dei tre stati. Si noti che combinando le tre espressioni si ottengono anche le seguenti V ) k V T 3 V T 3 V. Mentre nell isocora il lavoro compiuto dal gas è nullo nelle altre due trasformazioni abbiamo ) L p V ) p V V V L 3 p V k V k dv p V k k V k ) k k p V p ) p V p ) p V V ) p V dove si è sostituito il valore di k e si è tenuto conto della relazione tra le pressioni e i volumi ottenute in precedenza.

Pertanto il lavoro compiuto dal gas in un ciclo è pari a L L +L 3 p V ) p V V ) V p V + V ). V Quindi esprimendo V x e tenendo presente che è L p V otteniamo la seguente equazione di secondo grado + V L x+ V p V x x 4x+ 0 la cui soluzione con significato fisico è essendo > V deve essere x > ) Abbiamo quindi x 4x+ 0 x + 4 + 3 3.73. 3.73 V 74.6 dm 3. Per i calori scambiati nelle tre trasformazioni si ha ) ) T Q nc p ) nc p nc p V [ V Q 3 nc V T 3 ) nc V 7 ) p V 4.84 0 4 J > 0 V ) [ V nc V 5 ) [ V p V V 4.38 0 4 J < 0 V Q 3 E int3 +L 3 nc V T 3 ) p V V ) nc V T 3 ) p V V ) 3 V p V V ) 5.56 0 3 J > 0 Infine notando che i calori Q e Q 3 sono positivi per il rendimento del ciclo si ottiene η L Q ass L Q +Q 3 7 p V V p V )+ 3 p V V ) 4 ) ) 0.88 7 V +3 V PROBLEMA A4 0 punti) In una sfera di raggio R 60.0 cm è distribuita una quantità di carica Q la carica è distribuita nella sfera in modo non uniforme ma con simmetria radiale intorno al suo centro O. Al di fuori della sfera non ci sono cariche. Prendendo O a potenziale nullo il potenziale elettrostatico a distanza r dal centro della sfera con 0 r R ) è espresso dalla seguente ) Vr) A rr r con A.0 0 3 V/m. Determinare: a) a quale distanza dall origine R si annulla il campo elettrostatico b) la quantità di carica Q presente nella sfera di raggio R c) il potenziale elettrostatico V a distanza infinita dalla sfera d) l espressione della densità di carica volumica ρr) con cui la carica Q è distribuita all interno della sfera. Soluzione Data la simmetria radiale il campo elettrostatico può essere calcolato attraverso la seguente Er) dv ) [ dr A r + rr r A 3 r ) r. R R Conseguentemente il campo elettrostatico si annulla ad una distanza R data da ER ) 0 3 R R R 3 R 40.0 cm. Ora applicando il teorema di Gauss ad una sfera con centro in O e raggio r R possiamo scrivere Φ E r) Er)4πr qr) qr) 4πε 0 Er) 4πε 0 A 3 r ) r 3 ε 0 R dove qr) è la carica interna alla sfera in questione. Pertanto la carica Q di cui al punto b) è Q qr ) 4πε 0 AR 3.40 0 8 C.

Applicando ora il teorema di Gauss ad una sfera sempre con centro in O ma con raggio r > R si ottiene Φ E r) Er)4πr Q ε 0 Er) Q 4πε 0 r e quindi per la d.d.p. di un punto a distanza infinita dalla sfera è VR ) V R Er)dr V VR ) R Er)dr 0 Q 4πε 0 R dr r Q 4πε 0 R 360 V. Infine si noti che se fosse stata nota la funzione densità di carica volumica ρr) avremmo potuto esprimenre la quantità di carica dq in un guscio sferico di raggio r e spessore dr come segue dq ρr) 4πr dr. Ma allora la densità di carica può essere espressa ricavata dalla seguente ρr) 4πr dq dr dove dq/dr non è altro che la derivata rispetto ad r) della funzione qr) ottenuta in precedenza. Effettuando il calcolo si ottiene ρr) { [ 3 4πr 4πε 0 A r 3 +3 3 r } )r R R ε 0A 3 r r 3 6r + 9 ) r 3 ε ) 0A R R r r 3 6r 6ε 0 A r ). R R PROBLEMA B 0 punti) Si consideri il sistema rappresentato in figura in cui m 6.0 kg m 8.0 kg e i coefficienti di attrito dinamico fra le masse e il tavolo sono µ 0.45 e µ 0.35 per m e m rispettivamente. Le masse sono collegate m m da cavi inestensibili e di massa nulla. Si supponga che la puleggia abbia massa nulla e sia senza attrito. g g g a) Trovare il valore della massa m affinché il sistema si muova di moto uniforme. m b) In tali condizioni si determini il valore della tensione. Poi nelle condizioni di cui il punto a) si supponga che la velocità del sistema sia v 0.5 m/s. La massa m raggiunge il pavimento diventa nulla e l attrito arresta il moto delle due masse sul tavolo. c) Quando si sono fermate la distanza tra di esse si è accorciata? E se sì di quanto? Soluzione Le equazioni del moto per le tre masse sono m a µ N m a µ N ma mg con N m g reazione vincolare agente sulla massa e analogamente N m g. Le tre accelerazioni sono uguali in quanto la corda è inestensibile e senza massa: a a a. Sommando le tre equazioni si ottiene da cui a 0 moto uniforme) se In tali condizioni la tensione m +m +m)a mg µ m g µ m g m µ m +µ m 5.50 kg µ m g 7.5 N in quanto deve valere la prima equazione con a 0. Quando la massa m tocca terra le due masse proseguiranno il loro moto con la stessa velocità iniziale e con un accelerazione dovuta alla forza di attrito pari a µ g per la massa µ g per la massa. Dato che µ > µ il corpo si avvicinerà al corpo e la corda non sarà più tesa 0). Il corpo si fermerà dopo un tempo t tale per cui v 0 µ gt 0 ovvero t v 0 /µ g 0.44 s

percorrendo uno spazio Per il corpo valgono considerazioni analoghe: Il corpo si avvicina quindi di 8 cm al corpo. s v 0 t µ gt / s v 0/µ g 0.33 m. t v 0 /µ g 0.34 s s v 0 /µ g 0.5 m. PROBLEMA B 0 punti) Una sbarra rigida di sezione trascurabile lunga l.60 m e di massa M 5.0 kg è imperniata nel centro libera di ruotare in un piano orizzontale inizialmente ferma. Contro un suo estremo viene lanciato un oggetto di dimensioni trascurabilie di massa m 0.80 kg con velocità v.40 m/s in direzione ortogonale alla sbarra. Dopo l urto l oggetto rimbalza con velocità v sempre in direzione ortogonale alla sbarra. Supponendo che l urto tra l oggetto e sbarra sia perfettamente elastico si calcolino: a) la velocità angolare ω della sbarra dopo l urto b) la velocità v dell oggetto dopo l urto. Infine si determini: c) la velocità angolare ω che avremmo ottenuto se l oggetto invece di rimbalzare fosse rimasto attaccato alla sbarra. Soluzione Per la conservazione del momento angolare calcolato rispetto al punto di incernieramento possiamo scrivere m l v Iω +ml v v v Iω ml dove I Ml 3.0 kg m è il momento d inerzia dell asticella. D altra parte l elasticità dell urto elastico comporta anche conservazione dell energia cinetica del sistema e cioè dovrà valere anche la seguente Pertanto inserendo l espressione di v ottenuta sopra si ha dalla quale otteniamo E quindi mv mv + Iω [ mv m v Iω +Iω ml [ ) 4I ml + ω 4v l ω 4mlv 0.87 rad/s. 4I +ml v v Iω ) ml v 8I 4I +ml.74 m/s. ω 0 Se l oggetto fosse rimasto attaccato alla sbarra la conservazione del momento angolare darebbe [I +ml/ ω mvl/ dove la quantità fra parentesi quadrate è il momento d inerzia della sbarretta con la particella attaccata. Da qui: ω mvl [I +ml/ 0.4 rad/s. PROBLEMA B3 0 punti) Un gas ideale poliatomico segue il ciclo reversibile schematizzato in figura costituito dalle seguenti trasformazioni: politropica pv k cost.) con k 3 isobara 3 isocora. Nello stato è p 3.50 atm e V 35.0 dm 3. p Sapendo che in un ciclo viene prodotto un lavoro L p V determinare: a) il volume b) i calori Q Q 3 e Q 3 scambiati dal gas in ogni trasformazione specificandone con attenzione il segno p 3 c) il rendimento η del ciclo. [Nei calcoli di cui al punto a) si suggerisce di esprimere V x e ricavare x V Soluzione Prima di tutto stabiliamo le relazioni che intercorrono tra le pressioni le temperature e i volumi nei tre stati. Per le tre trasformazioni abbiamo: politropica) p V k p k p ) k V V p 3 isobara) 3 isocora) V T 3 T 3 V p p T 3 p T 3 p

dove le pressioni e i volumi sono state indicate come in figura mentre e T 3 corrispondono alle rispettive temperature dei tre stati. Si noti che combinando le tre espressioni si ottengono anche le seguenti T 3 V V. Mentre nell isocora il lavoro compiuto dal gas è nullo nelle altre due trasformazioni abbiamo L p V k V k dv p V k V k L 3 p V ) p V p p V V k V k ) ) p V V k p p V ) p V V ) V ) p p V V ) p V dove si è sostituito il valore di k e si è tenuto conto della relazione tra le pressioni e i volumi ottenute in precedenza. Pertanto il lavoro compiuto dal gas in un ciclo è pari a L L +L 3 p V V ) V +p V V ) [ p V V ) V +. V Quindi esprimendo V x e tenendo presente che è L p V otteniamo la seguente equazione di secondo grado V V + L p V x + x x 4x+ 0 la cui soluzione con significato fisico è essendo > V deve essere x > ) Abbiamo quindi x 4x+ 0 x + 4 + 3.4. 3.4 V 9 dm 3. Per i calori scambiati nelle tre trasformazioni si ha Q E int +L nc V )+p V V ) T nc V )+p V V ) p V V ).03 0 4 J < 0 ) ) ) ) ) T3 V V V V Q 3 nc p T 3 ) nc p nc p 4p V 4.84 0 4 J < 0 Q 3 nc V T 3 ) nc V T ) [ 3 3p V V Infine notando che solo Q 3 è positivo per il rendimento del ciclo si ottiene η L Q ass L Q 3 p V 3p V [ V [ 6 3.40 0 4 J > 0 ) 0.8. V PROBLEMA B4 0 punti) In una sfera di raggio R 90.0 cm è distribuita una quantità di carica Q la carica è distribuita nella sfera in modo non uniforme ma con simmetria radiale intorno al suo centro O. Al di fuori della sfera non ci sono cariche. Prendendo O a potenziale nullo il potenziale elettrostatico a distanza r dal centro della sfera con 0 r R ) è espresso dalla seguente ) r Vr) A r R con A 5.0 0 3 V/m. Determinare: a) a quale distanza dall origine R si annulla il campo elettrostatico b) la quantità di carica Q presente nella sfera di raggio R c) il potenziale elettrostatico V a distanza infinita dalla sfera d) l espressione della densità di carica volumica ρr) con cui la carica Q è distribuita all interno della sfera.

Soluzione Data la simmetria radiale il campo elettrostatico può essere calcolato attraverso la seguente Er) dv [ ) ) r r dr A + r A 3 rr r R R Conseguentemente il campo elettrostatico si annulla ad una distanza R data da ER ) 0 3 R R R 3 R 60.0 cm. Ora applicando il teorema di Gauss ad una sfera con centro in O e raggio r R possiamo scrivere Φ E r) Er)4πr qr) ) qr) 4πε 0 Er) 4πε 0 A 3 rr r 3 ε 0 dove qr) è la carica interna alla sfera in questione. Pertanto la carica Q di cui al punto b) è Q qr ) 4πε 0 AR 3 4.06 0 7 C. Applicando ora il teorema di Gauss ad una sfera sempre con centro in O ma con raggio r > R si ottiene Φ E r) Er)4πr Q ε 0 Er) Q 4πε 0 r e quindi per la d.d.p. di un punto a distanza infinita dalla sfera è VR ) V R Er)dr V VR ) R Er)dr 0 Q 4πε 0 R dr r Q 4πε 0 R 4050 V. Infine si noti che se fosse stata nota la funzione densità di carica volumica ρr) avremmo potuto esprimenre la quantità di carica dq in un guscio sferico di raggio r e spessore dr come segue dq ρr) 4πr dr. Ma allora la densità di carica può essere espressa ricavata dalla seguente ρr) 4πr dq dr dove dq/dr non è altro che la derivata rispetto ad r) della funzione qr) ottenuta in precedenza. Effettuando il calcolo si ottiene ρr) { [ 4πr 4πε 0 A 3 } r 3 +3 3 )r rr R ε ) 0A 3R r r 3 +6r 9R r 3 ε 0A r ) ) r 3 +6r 6ε 0 A rr. R