Transitori del primo ordine

Documenti analoghi
Transitori del secondo ordine

Lez.21 Circuiti dinamici di ordine due. 1. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 21 Pagina 1

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione)

Transitori del primo ordine

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esercizi: circuiti dinamici con generatori costanti

Contenuti dell unità + C A0 L

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

Elettrotecnica Esercizi di riepilogo

Laurea di I Livello in Ingegneria Informatica

Esercizi sulle reti elettriche in corrente alternata (parte 1)

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

. Il modulo è I R = = A. La potenza media è 1 VR 2

Elettrotecnica Soluzioni della II Prova Intermedia.I del corso del prof. Dario D Amore. Autore: Dino Ghilardi

Prova scritta di Elettrotecnica professor Luigi Verolino

. Il modulo è I R = = A. La potenza media è 1 VR 2

Transitori nelle reti ad una costante di tempo. Lezione 6 1

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

CIRCUITI IN CORRENTE CONTINUA

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

Università degli Studi di Bergamo Facoltà di Ingegneria

Lez.16 Il metodo simbolico. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 16 Pagina 1

Esercizi sui circuiti in fase transitoria

CIRCUITI IN REGIME SINUSOIDALE

Note sui circuiti a corrente alternata

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Esempi per ingressi costanti

Esercizi di Elettrotecnica

UNIVERSITÀ DEGLI STUDI DEL SANNIO

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2

Soluzione di circuiti RC ed RL del primo ordine

Equazioni differenziali lineari a coefficienti costanti

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

Università degli studi di Bergamo Facoltà di Ingegneria

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Università degli studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica A.A /2002 Mancini Fabio mtr: 30739

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2014/15 - Prova n.

LEZIONE DI ELETTRONICA

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

Reti nel dominio del tempo. Lezione 7 1

Circuiti Elettrici Lineari Sinusoidi e fasori

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2018/19 - Prova n.

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Fondamenti di Elettronica, Sez.1

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)


università DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

Misure con circuiti elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Lez.19 Rifasamento e risonanza. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 19 Pagina 1

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c)

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2

Esercitazioni di Elettrotecnica

Introduzione e modellistica dei sistemi

PROVA SCRITTA DI ELETTROTECNICA, 20 febbraio 2018 CdS Ing. Meccanica canali (A-L) e (M-Z) Docenti: C. Petrarca F. Villone

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

Potenze in regime sinusoidale. Lezione 4 1

Elettrotecnica - A.A Prova n gennaio 2012

7.13 Appendice 7b: Esempi di analisi di Fourier 175

Analisi e Geometria 1 Secondo Appello 25 Giugno 2018 SOLUZIONI

i(0) = Cα 1 k 1 + Cα 2 k 2 Che, risolto in forma matriciale, ci permette di ricavare le condizioni generali: ] = v c (0) E ] = k 1 (α 2 α 1)

9. Appunti ELETTROTECNICA CIRCUITI CON MEMORIA

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

Elaborazione di segnali e immagini: modulo segnali

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014.

Potenza in regime sinusoidale

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011

Metodo delle trasformate di Laplace. Lezione 12 1

Esercizi sui circuiti in fase transitoria

Scopi del corso. lezione 1 2

Transcript:

Università di Ferrara Corso di Teoria dei Circuiti Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione V, una resistenza R ed una capacità C. I tre bipoli sono collegati in serie a formare un unica maglia, e quindi sono attraversati dalla stessa corrente i(t) i v (t) = i R (t) = i C (t) = i(t) mentre il bilancio delle tensioni alla maglia si scrive come V = v R (t) + v C (t) Per risolvere il circuito è necessario considerare anche le equazioni di stato della capacità e della resistenza; per il primo si ha i = C dv c (t), mentre per la seconda v R = Ri(t) = RC dv C (t). Sostituendo nell equazione di bilancio delle tensioni si ha l equazione differenziale che governa l evoluzione del circuito V = RC dv C(t) + v C (t) Riordinando i termini dell equazione differenziale in forma normale, e supponendo di poter riassumere tutta la storia passata del condensatore assumendo che all istante t = la tensione ai capi della capacità si v C () = V C, si ha il seguente problema di Cauchy { dv C (t) v C () = V C + 1 RC v C(t) = V RC 1

Si consideri in un primo momento la sola equazione differenziale dv C (t) + 1 RC v C(t) = V RC L equazione è un equazione differenziale non omogenea. Come in tutte le equazioni non omogenee, la soluzione è data dalla somma v C (t) = v C g (t) + v C p (t) v p C (t) è una qualunque soluzione particolare. La soluzione particolare più semplice da trovare e da verificare è v p C (t) = V v g C (t) è la soluzione dell equazione differenziale omogenea associata dv C g (t) + 1 RC v C g (t) = che può essere scritta come v C g (t) = k e t RC La soluzione dell equazione differenziale omogenea associata vale v C (t) = k e t RC + V NOTA: da un punto di vista dimensionale, la costante k è una tensione [k] = V NOTA: Si può verificare che la v C g (t) = ke t RC sia soluzione dell equazione omogenea associata per sostituzione diretta d t (ke RC) + 1 t RC (ke RC) = 1 t RC ke RC + 1 t RC ke RC = Il valore della costante k si determina dalla condizione iniziale del problema di Cauchy, ovvero L evoluzione del sistema è data quindi da v C () = k + V = V C k = V C V v C (t) = (V C V )e t RC + V Nota la v C (t), è possibile determinare tutte le altre grandezze del circuito tramite le leggi ci Kirchkoff. In particolare, il valore della corrente vale i(t) = C d v C(t) = C 1 RC (V C V )e t RC = V V C R e t RC Transitori del primo ordine

v C [V], i [ma] NOTA: La costante RC è dimensionalmente un tempo e spesso viene indicato con la lettera greca τ e chiamato costante di tempo del sistema. Esso indica la velocità dell evoluzione sistema, in quanto risulta un parametro di scala della variabile tempo: v C (t) = (V C V )e t τ + V Per quanto riguarda la corrente i(t), si possono fare le seguenti osservazioni: la corrente, in valore assoluto, è massima per t = e decresce con t; per t (oppure, nei casi pratici per t τ), ovvero alla fine del transitorio, si ha lim i(t) =. Questo si può riassumere dicendo che la capacità, alla fine del transitorio, si t comporta come un circuito aperto; all' istante t =, ovvero all inizio del transitorio, la corrente vale i() = V V C. Questo R valore è lo stesso che si avrebbe sostituendo alla capacità un generatore di tensione V C. In particolare, assumendo che la capacità sia inizialmente scarica, ovvero V C =, si può dire che all inizio del transitorio la capacità si comporta come un corto circuito. Esempio Si considerino i seguenti parametri e condizioni iniziali: R = 1kΩ, C = 1μF, V C = V, V = 5V con questi valori, la costante di tempo del sistema vale τ = RC = 1ms e l andamento del transitorio (per quanto riguarda sia la tensione v C sia la corrente i) è quello riportato in figura. 5 v C (t) = (V C V )e t RC + V 4 3 1 1 3 4 5 t [msec] i(t) = V V C e t RC R Transitori del primo ordine 3

L equazione dell evoluzione del sistema si può scrivere in due modi differenti per mettere in luce la transitoriertà o il tipo di evoluzione. La forma vista finora permette di distinguere una componente transitoria (quella ovvero che ha un andamento transitorio, che si esaurisce per t τ) ed una permanente, che non dipende dal tempo v C (t) = (V C V )e t RC + V componente transitoria componente permanente i(t) = V V C e t RC R componente transitoria La corrente in questo circuito presenta la sola componente transitoria. In alternativa, i termini possono essere raggruppati per mettere in luce l evoluzione libera (ovvero l evoluzione dipendente solo dalla condizione iniziale, non dai generatori presenti nel circuito) e l evoluzione forzata (indipendente dalle condizioni iniziali, e stabilita solo dai generatori presenti) v C (t) = V C e t RC + V (1 e t RC) evoluzione libera evoluzione forzata i(t) = V C t R e RC + V t R e RC evoluzione libera evoluzione forzata Considerazioni energetiche Da un punto di vista energetico, si ricorda che l energia assorbita/ceduta da un bipolo è data da e per una capacità tale energia vale t w(t 1, t ) = v(t)i(t) t 1 w(t 1, t ) = 1 C ((v C(t )) (v C (t 1 )) ) = 4 Transitori del primo ordine

Si assuma per semplicità t 1 =, t, v C () = V C = V. Dall equazione di bilancio del sistema V = v R (t) + v C (t) È possibile moltiplicare tutti e tre i termini per la funzione i(t) ed integrare tra t = e t. ottenendo V i(t) = v R (t)i(t) + v C (t)i(t) Il primo termine V i(t) = w E (, ) è l energia erogata dal generatore V durante il transitorio, e può essere calcolata come w E (, ) = V C dv c(t) = V dv c = CV Il secondo termine v R (t)i(t) = w R (, ) durante il transitorio; V è l energia dissipata sulla resistenza R Il terzo termine v C (t)i(t) = w C (, ) è l energia immagazzinata sulla capacità durante il transitorio, e può essere espressa come w C (, ) = v C (t)i(t) = v C (t)c dv c(t) = 1 C ((v C( )) (v C ()) ) = 1 CV Si può notare subito che w E (, ) = 1 w C(, ) e quindi, di conseguenza, anche w R (, ) = 1 w C(, ). In un transitorio di carica di una capacità, assunta inizialmente scarica, metà dell energia fornita dal generatore di tensione viene immagazzinata sulla capacità, l altra metà viene invece dissipata sulla resistenza. Questo indipendentemente dal valore della resistenza R e dalla costante di tempo τ del sistema Esempio Il seguente circuito viene considerato un circuito degenere, in quanto la resistenza del transitorio ha un valore nullo. Nella realtà, si avrà comunque una resistenza di valore molto basso, dovuta all interruttore e/o ai parassiti del condensatore utilizzato. Supponendo che per t < l interruttore sia aperto, si ha i =. Si supponga anche che la capacità sia scarica, ovvero che v C (t) =. Si noti che questa ipotesi è compatibile con l equazione Transitori del primo ordine 5

costitutive della capacità, per cui i(t) = C d v C(t). Una qualunque tensione costante è compatibile con l ipotesi di corrente nulla. Alla chiusura dell interruttore si ha un transitorio di carica con costante di tempo τ. La tensione passa istantaneamente da a V : e la corrente è impulsiva e non limitata v C (t) = V u(t) i(t) = C d v C(t) = CV δ(t) Nei casi pratici, la corrente non sarà infinita ma comunque estremamente elevata, e potrebbe essere tale da danneggiare apparecchiature o la stessa rete elettrica. Questo fenomeno prende il nome di sovracorrente. 6 Transitori del primo ordine

Per quanto riguarda l induttanza, si comporta esattamente come la capacità fatte salve alcune sostituzioni. Si consideri il parallelo tra i due circuiti seguenti ripetendo quanto già calcolato per il circuito con la capacità i(t) = C d v C(t) v(t) = L d i L(t) Il circuito è risolto considerando il bilancio delle tensioni/correnti V = v R (t) + v C (t) = RC d v C(t) + v C (t) che porta al problema di Cauchy I = i R (t) + i C (t) = L d R i L(t) + i L (t) risolto da dv C (t) + 1 { RC v C(t) = 1 RC V di L (t) + R { L i L(t) = R L I v C () = V C i L () = I L v C (t) = (V C V )e t τ + V i L (t) = (I L I )e t τ + I con i(t) = V V C e t τ R v(t) = R(I I L )e t τ τ = RC τ = L R Inoltre i comportamenti all inizio e alla fine del transitorio sono dati da i() = V V C R v() = R(I I L ) lim i(t) = t lim v(t) = t ovvero se la capacità si comporta all inizio del transitorio come un generatore di tensione V C (un corto circuito assumendo la capacità scarica) e alla fine del transitorio come un circuito aperto, Transitori del primo ordine 7

un induttanza si comporta all inizio del transitorio come un generatore di corrente I L (un circuito aperto assumendo l induttanza scarica) e alla fine del transitorio come un corto circuito. Anche per quanto riguarda le considerazioni energetiche, si può procedere di pari passo al caso della capacità, ed affermare che metà dell energia fornita dal generatore viene immagazzinata nell induttanza e metà dissipata sulla resistenza indipendentemente dal suo valore. Per quanto riguarda il circuito degenere, per una induttanza i problemi non sono durante la fase di collegamento al circuito ma durante la fase di distaccamento. Risulta interessante considerare il seguente circuito dove all istante t = il generatore I viene scollegato dall induttanza. All apertura dell interruttore si ha un transitorio di scarica con costante di tempo τ che porta la corrente dell induttore dal valore I al valore, cioè i L (t) = I (1 u(t)) E in questo caso è la tensione a capi dell induttanza ad essere impulsiva e non limitata v L (t) = L d i L(t) = LI δ(t) In questo caso si parla di sovratensione. Nei casi reali, per via della resistenza non infinita dell interruttore aperto e dei parassiti dell induttanza, si avrà un valore non infinito ma comunque estremamente alto, e tale fenomeno deve essere controllato per evitare danni al circuito. 8 Transitori del primo ordine

Transitori del secondo ordine Si consideri il circuito in figura e si supponga che all istante t = la corrente della serie e la tensione sul condensatore valgano, rispettivamente, i() = I L e v C () = V C. La corrente i(t) e la tensione v L (t) si possono esprimere in funzione della v C (t), più esattamente i(t) = C dv C(t) v L (t) = L di(t) = LC d v C (t) Il circuito è risolto considerando il bilancio delle tensioni V = v R (t) + v L (t) + v C (t) all unica maglia, ovvero V = R i(t) + L di(t) V = RC dv C(t) + v C (t) + LC d v C (t) + v C (t) Riordinando in forma canonica l equazione differenziale ottenuta, e considerando le condizioni iniziali del sistema, si ha il seguente problema di Cauchy d v C (t) + R L v C () = V C dv C (t) v C () = dv C(t) { t= + 1 LC v C(t) = V LC = I L C Transitori del secondo ordine 9

Si consideri la sola equazione differenziale senza le condizioni al contorno e si introducano i due parametri ω N e ξ definiti come NOTA: ω N = 1 detto pulsazione naturale (propria) del sistema. LC ω N è una velocità angolare si ξ = R misura in radianti al secondo C detto fattore di smorzamento L [ω N ] = s 1 (a volte è usato Q = 1 detto fattore di merito) ξ In questo modo si può semplificare l equazione differenziale d v C (t) + ξω N dv C (t) + ω N v C (t) = ω N V L equazione ottenuta è un equazione differenziale non omogenea. Come in tutte le equazioni non omogenee, la soluzione è data dalla somma v C (t) = v C g (t) + v C p (t) ξ è adimensionale (numero puro) v p C (t) è una qualunque soluzione particolare. La soluzione particolare più semplice da trovare e da verificare è v p C (t) = V v g C (t) è la soluzione dell equazione differenziale omogenea associata d v C g (t) dv g C (t) + ξω N + ω N v g C (t) = La soluzione dell equazione differenziale omogenea associata, così come nel caso dei transitori del primo ordine, è del tipo v C g (t) = k e λt Dove il valore di λ si può calcolare sostituendo l espressione della v C g (t) nell omogenea associata d ke λt dke λt + ξω N + ω N ke λt = kλ e λt + ξω N kλe λt + ω N k e λt = k(λ + ξω N λ + ω N )e λt = ovvero supposto k, λ deve essere soluzione dell equazione di secondo grado λ + ξω N λ + ω N =. Sono due i valori di λ che soddisfano tale equazione, più precisamente λ = ξω N ± ω N ξ 1 = ω N (ξ ± ξ 1) 1 Transitori del secondo ordine

Sono quindi due anche le possibili soluzioni del tipo v C g (t) = k e λt ; nel caso più generale possibile la soluzione è data dalla combinazione lineare di entrambe le soluzioni, ovvero e quindi v C g (t) = k 1 e ω N(ξ ξ 1)t + k e ω N(ξ+ ξ 1)t v C (t) = V + k 1 e ω N(ξ ξ 1)t + k e ω N(ξ+ ξ 1)t Il tipo di transitorio è determinato dal valore di ξ 1. a) Caso sovrasmorzato Sia ξ 1 >, ovvero ξ > 1 (il caso ξ < 1 si può non considerare in quanto implica R < ). In questo caso si possono considerare le due quantità reali: ed esprimere la v C (t) come σ 1 = ω n (ξ + ξ 1) σ = ω n (ξ ξ 1) v C (t) = V + k 1 e σ 1t + k e σ t NOTA: σ 1 e σ sono l inverso di un tempo [σ 1 ] = [σ ] = s 1 Le condizioni iniziali del problema di Cauchy permettono di determinare le due costanti k 1 e k. v C () = V + k 1 + k = V C v C () = dv C(t) = σ 1 k 1 σ k = I L C t= NOTA: k 1 e k sono tensioni [k 1 ] = [k ] = V che è risolto da σ k 1 = (V C V ) + I L 1 σ σ 1 C σ σ 1 σ 1 k { = (V C V ) I L 1 σ σ 1 C σ σ 1 Esempio Si considerino i seguenti parametri e condizioni iniziali: Con questi valori si ha R = 3kΩ, L = 1H, C = 1μF I L = 3mA, V C = V, V = 5V ω N = 1krad/s, ξ = 3/ Transitori del secondo ordine 11

v C [V] e le costanti di tempo dei due esponenziali sono pari a 1/σ 1 =.38ms e 1/σ =.61ms. Inoltre dalle condizioni iniziali si ha k 1 =.89V, k =.17V Essendo k 1 e k concordi, l andamento della v C (t) è del tutto simile ad un transitorio del primo ordine, ed è mostrato assieme a quello dei due singoli contributi esponenziali in figura. 5 v C (t) = V + k 1 e σ 1t + k e σ t 4 3 k (e σ t 1) 1 k 1 (e σ 1t 1) 4 6 8 1 t [msec] Esempio Con gli stessi parametri dell esempio precedente, ma considerando le seguenti condizioni iniziali si hanno due costanti k 1 e k discordi I L = ma, V C = V, V = 5V k 1 = 1.47V, k = 4.47V In questo caso l andamento è particolare, ed è mostrato nella figura seguente. 1 Transitori del secondo ordine

v C [V] 5 v C (t) = V + k 1 e σ 1t + k e σ t 4 k (e σ t 1) 3 1 1 k 1 (e σ 1t 1) 4 6 8 1 t [msec] b) Caso criticamente smorzato Quando ξ 1 =, ovvero ξ = 1 si parla di caso criticamente smorzato. Le due costanti σ 1 e σ considerate nel caso sovrasmorzato sono uguali tra loro, e pari a σ 1 = σ = ω n ξ = ω N Anche in questo caso la soluzione dell equazione differenziale è la combinazione lineare di due transitori esponenziali, più precisamente v C (t) = V + k 1 t e ω Nt + k e ω Nt NOTA: Si può verificare che la v C g (t) = k 1 t e ω Nt sia soluzione dell equazione omogenea associata per ξ = 1, ovvero d v C g (t) dv + ω g C (t) N + ω N v g C (t) = derivando per parti d k 1t e ωnt = k 1 e ωnt k 1 t e ωnt ω N = k 1 e ωnt (1 ω N t) d k 1t e ωnt = k 1 e ωnt ω N (1 ω N t)k 1 t e ωnt ω N = k 1 e ωnt ω N ( + ω N t) d k 1 t e ω Nt dk 1 t e ωnt + ω N + ω N k 1 t e ωnt = = k 1 e ωnt (ω N ( + ω N t) + ω N (1 ω N t) ω N t) = Transitori del secondo ordine 13

v C [V] Anche in questo caso le condizioni iniziali del problema di Cauchy permettono di determinare le due costanti k 1 e k. v C () = V + k = V C che è risolto da v C () = dv C(t) = k 1 ω N k = I L C t= { k 1 = I L C + ω N(V C V ) k = V C V NOTA: k è ancora una tensione, mentre k 1 è una tensione diviso un tempo [k 1 ] = V s 1 [k ] = V Esempio Si considerino i seguenti parametri e condizioni iniziali: Con questi valori si ha R = kω, L = 1H, C = 1μF I L = 6mA, V C = V, V = 5V ω N = 1krad/s, ξ = 1 Si ha quindi un transitorio criticamente smorzato. Date le condizioni iniziali si ha k 1 = 6V/ms, k = 3V L andamento della v C (t) e dei due singoli contributi esponenziali è rappresentato in figura. 5 v C (t) = V + k 1 t e ω Nt + k e ω Nt 4 3 k (e ω Nt 1) 1 k 1 t e ω Nt 4 6 8 1 t [msec] 14 Transitori del secondo ordine

c) Caso sottosmorzato Si consideri il caso ξ 1 <, ovvero ξ < 1. In questo caso, detto sottosmorzato, le radici dell equazione λ + ξω N λ + ω N sono due radici complesse, più precisamente λ = ω N ξ ± jω N 1 ξ dove con j si è indicata l unità immaginaria tale per cui j = 1. La soluzione generale dell equazione differenziale omogenea associata può ancora scritta in termini di quantità puramente reali definendo e considerando che: σ = ω N ξ ω = ω N 1 ξ v C (t) = V + k 1 e σ t jω t + k e σ t+jω = V + e σ t (k 1 e jω Nt + k e jω t ) = V + e σt ((k 1 + k ) ejωt + e jω t + j(k 1 k ) ejωt + e jω t ) = j V + e σ t (k 3 sin ω t + k 4 cos ω t ) dove si è sfruttata la definizione esponenziale delle funzioni seno e coseno, e dove si sono introdotte opportune nuove costanti k 3 e k 4, che possono essere trovate tramite le condizioni iniziali del problema di Cauchy v C () = V + k 4 = V C v C () = dv C(t) = k 3 ω k 4 σ = I L C t= che è risolto da { k 3 = I L ω C + σ (V C V ) ω k 4 = V C V NOTA: sia k 3 sia k 4 sono delle tensioni [k 3 ] = [k 4 ] = V In alternativa, è possibile esprimere la v C (t), anziché tramite seno e coseno, solamente tramite la funzione coseno trasformando la seconda costante in una fase v C (t) = V + k 5 e σ t cos(ω t + k 6 ) NOTA: k 5 è una tensione, mentre k 6 è un angolo, misurato in gradi o radianti (adimensionale) [k 5 ] = V Transitori del secondo ordine 15

v C [V] In questo caso le condizioni iniziali impongono che che è risolto da v C () = V + k 5 cos k 6 = V C v C () = dv C(t) = k 5 σ cos k 6 k 5 ω sin k 6 = I L C t= k 5 = ( I L ω C + σ (V C V ) ) + (V ω C V ) k { 6 = atan σ (V C V ) + I L C ω (V C V ) Esempio Si considerino i seguenti parametri e condizioni iniziali: R = 5Ω, L = 1H, C = 1μF I L = 6mA, V C = V, V = 5V Con questi valori si ha un caso sottosmorzato, in quanto ω N = 1krad/s, ξ =.5 con 1/σ = 4ms e ω = 968. rad/s. Date le condizioni iniziali si ha k 3 = 3.873V, k 4 = 3V, (k 5 = 4.899V, k 6 =.3rad) L andamento della V C (t) è rappresentato in figura. 1 8 6 v C (t) = V + k 5 e σ t cos(ω t + k 6 ) 4 5 1 15 t [msec] 16 Transitori del secondo ordine

Transitori del secondo ordine in regime sinusoidale Nel caso in cui il generatore di tensione V non sia tempoinvariante, la differenza rispetto al caso precedente sta solo nella soluzione particolare v C p (t), mentre la soluzione generale dell omogenea associata v C g (t) resta invariata. Interessante è il caso in cui tale generatore sia sinusoidale V (t) = V cos ω t In questo caso l evoluzione del circuito si ottiene risolvendo l equazione differenziale d v C (t) + ξω N dv C (t) + ω N v C (t) = ω N V cos ωt Anche in questo caso si ha un equazione differenziale non omogenea, la cui soluzione è data da v C (t) = v C g (t) + v C p (t) v C g (t) è la soluzione dell equazione differenziale omogenea associata, ed è la stessa calcolata nel caso precedente v C p (t) è una qualunque soluzione particolare, e questa volta deve essere cercata nelle funzioni del tipo v C p (t) = A cos(ωt + φ). Le costanti A e φ vanno cercate sostituendo la v C p (t) nell equazione differenziale. da cos(ωt + φ) = Aω sin(ωt + φ) d A cos(ωt + φ) = Aω cos (ωt + φ) cos (ωt) = cos(ωt + φ) cos φ + sin(ωt + φ) sin φ Aω cos (ωt + φ) ξω N Aω sin(ωt + φ) + ω N A cos(ωt + φ) = ω N V (cos(ωt + φ) cos φ + sin(ωt + φ) sin φ) (Aω N Aω ω N V cos φ) cos (ωt + φ) = (ξω N Aω + ω N V sin φ) sin(ωt + φ) = Transitori del secondo ordine in regime sinusoidale 17

v C [V] L equazione ottenuta è verificata per ogni ω, t e φ se ovvero { A(ω N ω ) = V ω N cos φ ξω N Aω = V ω N sin φ A = V ω N (ω N ω ) + 4ξ ω N ω, φ = arctan ξω Nω ω N ω Poiché V (t) = V cos ω t, all istante t = il generatore sinusoidale è equivalente ad un generatore di tensione costante V. Con questa osservazione è possibile vedere che le condizioni iniziali sono le stesse dei rispettivi casi precedentemente analizzati. Esempio Si considerino i seguenti parametri e condizioni iniziali: R = 5Ω, L = 1H, C = 1μF I L = 6mA, V C = V, V = 4V, ω = rad/s I valori sono gli stessi dell esempio precedente, e identificano un caso sottosmorzato ω N = 1krad/s, ξ =.5 con 1/σ = 4ms e ω = 968. rad/s. Anche le condizioni iniziali sono le stesse del caso precedente k 3 = 3.873V, k 4 = 3V, (k 5 = 4.899V, k 6 =.3rad) mentre per quando riguarda la soluzione particolare si ha A = 1.65V, φ =.8 rad L andamento della v C (t) è quello rappresentato in figura. 6 4 v C (t) = Acos(ωt + φ) + k 5 e σ t cos(ω t + k 6 ) 4 5 1 15 t [msec] 18 Transitori del secondo ordine in regime sinusoidale

Analisi del circuito RLC nel dominio dei fasori Nel dominio dei fasori si considerino le impedenze associate rispettivamente al resistore, all induttore e al condensatore Z R = R, Z L = jωl, Z C = 1 jωc Si consideri inoltre V (t) = V cos ω t. Il fasore V associato a questo generatore è dato da La tensione v c è data dal partitore v c = Z C Z R + Z L + Z C V = V = V e j = V 1 jωc R + jωl + 1 V = jωc e, usando le definizioni di ω N e ξ viste prima, si ha v c = ω N ω + jωξω N + ω N V 1 ω LC + jωcr + 1 V La v C (t) si può ricavare come la sinusoide associata al fasore v c, ovvero una sinusoide con ampiezza e fase, rispettivamente V ω v c N = (ω N ω ) + 4ξ ω N ω, arg v c = arg ( ω + jωξω N + ω N ) = arctan ξω Nω ω N ω Analisi del circuito RLC nel dominio dei fasori 19

v C [V] Si noti che la v C (t) trovata corrisponde esattamente alla soluzione particolare v C p (t) dell esempio precedente. Esempio Si considerino i seguenti parametri: Il fasore v c è dato da R = 5Ω, L = 1H, C = 1μF, V = 4V, ω = rad/s che corrisponde al segnale sinusoidale v c = 1. j.4 V v c (t) = v c cos(ωt + arg v c) = 1.65 cos(ωt.8) V L andamento della v c (t) è riportata in figura assieme alla v C (t) dell esempio precedente. 4 4 5 1 15 t [msec] Analisi del circuito RLC nel dominio dei fasori