Esempi per ingressi costanti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esempi per ingressi costanti"

Transcript

1 Esempi di analisi di transitori Esempi per ingressi costanti 45 Un alimentatore con tensione V 0 e resistenza R carica un condensatore C, inizialmente scarico. Quanto vale l energia erogata dal generatore? 1 46

2 Un alimentatore con tensione V 0 e resistenza R carica un condensatore C, inizialmente scarico. Quanto vale l energia erogata dal generatore? 1 V 0 con R C ( 0 ) = [ V ] v C 0 i( t) v C ( t) 47 per t 0 V t = R t 0 it () exp - ( ) V0 i 0 = R τ = RC i = 0 V 0 R i( 0 ) R R 1 i v C ( 0 ) = 0 R eq = R = 0 V 0 a regime C circuito aperto 48

3 1 W = pt ()d t = V it ()dt = erogata t V0 V 2 = τ exp - = τ = CV0 = 2 WC( t ) R t R 0 V 0 con R C i( t) ( 0 ) = [ V ] v C 0 v C ( t) 49 1 L energia erogata dal generatore non dipende dal valore di R, ed il processo di carica del condensatore ha rendimento ½ W = pt ()d t = V it ()dt = erogata t V0 V 2 = τ exp - = τ = CV0 = 2 WC( t ) R t R 0 R V 0 con C i( t) ( 0 ) = [ V ] v C 0 v C ( t) 50

4 2 Calcolare e diagrammare v(t) ed i L (t) per t =0 6H i L ( t) 51 2 Condizioni iniziali Calcolo la corrente i L nell induttore (variabile di stato) prima dell apertura dell interruttore, al tempo t =0-6 i L Ht ( ) t=0 1 i L (0 ) = A 2 partitore di corrente 52

5 2 supponendo la rete in condizioni di regime stazionario permanente (=in continua) al tempo t =0-6 i L Ht ( ) t=0 1 i L (0 ) = A 2 partitore di corrente 53 2 Si osserva v(0 - ) = -3/2 V. Non è però necessario conoscere questo valore per esprimere la soluzione per t>0 (occorre solo ricavare la variabile di stato al tempo t=0) 6 i L Ht ( ) t =0 1 i L (0 ) = A 2 partitore di corrente 54

6 2 Condizioni iniziali Al tempo t =0, appena attivato l interruttore, la corrente nell induttore rimane la stessa di quella al tempo t =0 - Calcolo la tensione v al tempo t =0 v (0 ) 1[ V] = = = Ω 2 i (0 ) L 6 i L Ht ( ) Ω 2 v( 0 ) i L (0 ) = 1 = A 2 55 Condizioni iniziali Appena attivato l interruttore, al tempo t =0 : Corrente i L (0)=-0,5 A Tensione v (0)=1 V 2 v( t ) 6H i L ( t ) 56

7 2 Condizioni di regime In condizioni di regime stazionario permanente (=in continua), per t 8, l induttore si comporta come un corto circuito 2 A 6 i L Ht ( ) t = 0 v i L = Costante di tempo È comunque una proprietà della rete resa passiva (generatori indipendenti spenti), anche se nel nostro caso la rete in analisi non contiene nessun generatore 6H i L ( t) 58

8 La resistenza vista dall induttore ai suoi due morsetti (con interruttore aperto) vale R eq =23=5 ohm. La costante di tempo t vale t=l/r eq =6/5 s 2 6H i L ( t) 59 Soluzione Le condizioni iniziali e di regime trovate, e la costante di tempo porgono, per it () = 0,5exp( t / τ)a v(t) = 1exp( t / τ)v con τ = 6/5s 2 3 V 2 5t 6 e t 1 2 i L (t) A 1 2 5t 6 e t 60

9 Esempi di analisi di transitori per ingressi costanti a tratti 61 Noto l andamento temporale di e(t) fornire un espressione analitica per la corrente i(t) 10V 10V 1 t(s) i(t) 2F Nota: Si debbono studiare due transitori. La costante di tempo dei due transitori è però la stessa 62

10 Costante di tempo La costante di tempo è una proprietà della rete resa passiva. La resistenza vista dal condensatore vale R eq =2//22=3 ohm, che porge t=r eq C=6s 10V 10V 1 t(s) i(t) 2F 63 Condizione iniziale Per tutti i tempi t<0, il generatore di tensione è spento e quindi il condensatore, in t=0 -, si può supporre scarico, si ha cioè v C (0)=0 Al tempo t=0 si misura una corrente i(0)=5/3 A i ( g 0 ) 10V i(t) i( 0 ) 2F ig (0 ) = = A 2 2 // 2 3 i(0 ) = i (0 ) / 2 g v C ( 0) = 0 64

11 Primo transitorio: per 0<t<1 Condizione di regime La rete va a regime come se la tensione del generatore rimanesse sempre costante ed uguale a 10V i(t) 2F 10V i 2F e 5 i = = A 2, 5A = 65 Primo transitorio: per 0<t<1 per 0<t<1 si ottiene 5 5 it () = exp ( t/ τ ) con t = 6 s 66

12 Primo transitorio: per 0<t<1 La tensione sul condensatore vc () t = 51 exp ( t/ τ ), con t = 6s porge: ( ) vc( t = 1) = vc( t = 1 ) = 5 1 exp 1/6 condizione iniziale del secondo transitorio i(t) 2F v C ( t) 10V v C = 5V 67 Secondo transitorio: per t>1 (dove si ha e(t)=-10v "t>1s) Condizione iniziale i(t) 2F A v ( t =1 ) C t = 1 e = 10V B v AB e v = 3 C 68

13 Condizione iniziale Al tempo t=0 la tensione sul condensatore vale v C =5[1-exp(-1/t)], 51 exp( 1/ τ ) risultato che porge corrente it ( == 1 ) 6 i(t) 2F t = 1 A v ( t =1 ) C e = 10V B v AB e v = 3 C 69 Secondo transitorio: per t>1 (dove si ha e(t)=-10v "t>1s) Condizione di regime i(t) 2F 10 5 i 2 = = = 2, 5A V i 2 70

14 Condizione di regime La rete va a regime per tensione del generatore costante ed uguale a -10V i(t) 2F 10 5 i 2 = = = 2, 5A V i 2 71 Soluzione per t>1 per t>1 si ottiene ( t 1) it () = 1 exp( 1/ τ ) exp 6 2 τ 2 con t = 6 s 72

15 Soluzione [ ] ( ) ( ) dove ( t 1) it () = ut () ut ( 1) exp t/6 ut ( 1) exp 1/6 exp i(t) 1per x> 0 u(x) = 0per x< 0 10V 2 F ( t) 1 t( s) v C 1 1 i e V i = 6 e i = 6 C [ A] [ A] t 10V 2 73 Esempi di analisi di transitori per rete con generatori pilotati 74

16 Noto l andamento temporale di e(t) fornire un espressione analitica per la tensione v(t) 0V 8V t R = ix i A 1 C = F B 3 R = KCL nodo A: i = 3 i x 2i x 75 0V 8V t R = ix i A 1 C = F B 3 R = KCL nodo A : i = 3 i x 2i x Equazione KVL: v(t)=e(t)-r i x (t) Posso calcolare i x (t) Conviene utilizzare l equivalente Thevenin ai morsetti AB 76

17 Equivalente Thevenin - Prova a vuoto. Si ottiene subito v AB (t)=e(t) (a vuoto) R ix A B VAB 2i x 3i x ix = 0 equazione pilota 77 Equivalente Thevenin - Prova in cortocircuito. Si ottiene subito i cc_ab =3 e(t)/4r Da cui si ottiene R eq =V AB /i cc_ab =4R/3 R i x R A i = 3 B cc i x 2i x x ( 3 x) ( ) KVL: e = Ri R i et ix = 4R equazione pilota 78

18 Abbiamo ricondotto il problema originale (figura a sinistra) al calcolo della corrente i x (t) nel circuito di destra, con equazione (KVL) che porge: v(t)=e(t)-r i x (t) R = ix i A KCL nodo A: 1 C = F 3 B R = i = 3i x 2i x 4 8 R = Ω 3 3 v v C e( t) ( t) = v ( t) C ( 0 ) = 0V AB 3i x A 1 C = F B 3 condizione iniziale 79 Costante di tempo: t =R eq C =8 s Condizione iniziale: 3 i x (0) = e(t=0)/r eq =3 A da cui i x (t=0) = 1 A Soluzione a regime i x8 =0 A Con equazione finale (KVL): v(t)=e(t)-r i x (t) 0V 8V t 4 8 R = Ω 3 3 v v C e( t ) ( t) vc ( t) ( 0 ) = 0 V AB 3i x A 1 C = F 3 B = condizione iniziale 80

19 Soluzione: Cond. iniziale v(0)=6v, soluz. a regime v 8 =8 V 0V 0 per t < 0 vt () = [ 8 2exp( t/8) ] per t > 0 8V t R = ix KCL nodo A: i A 1 C = F B 3 R = i = 3i x 2i x 81 Esempi di analisi di transitori per rete con diodo ideale 82

20 Sapendo che la tensione iniziale sul condensatore è nulla, calcolare la tensione v AB (t), e le correnti i(t), i C (t) ed i*(t) 100V 10Ω A 10µF i( t) i ( t) i C ( t) 50V B 83 La tensione ai capi del condensatore tende esponenzialmente, con costante di tempo 100 microsecondi, alla tensione di 100 V, ma non li raggiunge perchè il diodo inizia a condurre quando questa tensione prova a superare i 50 V 100V 10Ω A 10µF i( t) i ( t) i C ( t) 50V B 84

21 100V 100V 50V ( ) t v AB 10Ω A 10µF i ( t ) i ( t ) i C ( t ) B V 50 ( ) i t 10A 5A i C ( t ) 10A 5A i ( t) 5A 85

22

23

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte f Variabili di stato In un dato istante di tempo, l energia immagazzinata nell elemento reattivo (condensatore od induttore)

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Transitori nelle reti ad una costante di tempo. Lezione 6 1

Transitori nelle reti ad una costante di tempo. Lezione 6 1 Transitori nelle reti ad una costante di tempo Lezione 6 1 Circuito con amplificatore Calcolare v(t) vt () = v(0 ), t< 0 [ ] t τ vt () = v(0 ) V e + V, t> 0 + Continuità della tensione sul condensatore

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

Esercitazione 5. Elettrotecnica 1. Esercitazione 5. Politecnico di Torino CeTeM. Esercizio 1. di Calcolare i l ; v c ; l dt. dv ; c all istante t = 0

Esercitazione 5. Elettrotecnica 1. Esercitazione 5. Politecnico di Torino CeTeM. Esercizio 1. di Calcolare i l ; v c ; l dt. dv ; c all istante t = 0 Esercizio 1 di Calcolare i l ; v c ; l dt dv ; c all istante t = 0 + dt Risposta: i l (0 + )= i l (0 - )=0.8A ; v c (0 + )= v c (0 - di )=0V ; l dv + = 16/375 ; c + = 16/25 dt 0 dt 0 Esercizio 2 Calcolare

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica UNIVESITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica CAMPI ELETTOMAGNETICI E CICUITI I 4.07.2019 Soluzione del Problema 1 Poiché i generatori operano in regime stazionario, il

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni Soluzione del Problema 1 In circuito da considerare per il calcolo della tensione equivalente di Thevenin è il seguente: I 0 a La caduta di potenziale sulla resistenza è nulla, poiché il morsetto a è aperto.

Dettagli

Metodo delle trasformate di Laplace. Lezione 12 1

Metodo delle trasformate di Laplace. Lezione 12 1 Metodo delle trasformate di Laplace Lezione Fasi del metodo Trasformazione della rete dal dominio del tempo al dominio di Laplace Calcolo della rete in Laplace con metodi circuitali Calcolo delle antitrasformate

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3)

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3) lettrotecnica ed lettronica Applicata - Aerospaziali Zich, 17 luglio 017 Appello, Tempo: 105 minuti isolvere riportando i passaggi principali e le soluzioni numeriche. Cognome Nome Matricola Posizione

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Elettrotecnica Soluzioni della II Prova Intermedia.I del corso del prof. Dario D Amore. Autore: Dino Ghilardi

Elettrotecnica Soluzioni della II Prova Intermedia.I del corso del prof. Dario D Amore. Autore: Dino Ghilardi lettrotecnica Soluzioni della II Prova Intermedia.I del 9-07-2017 corso del prof. Dario D Amore Autore: Dino Ghilardi 21 febbraio 2017 1 1.1 1 II P.I. del 9-02-2017, prof. Dario D Amore 1.1.1 Testo 1.1.2

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Passività e relazioni costitutive

Passività e relazioni costitutive 1 Cosa c è nell unità 1/3 Passività e relazioni costitutive Potenza entrante Passività Relazioni costitutive Bipoli ideali Resistore ideale Generatori di tensione Generatori ideali di corrente Principio

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

UNIVERSITÀ DEGLI STUDI DEL SANNIO

UNIVERSITÀ DEGLI STUDI DEL SANNIO UNIVERSITÀ DEGI STUDI DE SANNIO ORSI DI AUREA IN ING. ENERGETIA, INFORMATIA E TEEOMUNIAZIONI D Prova scritta di Elettrotecnica Teoria dei ircuiti 26/01/2006 Proff. D. Davino e. Visone ognome: Nome: Matr.

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica UNIVESITÀ DEGLI STUDI DI PAVIA CAMPI ELETTOMAGNETICI E CICUITI I 23.01.2015 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) e v C (t) (per ogni istante di tempo

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Esercizio 1? Si determini tramite misure la descrizione del due porte tramite matrice resistenza o

Dettagli

Prova di Elettrotecnica I prova B

Prova di Elettrotecnica I prova B C O N S O Z O N E T T U N O Prova di Elettrotecnica 4.05.004 prova B Cognome Nome matr ESECZO l circuito in figura funziona in regime sinusoidale. Determinare l andamento della corrente che fluisce nella

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 17 20.12.2018 Carica e scarica del condensatore Generatori di tensione e di corrente Generatori ideali e reali Anno

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

Teoremi dei circuiti elettrici

Teoremi dei circuiti elettrici Università degli Studi di Pavia Facoltà di Ingegneria Corso di Teoria dei Circuiti Elettrotecnica Teoremi dei circuiti elettrici Conseguenza di KCL, KVL e della unicità della soluzione di un circuito lineare

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte e Multipoli resistivi I principali multipoli resistivi ideali sono: il trasformatore ideale l amplificatore operazionale

Dettagli

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Università degli Studi di Bergamo Facoltà di ingegneria Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Es. 1 Dato il circuito magnetico in figura, trascurando gli effetti di bordo, calcolare

Dettagli

CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori

CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori Problema 5.1 L=0.9 mh, Vs=12 V, R 1 = 6 kω, R 2 = 6 kω, R 3 = 3

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Transitori Circuiti del ordine www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 25--29) Transitori Circuiti del ordine Esercizio n. i i 4 R 4 = 3 Ω = 3 Ω = 3 Ω R

Dettagli

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Risposte alle domande di teoria 1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Il transitorio è un processo elettrico che descrive tramite una funzione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 28.01.2011 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) ev C (t) (per ogni istante di tempo t) e rappresentarne graficamente l andamento temporale. Dati: I 0

Dettagli

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso)

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso) ESERCIZI SUI CIRCUITI RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio vista dai morsetti 1-2 del bipolo in figura (A, B da tabella)

Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

Errata Corrige. M. Repetto, S. Leva

Errata Corrige. M. Repetto, S. Leva Errata Corrige M. epetto, S. Leva 21 marzo 2016 Indice 0.1 CAPITOLO 1............................ 2 0.1.1 pagina 16, nel testo..................... 2 0.1.2 pagina 16, Fig.1.17..................... 2 0.1.3

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli

Tre resistenze in serie

Tre resistenze in serie Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il

Dettagli

Prova Scritta di ELETTROTECNICA - 12 gennaio 2015

Prova Scritta di ELETTROTECNICA - 12 gennaio 2015 Prova Scritta di ELETTROTECNIC - 12 gennaio 215 i3(t) = 2 2sin(1t); e4(t) = 1 2cos(1t)V R1=R2=R5= 5 Ω; Rab= 1 kω; L1=L2=2mH; C2 = 1µF; C5 = 2µF Per la rete in figura, operante in regime sinusoidale permanente,

Dettagli

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Università degli Studi di Pavia Facoltà di Ingegneria Corso di Corso di Elettrotecnica Teoria dei Circuiti Doppi bipoli Che cos è? E un dispositivo con due porte di scambio della potenza elettrica (Porta

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica A.A /2002 Mancini Fabio mtr: 30739

Università degli studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica A.A /2002 Mancini Fabio mtr: 30739 Università degli studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica A.A.. 2001/2002 Mancini Fabio mtr: 30739 1 Es. 4 Prova scritta del 04 luglio 1996. Determinare la corrente funzione del tempo

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno vista dai morsetti 1-2 del bipolo in figura (A, B da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno 2012 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3.. Nel circuito di figura con =Ω =Ω ed 3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni, e 3.. Dati i valori delle tre resistenze =5Ω =8Ω 3=4Ω e considerando una d.d.p. di

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso CARICA E SCARICA DEL CONDENSATORE 5.1. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t = 0 quando porta una carica Q(0) = Q 0. C R V(t) SOLUZIONE. A interruttore

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Lezione 6: Circuiti dinamici

Lezione 6: Circuiti dinamici Lezione 6: Circuiti dinamici Cosa impareremo: 1. Inserire interruttori 2. Assegnare le condizioni iniziali 3. Condurre l analisi Transient 4. Analizzare circuiti del 1 ordine 5. Determinare la costante

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 18.01.013 Problema 1 Con riferimento al circuito in figura, nel quale l interruttore si chiude all istante t = 0, determinare l espressione di i 3 (t) per ogni istante di tempo t, e rappresentarne graficamente

Dettagli

Il contenuto di questo file e di completa proprieta del Politecnico di Torino. Lezione 3 1

Il contenuto di questo file e di completa proprieta del Politecnico di Torino. Lezione 3 1 Il contenuto di questo file e di completa proprieta del Politecnico di Torino. Lezione 3 1 Calcolo simbolico Lezione 3 2 Effetti di fulminazione 1/4 Modello di fulminazione elettrica Rete nel dominio del

Dettagli

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente:

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente: PM PO N TNEE --- 9 MGGO 008 ECZO E..: Del circuito mostrato in figura, si desidera determinare: a) la corrente ; b) la potenza elettrica erogata dai tre generatori. Sono assegnati: Ω, 4 Ω, 6 Ω; ; E S 6

Dettagli

scaricato da

scaricato da A. Maffucci: ircuiti in regime sinusoidale ver - 004 ES.. Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi: a) i(t) = 4sin(ωt.4) b) i(t) = 0sin(ωt π) c) i(t) = 8sin(ωt π / ) isultato:

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015 ognome Nome Matricola Firma Parti svolte: E E D Esercizio I G 4 gv E 5 D 6 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con

Dettagli

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2 Elettronica I isposta dei circuiti e L nel dominio del tempo; derivatore e integratore Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 613 rema e-mail: liberali@i.unimi.it

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

Problemi sulle reti elettriche in corrente alternata

Problemi sulle reti elettriche in corrente alternata Problemi sulle reti elettriche in corrente alternata Problema 1: alcolare l andamento nel tempo delle correnti i 1, i 2 e i 3 del circuito di figura e verificare il bilancio delle potenze attive e reattive.

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore equivalente di Thevenin o di Norton, si determini, per ogni istante di tempo, l espressione

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella)

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 5 Giugno 2013 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B, C, D da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 1)

Esercizi sulle reti elettriche in corrente continua (parte 1) Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2018/19 - Prova n.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2018/19 - Prova n. Cognome Nome Matricola Firma 1 Parti solte: E1 E2 E3 D Esercizio 1 R 4 I I 1 G8 Q I 2 V 2 V 1 V G9 11 Esercizio 2 R 5 R 6 R 7 R 1 C 1 R 2 C 2 i 2 G i 2 r 0 R r21 r 22 C 3 Z Supponendo noti i parametri

Dettagli

Elettrotecnica. a) Rappresentare con Thevenin il bipolo con teminali A-B contenente il trasformatore ideale. b) Calcolare v. zi x.

Elettrotecnica. a) Rappresentare con Thevenin il bipolo con teminali A-B contenente il trasformatore ideale. b) Calcolare v. zi x. Esercizio n 1 Data la rete di figura: 1 Ω Α 5 Ω 10 Α v 2 Ω k = 2 5 Ω Β 100 V a) appresentare con Thevenin il bipolo con teminali - contenente il trasformatore ideale. b) Calcolare v. Esercizio n 2 Data

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Ing. Carlo Forestiere carlo.forestiere@unina.it Corso di Laurea in Ingegneria Informatica Anno Accademico 2009-2010 Dipartimento di Ingegneria Elettrica Università degli studi

Dettagli

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed

Dettagli

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corsi di Corso di Elettrotecnica e Teoria dei Circuiti Teoria dei Circuiti Doppi Bipoli Che cos è? E un dispositivo con due porte di scambio della

Dettagli

V V I 1 R 21 I 1 + R 12 I 2

V V I 1 R 21 I 1 + R 12 I 2 ESECZO 6.0: Assegnata la rete lineare passiva Due - porta di figura 6.0, nota come doppio bipolo, si determini il Quadripolo equivalente a parametri (equivalente Thévenin) detto anche formulazione controllata

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore

Dettagli

Misure con circuiti elettrici

Misure con circuiti elettrici Misure con circuiti elettrici Samuele Straulino Laboratorio di Fisica II - S.S.I.S. 2008 2009 http://hep.fi.infn.it/ol/samuele/dida.php Descriverò in particolare questi aspetti: comportamento a regime

Dettagli

V N I N. (figura - 5.1a)

V N I N. (figura - 5.1a) ESECZO 5.: Data la rete di figura 5., ottenuta dal collegamento di un trasformatore e di una resistenza, si desidera determinare il valore della resistenza equivalente sentita fra i morsetti in ingresso

Dettagli

Teoremi delle re* lineari

Teoremi delle re* lineari Teoremi delle re* lineari circuito o rete lineare se con-ene solo elemen- lineari e generatori indipenden- elemento ele2rico lineare se il rapporto eccitazione-risposta e lineare generatore indipendente

Dettagli

Relazione di laboratorio di telecomunicazioni. 23/01/2014. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms).

Relazione di laboratorio di telecomunicazioni. 23/01/2014. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms). Relazione di laboratorio di telecomunicazioni. 23/01/2014 Titolo: Carica di un condensatore. Obiettivi: Calcolare Tau con la formula R x C. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms).

Dettagli

Modello incrementale per lo studio del transitorio di carica/scarica di un condensatore. Per un condensatore vale: CARATTERISTICHE ELETTRICHE

Modello incrementale per lo studio del transitorio di carica/scarica di un condensatore. Per un condensatore vale: CARATTERISTICHE ELETTRICHE Modello incrementale per lo studio del transitorio di carica/scarica di un condensatore CARATTERISTICHE COSTRUTTIVE Il condensatore è un tipo di bipolo elettrico formato da due superfici metalliche, dette

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere

Dettagli

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c)

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c) V V A 5.2 Circuiti in regime sinusoidale 219 W B B B (a) (b) (c) Figura 5.4. Simboli del (a) voltmetro, (b) amperometro e (c) wattmetro ideali e relativi schemi di inserzione I I V Nel simbolo del voltmetro

Dettagli

Circuiti Elettrici. Capitolo7 Circuitidel primo ordine

Circuiti Elettrici. Capitolo7 Circuitidel primo ordine Circuiti Elettrici Capitolo7 Circuitidel primo ordine Prof. Cesare Svelto (traduzione e adattamento) Copyright McGraw-Hill Education. Permission required for reproduction or display. Alexander, Sadiku,Gruosso,

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 1 febbraio 2006

Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 1 febbraio 2006 Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del febbraio 2006 Cognome: Nome: Corso di Laurea e n. matr.: La risposta corretta di ogni domanda vale punti, la

Dettagli