ANALISI MATEMATICA 2 ING. GESTIONALE prof. Daniele Andreucci Prova tecnica del 17/01/2017

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI MATEMATICA 2 ING. GESTIONALE prof. Daniele Andreucci Prova tecnica del 17/01/2017"

Transcript

1 I.1 ANALISI MATEMATICA 2 ING. GESTIONALE prof. Daniele Andreucci Prova tecnica del 17/01/ Trovare il minimo e il massimo assoluti, e i punti di estremo a essi relativi, della funzione nell insieme f(x,y = 16(x 2 +y 2 x 2 y 4 +3, E = {(x,y 0 y 4 x 2, 2 x 2}. Poiché f C (E, ed E è compatto, gli estremi cercati esistono certamente. Iniziamo con il trovare gli eventuali punti critici di f nell interno di E: x = 32x 2xy4 = 0, y = 32y 4x2 y 3 = 0. Dalla I si ha x = 0 oppure y 4 = 16, ossia y = ±2; se x = 0 dalla II si ha ovviamente y = 0; altrimenti la II dà I punti critici sono dunque 8 x 2 y 2 = 0, ossia x = ± 2. (0,0, (± 2,±2 (con qualsiasi scelta dei segni. I punti critici con y 0 non sono interni a E; quelli soddisfano (± 2,2 y = 2 > 4 x 2 = 4 2 = 2, e dunque non appartengono a E. Laf non può perciò avere punti di estremo interni a E. Passiamo a studiare la f vincolata alla frontiera E = γ 1 γ 2, con γ 1 = {(x,0 2 x 2}, γ 2 = {(x,y y = 4 x 2, 2 x 2}. A Procediamo per parametrizzazione; si ha su γ 1 Ovviamente f(x,0 ha f(x,0 = 16x 2 +3, 2 x 2. min γ 1 f = f(0,0 = 3, max γ 1 f = f(±2,0 = 64+3 = 67.

2 I.2 Su γ 2 si ha g(x := f(x, 4 x 2 = 64 x 2 (4 x , 2 x 2. Derivando si trova Pertanto g (x = 2x(4 x 2 (3x 2 4. g (x < 0, g (x > 0, g (x < 0, g (x > 0, x x x x ( 2, 2 3, ( 2,0, 3 ( 2 0,, 3 ( 2 3,2. Dunque si hanno per g i minimi locali g (± 2 3 e i massimi locali = , g(±2 = 67, g(0 = 67. B In alternativa, usiamo il metodo dei moltiplicatori di Lagrange per studiare f su γ 2 meno i punti iniziale e finale (che non vengono in genere individuati come possibili punti di estremo da questo metodo. Il vincolo sarà dunque espresso come h = 0, con h(x,y = x 2 +y 2 4, y > 0. Il sistema dei moltiplicatori di Lagrange è x = 32x 2xy4 = 2λx, y = 32y 4x2 y 3 = 2λy, x 2 +y 2 = 4, y > 0. La I è verificata se x = 0, il che dà y = 2 e λ = 16. Se x 0 la I dà e dato che y 0 per ipotesi, la II allora implica che usando la III diviene Da qui discende y = λ = 16 y 4, (1 16 2x 2 y 2 = 16 y 4, 2(4 y 2 y 2 = y , x = ± 2 3, λ = 80 9,

3 I.3 ove il valore di λ è stato ottenuto dalla (1. Dunque i possibili estremi per f su γ 2 sono dati dai punti ( f(0,2 = 67, f ± 2 8, = > 57, cui bisogna aggiungere i punti iniziale e finale di γ 2 f(±2,0 = 67. Si noti che in questo problema i punti (±2,0 risolvono comunque il sistema di Lagrange, con λ = 16, perché tali punti sono in realtà punti di estremo per f ristretta a tutta la circonferenza. maxf = f(0,2 = f(±2,0 = 67, min E f = f(0,0 = 3. E 2. Determinare la soluzione massimale del problema di Cauchy y = 2+(y x 2, y(1 = 1, y (1 = 2, trovandone anche l intervallo di definizione. Iniziamo ad abbassare di ordine l equazione per mezzo della sostituzione u = y per ottenere u = 2+(u x 2. Poi introduciamo la nuova variabile z = u x, cosicché l equazione diviene z +1 = 2+z 2, integrando la quale per separazione di variabili si ottiene Dunque d z arctgz = dx 1+z 2 = 1 = dx dx. arctgz(x arctgz(1 = x 1. Tenuto conto che z(1 = u(1 1 = y (1 1 = 1, si ha pertanto arctgz(x = π 4 +x 1, cioè ( π y (x = u(x = x+z(x = x+tg 4 +x 1. Per integrazione diretta si ottiene dunque y(x = y(1+ x 1 y (tdt = 1 2 ln 2+ x2 2 ln cos ( π 4 +x 1.

4 I.4 I calcoli precedenti valgono nell intervallo contenente 1 ove è definita la tg(π/4 + x 1, ossia ove sono soddisfatte π 2 < π 4 +x 1 < π 2. y(x = 1 2 ln e ( 2 + x2 π 2 lncos 4 +x 1, x ( 3π 4 +1, π Trovare i punti di minimo e di massimo assoluto della funzione soggetta al vincolo f(x,y = x 2 +y 2, g(x,y = x 4 +y 4 1 = 0. Poiché f e g sono C e la funzione che dà il vincolo ha gradiente g(x,y = 4(x 3,y 3, che si mantiene sempre diverso da zero sul vincolo, i punti cercati si possono trovare con il metodo dei moltiplicatori di Lagrange. La funzione da ottimizzare è il quadrato della distanza dall origine. Il sistema di Lagrange diviene pertanto La I è soddisfatta da x = 0, oppure se 2x = 4λx 3, 2y = 4λy 3, x 4 +y 4 = 1. Se x = 0 la III dà y = ±1 e la II dà λ = 1/2. La II è soddisfatta da y = 0, oppure se x 2 = 1 2λ. (1 y 2 = 1 2λ. (2 Se y = 0 la III dà x = ±1 e la I dà λ = 1/2. Se x 0 e y 0 devono valere entrambe le (1, (2, che sostituite nella III danno 1 2λ 2 = 1, ossia λ = 1/ 2 (la radice negativa non è accettabile. Ancora dalle (1, (2 segue x = ± 1 4 2, y = ±

5 I.5 In conclusione i punti di possibile estremo vincolato sono (0,±1, (±1,0, ( ± 1 4 2,± 1, 4 2 con ogni scelta dei segni. min = 1, in (0,±1 e (±1,0; max = 2, in (±1/ 4 2,±1/ 4 2 (ogni scelta dei segni. 4. Determinare l integrale generale di y +4y +4y = e x, e trovare quindi tutte le soluzioni tali che lim y(x = +. x L integrale generale si scrive come y = η + w con η integrale generale dell equazione omogenea associata y +4y +4y = 0, e w soluzione particolare dell equazione originale. L equazione caratteristica dell equazione omogenea è λ 2 +4λ+4 = 0, che ha soluzione λ = 2 con molteplicità ν = 2. Dunque Poi cerchiamo w nella forma η(x = k 1 e 2x +k 2 xe 2x. w(x = Ae x, poiché 1 non è radice dell equazione caratteristica. Si ha sostituendo che deve essere A = 1. Quindi y(x = k 1 e 2x +k 2 xe 2x +e x. Se k 2 0 il termine che ordine maggiore per x è k 2 xe 2x, e quindi deve essere k 2 < 0. Se k 2 = 0, deve essere invece per un motivo analogo k 1 0. y(x = k 1 e 2x +k 2 xe 2x +e x ; k 2 < 0 oppure k 2 = 0, k 1 0.

6 I.6 5. Trovare e classificare i punti critici di f(x,y = cos(x y+e y2, (x,y R 2. Dato che f C (R 2 troviamo il gradiente x = sin(x y, y = sin(x y+2yey2. Il sistema che dà i punti critici è pertanto sin(x y = 0, sin(x y+2ye y2 = 0. La I equazione sostituita nella II conduce subito a y = 0, da cui, di nuovo per la I, x = kπ, k Z. Dunque i punti critici sono tutti e soli i punti nella forma (kπ,0, k Z. Per classificarli studiamo la matrice hessiana ( cos(x y cos(x y H f (x,y = cos(x y cos(x y+2e y2 +4y 2. e y2 Sostituendo si trova con Dunque se k è dispari ( ( 1 k+1 ( 1 H f (kπ,0 = k ( 1 k ( 1 k+1, +2 deth f (kπ,0 = 1+2( 1 k+1 1 = 2( 1 k+1. deth f (kπ,0 = 2 > 0, e l hessiana è definita positiva. Se invece k è pari, deth f (kπ,0 = 2 < 0, e l hessiana è indefinita. (kπ,0, k Z; 2 f x2(kπ,0 = 1 > 0, k dispari: minimo; k pari: punto sella. 6. Trovare la soluzione del problema di Cauchy y = y x +ey x, y(1 = 1.

7 I.7 Introduciamo la nuova variabile Quindi l equazione differenziale diviene Integrando tra 1 e x cioè, dato che z(1 = y(1/1 = 1, Perciò e quindi z = y x, y = zx, y = xz +z. z x = e z ossia e z z = 1 x. [ e z ] z(x z(1 = lnx, e e z(x = lnx. z(x = ln(e lnx, y(x = xln(e lnx. L intervallo di definizione massimale è dato da e lnx > 0, e pertanto coincide con (0,e e. y(x = xln(e lnx, x (0,e e.

8 II.1 ANALISI MATEMATICA 2 ING. GESTIONALE prof. Daniele Andreucci Prova tecnica del 17/01/ Trovare il minimo e il massimo assoluti, e i punti di estremo a essi relativi, della funzione nell insieme f(x,y = 16(x 2 +y 2 x 4 y 2 1, E = {(x,y 4 y 2 x 0, 2 y 2}. maxf = f( 2,0 = f(0,±2 = 63, min E f = f(0,0 = 1. E 2. Determinare la soluzione massimale del problema di Cauchy y = (y +x 2, y(1 = 1, y (1 = 2, trovandone anche l intervallo di definizione. y(x = 1 2 ln 2 (x 1 x2 2 lncos π, x ( π , 3π Trovare i punti di minimo e di massimo assoluto della funzione f(x,y = x 4 +y 4, soggetta al vincolo g(x,y = x 2 +y 2 1 = 0. min = 1 2, in (±1/ 2,±1/ 2 (ogni scelta dei segni; max = 1, in (0,±1 e (±1,0.

9 II.2 4. Determinare l integrale generale di y 6y +9y = e x, e trovare quindi tutte le soluzioni tali che lim y(x =. x + y(x = k 1 e 3x +k 2 xe 3x ex ; k 2 < 0 oppure k 2 = 0, k 1 < Trovare e classificare i punti critici di f(x,y = sin(x+y+e x2, (x,y R 2. (0, π 2 +kπ, k Z; k dispari: minimo; k pari: punto sella. 6. Trovare la soluzione del problema di Cauchy y = y x +e y x, y(1 = 0. y(x = xln(1+lnx, x (e 1,+.

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni Analisi Matematica Esercizi di esame e di controllo Versione con risoluzioni Daniele Andreucci Dipartimento di Scienze di Base e Applicate per l Ingegneria Università di Roma La Sapienza via A.Scarpa 16,

Dettagli

Analisi Matematica 2 BENR Esercizi di esame e di controllo Versione con risoluzioni

Analisi Matematica 2 BENR Esercizi di esame e di controllo Versione con risoluzioni Analisi Matematica BENR Esercizi di esame e di controllo Versione con risoluzioni Daniele Andreucci Dipartimento di Scienze di Base e Applicate per l Ingegneria Università di Roma La Sapienza via A.Scarpa

Dettagli

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni Analisi Matematica Esercizi di esame e di controllo Versione con risoluzioni Daniele Andreucci Dipartimento di Scienze di Base e Applicate per l Ingegneria Università di Roma La Sapienza via A.Scarpa 16,

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019 I ANALISI MATEMATICA ING ENERGETICA prof Daniele Andreucci Prova tecnica del //9 Si consideri la funzione x+yarctg x 3 y fx,y = x +y, x,y,,, x,y =, A Si dimostri che f è differenziabile in, B Si dimostri

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 9 Dicembre 06 - Traccia A Cognome e nome................................ Numero di matricola............

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Istituzioni di Analisi 2 (programma, domande ed esercizi)

Istituzioni di Analisi 2 (programma, domande ed esercizi) Istituzioni di Analisi programma, domande ed esercizi) nona settimana Argomenti trattati Dal libro di testo: 3. punti critici vincolati), 3.3. estremi assoluti), 0.3. e 0.3. solo la definizione di compatto

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 9 Dicembre 07 - Traccia A Cognome e nome................................ Numero di matricola............

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

= 2x 2λx = 0 = 2y 2λy = 0

= 2x 2λx = 0 = 2y 2λy = 0 ESERCIZI SULLA OTTIMIZZAZIONE VINCOLATA ESERCIZIO Determinare i punti di massimo e minimo di f x, y = x y soggetta al vincolo x + y = Il vincolo è chiuso e limitato (circonferenza di raggio ) e la funzione

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Tutorato di AM220. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di AM220. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in atematica Tutorato di A220 1 arzo 2012 AA 2011-2012 - Docente: Prof Luigi Chierchia Tutori: Daniele Dimonte e Sara Lamboglia Tutorato 4 1 Esercizio

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni Analisi Vettoriale - A.A. 2003-2004 Foglio di Esercizi n. 4 Soluzioni. Esercizio Assegnata l equazione differenziale y = y sin(y) disegnare, in modo qualitativo, i grafici delle soluzioni. Si tratta di

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2,

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2, ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni

Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni Analisi Matematica 2 Esercizi di esame e di controllo Versione con risoluzioni Daniele Andreucci Dipartimento di Scienze di Base e Applicate per l Ingegneria Università di Roma La Sapienza via A.Scarpa

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof A Iannizzotto Prove d esame 2017 Versione del 17 settembre 2017 Appello del 9 gennaio 2017 Tempo: 150 minuti 1 Determinare gli estremi globali

Dettagli

Analisi II, a.a Soluzioni 5

Analisi II, a.a Soluzioni 5 Analisi II, a.a. 2017-2018 Soluzioni 5 1) Sia E un sottoinsieme chiuso e limitato di R n e x R n un punto qualunque. Chiamiamo d(x, E) = inf{d(x, y): y E} la distanza di x da E. Dimostrare che esiste un

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11) Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F5 e F5X (//). La funzione f(x) = x 3x x + (a) èdefinita purché l argomento della radice sia non negativo cioè perx 3x : quindi

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Analisi Matematica II per il corso di Laurea Triennale in Matematica. Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca

Analisi Matematica II per il corso di Laurea Triennale in Matematica. Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca Analisi Matematica II per il corso di Laurea Triennale in Matematica Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca Esercizi: estremi liberi e vincolati per funzioni in piú variabili.

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017 Anno Accademico 2016/17 04/09/2017 COG ) lnx) 1) Scrivere l espressione lnxx2 lnx x come polinomio, ossia nella forma ) lnx) a m x m + a m 1 x m 1 + + a 1 x + a 0. 2) a) Dire per quali x R la serie + a

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (25/09/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (25/09/203) Università di Verona - Laurea in Biotecnologie

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

ISTRUZIONI, leggere attentamente.

ISTRUZIONI, leggere attentamente. I APPELLO ESTIVO DI MATEMATICA PER SCIENZE AMBIENTALI 13/6/017 Nome: Cognome: Matricola: Matematica 1 Matematica Matematica 1 e ISTRUZIONI, leggere attentamente. (1) Indicare chiaramente qui sopra quale

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile:

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile: Estremi vincolati Un problema di ottimizzazione vincolata consiste nella ricerca degli estremanti di una funzione in presenza di un vincolo, cioè limitatamente ad un certo sottoinsieme del dominio di f:

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

La ricerca di punti di estremo assoluto

La ricerca di punti di estremo assoluto La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo 9 Lezione Equazioni differenziali del secondo ordine a coefficienti costanti Def. (C) Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo u + au + bu = f(t), dove a e b sono

Dettagli

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 30 gennaio 207 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA COGNOME: NOME: MATR.: Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA 6 settembre 2017 COGNOME: NOME: MATR.: 1) L applicazione lineare f : R 3 R 4 data da f(x, y, z) = (x kz, 3x + 2y + z, x + z, 2x + y + z) è

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione. Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio 218 1) Data la funzione f(, ) = 4 + 4 4 2 7 a) Studiare l esistenza e la natura degli estremi liberi della funzione. b) Trovare il massimo

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma.

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma. Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 6 Soluzioni. Esercizio Determinare l integrale generale dell equazione autonoma.. Soluzione. y = y(y )(y 2) y(y )(y 2) dy = Tenuto conto che y(y )(y

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

k [ e x] k ke kx = lim ke kx = lim + + ke kδ =

k [ e x] k ke kx = lim ke kx = lim + + ke kδ = F. De Marchis F. Lanzara. Montefusco Se ammesso, sosterrò la prova orale: in questo appello in un appello successivo Istruzioni: tutti i ragionamenti devono essere adeguatamente motivati! sercizio 1. i.

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A.2009-2010 - Prof. G.Cupini Equazioni differenziali ordinarie del primo ordine (lineari, a variabili separabili, di Bernoulli) ed

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi.

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Mauro Saita Versione provvisoria. Dicembre 204 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

Esercizi n.2. 1) Trovare i punti stazionari e dire se si tratta di punti di massimo, di minimo o di sella per le funzioni. f(x, y) = x 2 + y 3

Esercizi n.2. 1) Trovare i punti stazionari e dire se si tratta di punti di massimo, di minimo o di sella per le funzioni. f(x, y) = x 2 + y 3 Esercizi n.2 1) Trovare i punti stazionari e dire se si tratta di punti di massimo, di minimo o di sella per le funzioni x 2 + y, x + 6xy + y 2, x 2 + y 2 + z 2 + xyz, x + xy + y 2 + yz + z 2, sin(x y)

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame Matematica per Scienze Biologiche e Biotecnologie Docente Lucio Damascelli Università di Tor Vergata Alcuni recenti compiti di esame Nota Nei compiti di esame si chiedono 6 esercizi da svolgere in (al

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli