LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE"

Transcript

1 Pagina 1 di 21 LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: In this paper we show s connection between Benford s law and Fibonacci numbers. Also we study an application with license plates of Italian and German car.

2 Pagina 2 di 21 Indice: 1. LEGGE DI BENFORD E CONNESSIONE CON I NUMERI DI FIBONACCI ESEMPIO SULLE TARGHE AUTOMOBILISTICHE APPLICAZIONE SULLE TARGHE ITALIANE APPLICAZIONE SULLE TARGHE TEDESCHE CONCLUSIONI RIFERIMENTI... 21

3 Pagina 3 di LEGGE DI BENFORD E CONNESSIONE CON I NUMERI DI FIBONACCI In questo breve lavoro mostreremo una connessione tra la legge statistica di Benford ( o delle cifre iniziali) e i numeri di Fibonacci, con la possibilità, sia pure ancora soltanto teorica, di eventuali algoritmi per analizzare alcuni bigdata per estrarne informazioni utili ad eventuali previsioni e applicazioni. Qualcosa di simile, insomma, agli algoritmi hft ((high frequency trading) anche qui sono coinvolti i numeri di Fibonacci) per prevedere e sfruttare al meglio l andamento del mercato azionario da parte degli addetti ai lavori (brokers, ecc.) Recentemente abbiamo letto ( sulla nuova Garzantina di Matematica (Garzanti Ed.), a pag la voce Cifre iniziali dei numeri - (Frank Benford, 1938) e abbiamo scoperto una connessione con i numeri di Fibonacci, che esporremo in questo breve lavoro. Dalla relativa voce di Wikipedia riportiamo parzialmente : Legge di Benford Da Wikipedia, l'enciclopedia libera. Vai a: navigazione, ricerca

4 Pagina 4 di 21 La distribuzione di Benford meglio nota come legge di Benford o legge della prima cifra è una distribuzione di probabilità che descrive la probabilità che un numero presente in molte raccolte di dati reali (p.es. popolazione dei comuni, quotazione delle azioni, costanti fisiche o matematiche, numero di strade esistenti nelle località) cominci con una data cifra, ad esempio "1", che secondo questa variabile casuale discreta dovrebbe essere nel 30,1% dei casi la prima cifra. La funzione di probabilità è data da ( n) = ( n + 1) log ( n) = log ( 1 1 n) P log / Una delle estensioni della legge di Benford, prende in considerazione la coppia delle prime due cifre (da 10 a 99 dunque), lasciando invariata la formula, ma semplicemente modificando l'intervallo di validità da [1,9] a [10,99]. Una breve e intuitiva spiegazione del perché in "natura" accade ciò, e che quindi la cifra 1 si presenti con maggior frequenza, poi la cifra 2 e così via, è dato dal fatto che noi contiamo a iniziare dal numero 1 in avanti sino al 9. Se proviamo a pensare alle cifre da 1 a 9 è chiaro che abbiamo le stesse probabilità che una cifra inizi con 1 o 2 o 3 o 9. Se, però, prendiamo già i numeri da 1 a 20 ecco che da 11 a 19 ho molti più numeri che iniziano con la cifra 1. Se prendiamo quelli da prima cifra prime due cifre n P(x=n) n P(x=n) 1 30,1% 10 4,1% 2 17,6% 11 3,8% 3 12,5% 12 3,5% 4 9,7% 13 3,2% 5 7,9% 14 3,0% 6 6,7% ,8% ecc. 8 5,1% ,6% 99 0,4% Diagramma a torta della distribuzione della prima cifra

5 Pagina 5 di 21 1 a 30 ne ho molti che iniziano con 1 ma anche con 2. Come si può facilmente notare, per avere numeri che inizino con 9, ad es, devo andare molto in là con i numeri e quindi aumento anche la quantità di quelli che inizieranno con 1 o con 2 e quindi con cifre basse, per cui in una distribuzione di numeri legati a superfici, popolazioni, sarà più alta la probabilità di averne che inizino con 1 piuttosto che con 9. La cosa comunque singolare è che Benford riuscì a far vedere che, per molte distribuzioni, la probabilità che un numero inizi con una certa cifra tra 1 e 9 è sempre la stessa (30,1% per la cifra 1, 17,6% per la cifra 2, 4,6% per la cifra 9)... Connessione con il numero e : Funzione di probabilità La funzione di probabilità è ( x = n) = log ( n + 1) ( n) P 10 log10 Il valore atteso è E(X)=µ=3,44, la varianza pari a σ²=6,06 e l'asimmetria =0,79, nel caso che x debba essere compreso tra 1 e 9 (inclusi). Al di là delle spiegazioni "comuni", la v.c. di Benford può essere costruita facendo ricorso a ζ la funzione zeta di Riemann (vedasi pure variabile casuale Zeta). Invarianza di scala[modifica modifica wikitesto] Se un fenomeno segue la legge di Benford, allora moltiplicando tutti i valori per un numero prefissato, si ottiene una nuova raccolta di valori che seguono a loro volta la legge di Benford. Esempio: se le quotazioni espresse in Lire delle azioni quotate in borsa seguono la legge di Benford, allora le stesse quotazioni espresse in Euro seguono anch'esse la legge di Benford. L'invarianza di scala richiede che

6 Pagina 6 di 21 ( kx) f ( k) P( x) P = = Essendo richiesto che P( x) dx 1 e che anche P( kx) dev'essere del tipo 1/x. Effettivamente log x e ( x) = per 0,1 x 1 P 10 k dx = k 1 si ricava che la forma è una distribuzione continua di probabilità che produce valori casuali le cui prime cifre rispettano la legge di Benford..... Ma noi abbiamo trovato, come prima accennato, una nuova connessione anche con i numeri di Fibonacci. Prendiamo la tabella iniziale: TAB. 1 Se prendiamo i numeri della seconda colonna e li scriviamo in orizzontale e solo la

7 Pagina 7 di 21 loro parte intera, abbiamo: , con una prima e più debole connessione con i numeri di Fibonacci: = 5 = 5 4 3; ma se scriviamo sotto le loro differenze successive, e consecutive abbiamo, in rosso, in rosso, per esempio 30-17= 13, ecc: corrispondenti a numeri di Fibonacci, tranne il numero 8 tra 5 e 13 Scriviamo invece le differenze alternate, per es = 18, 17-9 = 8, ecc. avremo ora la serie di differenze Ora recuperiamo il numero 8, ma perdiamo il 13. Però lo recuperiamo, sia pure parzialmente, poiché 18 è circa la media tra 13 e 21 = 17, cosa che si verifica spesso in altri fenomeni naturali o matematici che coinvolgono i numeri di Fibonacci. I numeri di Fibonacci più piccoli sono ovviamente relativi alle cifre con minori frequenze percentuali, mentre i più grandi, 8 e 18 come circa la media tra 13 e

8 Pagina 8 di 21 21, sono relativi rispettivamente alle cifre 2 e 1 Le due tabelle seguenti rendono meglio l idea Tabella 1 Numeri interi di Benford Numeri interi di Benford slittati di un posto Tabella 2 Numeri interi di Benford Numeri interi di Benford slittati di due posti Differenze = Numeri di Fibonacci tranne l 8 Differenze = Numeri di Fibonacci tranne l = (13+21)/ Se ora invece prendiamo i piccoli numeri della tabella di Wikipedia (ultima

9 Pagina 9 di 21 colonna, parzialmente), relativi alla seconda cifra notiamo un altra piccola connessione di Fibonacci: i rapporti successivi sono mediamente lievemente superiori alla 2^3 -esima radice di 1,618 = numero aureo Tabella 3 Numeri di Benford Relativi alla seconda cifra Rapporti successivi 2^3 -esima radice di 1,618 1,0619 valore reale 4,1 4,1/3,8 = 1,078 1,0619 3,8 3,8/3,5= 1,085 1,0619 3,5 3,5/3,2= 1,093 1,0619 3,2 3,2/3,0 1,066 1,0619 La prima connessione con i numeri di Fibonacci tramite le differenze è evidentissima (la seconda un po meno). Ricordiamo che il numero aureo Φ = 1, è connesso con π e con i modi che corrispondono alle vibrazioni fisiche delle stringhe bosoniche, tramite le seguenti due formule: 3 = 2Φ R( q) exp 5 5 f ( t) dt 5 4 / f ( t 1/ ) t q 0 5 π, = 24 log π.

10 Pagina 10 di 21 che possono essere connesse nell unica formula: π = 24 log 142 π = 2Φ R( q) exp f ( t) dt 5 4 / f ( t 1/ ) t q 0 5 Con tale nuova nostra connessione, la scoperta di Benford, già nota in statistica e già usata per qualche applicazione, specialmente in campo fiscale, vedi Nota 3, potrebbe essere oggetto di altre possibili applicazioni pratiche, per esempio nel campo dei bigdata in ogni campo, per estrarre, dalla loro grande massa di informazioni, solo quelle più interessanti per fare previsioni utili sull andamento dei relativi fenomeni naturali ( per es. clima, epidemie, ecc. ecc.). Per esempio, già con la serie di Fibonacci, e dei relativi e potenti algoritmi, gli hft (high frequency trading), si è già in grado di prevedere in modo attendibile l andamento azionario e di sfruttarlo per speculazioni finanziarie, acquistando o vendendo azioni al momento opportuno, con relativi e lauti guadagni. Un nostro lavoro teorico in tal senso, già sul sito

11 Pagina 11 di 21 è Finanza aurea. Comunque, una maggiore conoscenza di questo argomento statistico ( legge di Benford) e, possibilmente, anche della nostra modesta correlazione con la serie di Fibonacci, potrebbe essere molto utile ai ricercatori sui bigdata, già richiestissimi e pagatissimi essendo ancora molto rari (ma già si stanno preparando appositi stage universitari), per poter spremere dai bigdata che essi studieranno in futuro, le informazioni necessarie per conoscere e prevedere meglio l andamento futuro del fenomeno studiato, sia esso naturale (per es. clima) o artificiale ( es. mercato azionario). Nota 3 sulla applicazione della legge di Benford in campo fiscale: La recente Garzantina di matematica (Garzanti), riporta a pag la voce Cifre iniziali dei numeri(frank Benford, 1938), con una breve nota finale, che riportiamo testualmente: La legge di Benford non costituisce solo un intrigante curiosità matematica, ma si presta anche a delle interessanti applicazioni pratiche. Per esempio, negli USA viene utilizzata per scovare gli evasori fiscali: tutte le dichiarazioni di reddito I cui importi non presentano un adeguata distribuzione delle prime cifre vengono considerate sospette e sottoposte ad un controllo più accurato: Si narra che, in un accertamento del genere, fosse incappato anche Clinton, prima di diventare presidente degli USA.

12 Pagina 12 di 21 Nostro commento. Ecco un esempio di buona applicazione della legge di Benford in campo fiscale, applicazione che potrebbe essere ancora migliorata, possibilmente e sperabilmente, anche con la nostra relazione con Fibonacci. E così pure per altre possibili applicazioni statistiche in altri campi. Ben 76 anni dopo l intuizione di Benford, la sua legge statistica è stata migliorata con la nostra osservazione, che la connette chiaramente ai numeri di Fibonacci, e con nuovi e possibili risvolti applicativi. Una volta tanto, nessuno si rivolta nella tomba, poichè pensiamo che a Benford la nostra connessione sarebbe proprio piaciuta.

13 Pagina 13 di ESEMPIO SULLE TARGHE AUTOMOBILISTICHE Vediamo come si comporta la legge di Benford o legge della prima cifra, considerando l esempio delle targhe automobilistiche e precisamente facciamo un confronto tra quelle italiane e quelle tedesche per sapere qual è il metodo migliore. 2.1 APPLICAZIONE SULLE TARGHE ITALIANE Dal 1994 la targa automobilistica italiana è stata rivoluzionata con un nuovo sistema di numerazione: scompare la sigla della provincia e la targa si compone di una combinazione di sette caratteri alfanumerici costituiti da lettere nelle prime due e nelle ultime due posizioni e numeri nelle tre posizioni centrali (Esempio: AB123CD). L'ordine è seriale per i tre numeri e poi per le quattro lettere, cosicché la targa AA999AA segue la targa AA998AA e precede la targa AA000AB. Vengono utilizzate in totale 22 lettere (quelle dell'alfabeto inglese ad esclusione di I, O, Q e U) che formerebbero un totale di 22^4*1000 = possibili combinazioni. Rappresentazione schematica: AB 123 CD Le targhe vengono assegnate alle province a lotti, seguendo indicativamente la frequenza di immatricolazioni. In virtù della distribuzione a lotti delle targhe anche questo sistema di numerazione consente di risalire alla provincia di prima immatricolazione, sempre che non vi siano stati "prestiti" fra le province per sopperire a ritardi nelle consegne o a consumi anomali.

14 Pagina 14 di 21 In questo caso la prima cifra è una lettera, che varia dalla lettera A alla lettera Z, e quindi per poter applicare la legge di Benford si deve introdurre un sistema numerico a base B=23. Dobbiamo far corrispondere alla lettera A la cifra 1, alla lettera B la cifra 2 e così via fino all ultima lettera Z la cifra 22. La probabilità della prima "lettera o cifra corrispondente" diventa ( 1 1/ d )/ ln B ln + ln(1 + 1/d)/ln 23 dove d indica la prima "lettera o cifra corrispondente" e ln il logaritmo naturale di base e (vale a dire ln=log e )

15 Pagina 15 di 21 Avremo i seguenti valori: TAB. 2 1! cifra Probabilità lettera A 1 22,1 B 2 12,9 C 3 9,2 D 4 7,1 E 5 5,8 F 6 4,9 G 7 4,3 H 8 3,8 J 9 3,4 K 10 3,0 L 11 2,8 M 12 2,6 N 13 2,4 P 14 2,2 R 15 2,1 S 16 1,9 T 17 1,8 V 18 1,7 W 19 1,6 X 20 1,6 Y 21 1,5 Z 22 1,4

16 Pagina 16 di APPLICAZIONE SULLE TARGHE TEDESCHE Le targhe automobilistiche tedesche sono formate da una, due o tre lettere iniziali, seguite da un trattino, poi vengono una o due lettere e infine ancora una, due, tre o quattro cifre. I caratteri sono di colore nero su fondo bianco. Le lettere iniziali corrispondono al circondario rurale o città extracircondariale in cui il veicolo è stato registrato, mentre le altre combinazioni di lettere o numeri sono del tutto casuali, non identificano alcuna appartenenza ad una località (una lettera in genere per area rurale, due lettere per area urbana). Le maggiori città hanno una sola lettera iniziale identificativa della località, mentre le città più piccole possono avere due o tre lettere identificative. Analizziamo bene le combinazioni che ne derivano in quanto si tratta di un sitema mobile e non fisso come quello italiano. Vengono utilizzate in totale: Le 3 lettere iniziali coprono in questo momento 383 circondari Una o 2 lettere che seguono coprono ^2 = 702 combinazioni Una o due o tre o quattro cifre coprono = 9999 combinazioni Infatti: Gruppo a: 1 lettera, 1 3 cifre, da A 1 a Z = combinazioni

17 Pagina 17 di 21 Gruppo b: 2 lettere, 1 2 cifre, da AA 1 a ZZ = combinazioni Gruppo c: 2 lettere, 3 cifre, da AA 100 a ZZ = combinazioni Gruppe d: 1 lettera, 4 cifre, da A 1000 a Z = combinazioni Gruppo e: 2 lettere, 4 cifre, da AA 1000 a ZZ = combinazioni In totale avremo 383*702*9.999 = possibili combinazioni. La prima cifra da considerare è in questo caso la prima lettera dopo il circondario e in questo caso abbiamo 26 lettere. Applicando la legge di Benford la probabilità della prima "lettera o cifra corrispondente" diventa ( 1 1/ d )/ ln B ln + ln(1 + 1/d)/ln 27 dove d indica la prima "lettera o cifra corrispondente"

18 Pagina 18 di 21 Avremo i seguenti valori: TAB. 3 1! cifra Probabilità lettera A 1 21,0 B 2 12,3 C 3 8,7 D 4 6,8 E 5 5,5 F 6 4,7 G 7 4,1 H 8 3,6 I 9 3,2 J 10 2,9 K 11 2,6 L 12 2,4 M 13 2,2 N 14 2,1 O 15 2,0 P 16 1,8 Q 17 1,7 R 18 1,6 S 19 1,6 T 20 1,5 U 21 1,4 V 22 1,3 W 23 1,3 X 24 1,2 Y 25 1,2 Z 26 1,1

19 Pagina 19 di CONCLUSIONI Il sistema fisso delle targhe italiane si rivela decisamente peggiore di quello mobile delle targhe tedesche. In primo luogo si hanno circa 12 volte più combinazioni teoriche possibili. Teoriche perché alcune possibilità non sono permesse né nel sistema italiano né in quello tedesco. Per la legge di Benford il sistema italiano avrebbe il 22,1% di probabilità (vedi TAB. 2) di iniziare con la prima lettera A ma purtroppo le targhe vengono distribuite non in maniera sequenziale ma a gruppi o lotti fissi alle diverse provincie italiane in maniera del tutto casuale. Quindi purtroppo la legge di Benford non ci può, in alcun modo, aiutare per individuare più facilmente le targhe. Invece per il sistema tedesco la legge di Benford ci è di grande aiuto. Innanzitutto la prima lettera, dopo il circondario che aiuta a capire la provenienza dell auto, ha una probabilità del 21% di essere la lettera A (vedi TAB. 3) Anche la prima cifra numerica ha la consueta probabilità del 30,1 % di essere il numero 1 (vedi TAB. 1). E quindi molto probabile che una qualsiasi targa di un qualsiasi circondario, di cui peraltro già conosciamo le prime 1-3 lettere, dopo inizi con: <circondario: 1-3 lettere> Ax 1xxxx La probabilità che si verifichi la combinazione congiunta della lettera A con la cifra 1 è circa del 6,3%, che è già molto mentre prese singolarmente la lettera A e lacifra 1 abbiamo visto che sono rispettivamente del 21% e del 30,1%. Inoltre nel sistema tedesco sappiamo anche che nel proprio luogo di abitazione circolano, con grande probabilità, automobili di quel luogo, così evitiamo di dover ricordare a memoria lettere diverse all inizio della targa come capita invece in quelle italiane. Abbiamo quindi che potendo applicare la legge di Benford nelle targhe tedesche e non

20 Pagina 20 di 21 in quelle italiane si hanno una serie di vantaggi non indifferente. Se dobbiamo ricordarci una targa è molto più facile il sistema tedesco dove è anche permesso speculare sulle prime lettere o cifre che dovrebbero comparire con maggiore frequenza.

21 Pagina 21 di 21 1) Wikipedia, Legge di Benford 2) Finanza aurea, file : 3. RIFERIMENTI 3) Garzantina di matematica, Ed. Garzanti

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI π, Φ ed e Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show some connections between π, Φ and e Riassunto In questo

Dettagli

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE)

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) Gruppo B. Riemann Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between Padovan

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI Gruppo Riemann* Nardelli Michele, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle loro connessioni

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

I numeri semiprimi e i numeri RSA. come loro sottoinsieme

I numeri semiprimi e i numeri RSA. come loro sottoinsieme I numeri semiprimi e i numeri RSA come loro sottoinsieme Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between semi-primes numbers and RSA numbers. Riassunto In questo

Dettagli

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA (Oltre che con la legge di Benford e la legge di Poisson) Ing. Pier Franz Roggero, Dott. Michele

Dettagli

ALGORITMO PER GENERARE COSTANTI MATEMATICHE

ALGORITMO PER GENERARE COSTANTI MATEMATICHE ALGORITMO PER GENERARE COSTANTI MATEMATICHE di Zino Magri ino.magri@libero.it Copyright ZINO MAGRI 03 Vorrei porre alla vostra attenione un algoritmo in grado di generare una π quantità illimitata di costanti

Dettagli

L economia: i mercati e lo Stato

L economia: i mercati e lo Stato Economia: una lezione per le scuole elementari * L economia: i mercati e lo Stato * L autore ringrazia le cavie, gli alunni della classe V B delle scuole Don Milanidi Bologna e le insegnati 1 Un breve

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Il SENTIMENT E LA PSICOLOGIA

Il SENTIMENT E LA PSICOLOGIA CAPITOLO 2 Il SENTIMENT E LA PSICOLOGIA 2.1.Cosa muove i mercati? Il primo passo operativo da fare nel trading è l analisi del sentiment dei mercati. Con questa espressione faccio riferimento al livello

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video)

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) TNT IV Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) Al fine di aiutare la comprensione delle principali tecniche di Joe, soprattutto quelle spiegate nelle appendici del libro che

Dettagli

ESERCITAZIONI MACROECONOMIA 2

ESERCITAZIONI MACROECONOMIA 2 ESERCITAZIONI MACROECONOMIA 2 CAPITOLO 10 Crescita: i fatti principali 1) Spiegate cosa si intende per convergenza nella teoria della crescita e mostrate il grafico con cui si rappresenta. 2) Spiegate

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO?

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? Versione preliminare: 1 Agosto 28 Nicola Zanella E-mail: n.zanella@yahoo.it ABSTRACT I seguenti grafici riguardano il rischio di investire

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

3 Il problema dell impacchettamento come problema

3 Il problema dell impacchettamento come problema 3 Il problema dell impacchettamento come problema NP - Le partizioni di numeri e i Taxicab come possibili esempi di soluzione Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this

Dettagli

I testi che seguono sono estratti dal libro Forex News Trader di Loris Zoppelletto e Lucas Bruni, edito da Trading Library.

I testi che seguono sono estratti dal libro Forex News Trader di Loris Zoppelletto e Lucas Bruni, edito da Trading Library. Questo Documento fa parte del corso N.I.Tr.O. di ProfessioneForex che a sua volta è parte del programma di addestramento Premium e non è vendibile ne distribuibile disgiuntamente da esso. I testi che seguono

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza

postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza la praticabilità di una scomposizione della complessità in informazioni elementari ed

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

UD 6.2. Misurare il costo della vita

UD 6.2. Misurare il costo della vita UD 6.2. Misurare il costo della vita Inquadramento generale Tutti sappiamo, dalla nostra esperienza quotidiana, che il livello generale dei prezzi tende ad aumentare nel tempo. Dato che il PIL è misurato

Dettagli

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri IL TASSO DI CAMBIO Anno Accademico 2013-2014, I Semestre (Tratto da: Feenstra-Taylor: International Economics) Si propone, di seguito, una breve

Dettagli

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Lezione 11: valutazione costi diagramma di PERT Prof.ssa R. Folgieri email: folgieri@dico.unimi.it folgieri@mtcube.com 1 Da ricordare:

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana A volte i fenomeni economici che ci interessano non variano con continuitá oppure non possono essere osservati con continuitá, ma solo a intervalli

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO?

LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO? LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO? Versione preliminare: 25 Settembre 2008 Nicola Zanella E-Mail: n.zanella@yahoo.it ABSTRACT In questa ricerca ho

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21

Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21 Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21 Sezione 2: Macroeconomia Capitolo 10: Problemi 1, 2, 4; Capitolo 11: Problemi 4, 5, 9: Capitolo 12: Problemi

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

STRATEGIA DI TRADING. Turning Points

STRATEGIA DI TRADING. Turning Points STRATEGIA DI TRADING Turning Points ANALISI E OBIETTIVI DA RAGGIUNGERE Studiare l andamento dei prezzi dei mercati finanziari con una certa previsione su tendenze future Analisi Tecnica: studio dell andamento

Dettagli

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità Valutare un test 9 Quando si sottopone una popolazione ad una procedura diagnostica, non tutti i soggetti malati risulteranno positivi al test, così come non tutti i soggetti sani risulteranno negativi.

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

10 DOMANDE per iniziare a fare trading con gli Spread sulle Commodities

10 DOMANDE per iniziare a fare trading con gli Spread sulle Commodities 10 DOMANDE per iniziare a fare trading con gli Spread sulle Commodities 1. E difficile per un principiante fare trading con gli spread? A differenza di quanto potrebbe pensare un neofita, fare trading

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Albero dei guasti DOTT. ING. KONSTANTINOS MILONOPOULOS 1

Albero dei guasti DOTT. ING. KONSTANTINOS MILONOPOULOS 1 Albero dei guasti E uno strumento di analisi dei guasti che si affianca all FMECA. L FMECA e un analisi di tipo bottom-up, perche si parte da un componente e si risale agli effetti di un suo guasto L Albero

Dettagli

MODULO 2 www.sapienzafinanziaria.com. la formazione finanziaria è il miglior investimento per il tuo domani

MODULO 2 www.sapienzafinanziaria.com. la formazione finanziaria è il miglior investimento per il tuo domani MODULO 2 www.sapienzafinanziaria.com la formazione finanziaria è il miglior investimento per il tuo domani Lezione n. 1 Edizione marzo / giugno 2015 La simulazione del trading su dati storici www.sapienzafinanziaria.com

Dettagli

Macroeconomia. quindi: C

Macroeconomia. quindi: C Macroeconomia. Modello Keynesiano Politica economica è interna. Quindi le uniche componenti che ci interessano per la domanda aggregata sono il consumo, gli investimenti e la spesa pubblica. (.) D = C

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Il Calendar diventa Super!

Il Calendar diventa Super! Pubblicazioni PlayOptions Il Calendar diventa Super! Strategist Cagalli Tiziano Disclaimer I pensieri e le analisi qui esposte non sono un servizio di consulenza o sollecitazione al pubblico risparmio.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Tutorial di FPM c. Poderico Luigi

Tutorial di FPM c. Poderico Luigi Poderico Luigi Introduzione Per rendere più agevole l utilizzo di FPM c, specialmente per chi lo usa per la prima volta, proponiamo di seguito un esempio d utilizzo del programma. Partendo dalla formulazione

Dettagli

Mario Albertini. Tutti gli scritti IV. 1962-1964. a cura di Nicoletta Mosconi. Società editrice il Mulino

Mario Albertini. Tutti gli scritti IV. 1962-1964. a cura di Nicoletta Mosconi. Società editrice il Mulino Mario Albertini Tutti gli scritti IV. 1962-1964 a cura di Nicoletta Mosconi Società editrice il Mulino 822 Anno 1964 A Bernard Lesfargues Caro Bernard, Pavia, 28 novembre 1964 dato che non verrò a Lione

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

LA GEOMETRIA NELLE PIASTRELLE

LA GEOMETRIA NELLE PIASTRELLE LA GEOMETRIA NELLE PIASTRELLE Supponiamo di dover pavimentare delle superfici molto estese e vogliamo evitare le classiche composizioni quadrate, rettangolari o a spina di pesce, per rendere meno banale

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Lezione 6: La moneta e la scheda LM

Lezione 6: La moneta e la scheda LM Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 6: La moneta e la scheda LM Facoltà di Scienze della Comunicazione Università di Teramo Moneta DEFINIZIONE. In macroeconomia

Dettagli

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video)

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) TNT IV Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) Al fine di aiutare la comprensione delle principali tecniche di Joe, soprattutto quelle spiegate nelle appendici del libro che

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

GUIDA ALLA REALIZZAZIONE DEL BUSINESS PLAN

GUIDA ALLA REALIZZAZIONE DEL BUSINESS PLAN GUIDA ALLA REALIZZAZIONE DEL BUSINESS PLAN COS È IL BUSINESS PLAN E QUAL È LA SUA UTILITÀ? Il business plan è un documento scritto che descrive la vostra azienda, i suoi obiettivi e le sue strategie, i

Dettagli

Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea)

Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea) Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea) Gli esercizi servono per verificare se avete capito la logica, la struttura di un imposta. Pertanto, quando fate il compito

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

Calcolo della posta giocata: le progressioni

Calcolo della posta giocata: le progressioni Calcolo della posta giocata: le progressioni La funzione è accessibile dal menù in alto,tra le utility, scegliendo la voce : "Progressione giocata" oppure dal menù laterale selezionando la icona "Progressione"

Dettagli

DPD Defence Point Distribution

DPD Defence Point Distribution Pubblicazioni PlayOptions DPD Defence Point Distribution Strategist Cagalli Tiziano Disclaimer I pensieri e le analisi qui esposte non sono un servizio di consulenza o sollecitazione al pubblico risparmio.

Dettagli

Concetti di marketing turistico

Concetti di marketing turistico Concetti di marketing turistico Introduzione Un impresa, per individuare la linea d azione che ha la maggior probabilità di portare al successo il proprio prodotto, cerca di anticipare i bisogni dei consumatori,

Dettagli

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video)

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) TNT IV Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) Al fine di aiutare la comprensione delle principali tecniche di Joe, soprattutto quelle spiegate nelle appendici del libro che

Dettagli

Capitolo 2. Misurazione del sistema macroeconomico. Francesco Prota

Capitolo 2. Misurazione del sistema macroeconomico. Francesco Prota Capitolo 2 Misurazione del sistema macroeconomico Francesco Prota Piano della lezione La misurazione delle sei variabili chiave Tasso di cambio Mercato azionario Tassi di interesse Tasso di inflazione

Dettagli

CREAZIONE DI UN DB RELAZIONALE IN ACCESS

CREAZIONE DI UN DB RELAZIONALE IN ACCESS CONTENUTI: CREAZIONE DI UN DB RELAZIONALE IN ACCESS Definizione della chiave primaria di una tabella Creazione di relazioni fra tabelle Uso del generatore automatico di Query A) Apertura del DB e creazione

Dettagli

Esercizi di Excel. Parte terza

Esercizi di Excel. Parte terza Esercizi di Excel Parte terza Questa settimana verranno presentati alcuni esercizi sull'uso delle funzioni e della formattazione condizionale. In caso di domande, richieste od altro ancora non esitate

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

Eccesso di una cosa buona

Eccesso di una cosa buona 1 Qualità autentiche Le qualità autentiche sono gli attributi che formano l essenza (il nucleo) di una persona; le persone sono impregnate da queste qualità, che pongono in una determinata luce tutte le

Dettagli

INTRODUZIONE I CICLI DI BORSA

INTRODUZIONE I CICLI DI BORSA www.previsioniborsa.net 1 lezione METODO CICLICO INTRODUZIONE Questo metodo e praticamente un riassunto in breve di anni di esperienza e di studi sull Analisi Tecnica di borsa con specializzazione in particolare

Dettagli

APPROFONDIMENTO 2 METODO CICLICO

APPROFONDIMENTO 2 METODO CICLICO METODO CICLICO FS- BORSA ATTENZIONE: ATTENDI QUALCHE SECONDO PER IL CORRETTO CARICAMENTO DEL MANUALE APPROFONDIMENTO 2 METODO CICLICO METODO CHE UTILIZZO PER LE MIE ANALISI - 1 - www.fsborsa.com NOTE SUL

Dettagli

Il prezzo al consumo è il risultato finale di queste componenti:

Il prezzo al consumo è il risultato finale di queste componenti: E notizia di tutti i giorni l inarrestabile corsa dei prezzi al consumo e, in particolare, quella dei prodotti appartenenti ai capitoli Prodotti Alimentari e Bevande Analcoliche, Abitazione, Acqua, elettricità

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

COME SI FORMA E COME SI RICONOSCE UN ROSS HOOK

COME SI FORMA E COME SI RICONOSCE UN ROSS HOOK COME SI FORMA E COME SI RICONOSCE UN ROSS HOOK di Francesco Fabi Trader Professionista e Responsabile di Joe Ross Trading Educators Italia PREMESSA Il Ross Hook è una delle formazioni grafiche che sono

Dettagli

Generalità sull energia eolica

Generalità sull energia eolica Generalità sull energia eolica Una turbina eolica converte l energia cinetica della massa d aria in movimento ad una data velocità in energia meccanica di rotazione. Per la produzione di energia elettrica

Dettagli