Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A"

Transcript

1 Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria (rispondere a 3 domande su 4, a propria scelta) A. (6 punti). Enunciare con precisione e dimostrare il teorema sulla continuità del limite uniforme di funzioni continue. Mostrare con opportuni contresempi la necessità delle ipotesi. B. (6 punti). Nel contesto della teoria dell integrale di Lebesgue, si enuncino con precisione il teorema sulla continuità di un integrale dipendente da un parametro e il teorema di derivazione sotto il segno di integrale per un integrale dipendente da un parametro, cioè una funzione del tipo F () = f (, y) dy, Ω e si dimostri il teorema di derivazione. Fare anche un esempio significativo incontrato nel corso, di applicazione teorica di ciascuno dei due teoremi. C. (6 punti). Si dia la definizione di funzionale lineare continuo su uno spazio vettoriale normato, norma di un funzionale lineare continuo, spazio duale di uno spazio vettoriale normato. Si faccia qualche esempio di funzionale lineare continuo sugli spazi di funzioni incontrati nel corso e si faccia un esempio incontrato nel corso di caratterizzazione dello spazio duale di un certo spazio vettoriale normato. D. (6 punti). Dopo aver definito lo spazio S (R n ) delle funzioni a decrescenza rapida, enunciare e dimostrare (nel caso unidimensionale) le proprietà di questo spazio rilevanti dal punto di vista della teoria della trasformata di Fourier. Quindi mostrare come, sfruttando queste proprietà, è possibile definire la trasformata di Fourier di una funzione L (R n ). 1

2 Svolgere i seguenti esercizi 1. (5 punti). Di ciascuna delle seguenti affermazioni stabilire se è vera o falsa, giustificando la risposta. a. Se f C 0 0 (R) e g L (R), allora f g L 1 (R) b. Se f C 0 (R) e g L 1 loc (R), allora f g L loc (R) c. Se f S (R) e g L 1 (R), allora f g L 3 (R) d. Se f L 1 (R) e g L (R), allora f g L (R) e. Se f L (R) e g L (R), allora f g L 1 (R). (4 punti). Siano 1 + ; g () = χ ( 1,1) (). a. Prima di eseguire calcoli, stabilire in base alle proprietà di f e g se la convoluzione f g è ben definita e appartiene a L 1 (R), o a L (R), se è eventualmente simmetrica pari o dispari, e se è continua (dimostrando l affermazione fatta). b. Calcolare quindi esplicitamente f g e semplificare l espressione ottenuta. 3. (6 punti). Si vuole calcolare la trasformata di Fourier di a. Osservando la funzione f (), prima di eseguire qualsiasi calcolo, dire a quale spazio funzionale appartiene f e a quale apparterrà perciò f; cosa è possibile prevedere riguardo a f (ξ) in base alla teoria, riguardo ai seguenti punti: se f è reale, immaginaria pura, o nessuna delle due; se f è pari, dispari, o nessuna delle due; che regolarità avrà f; con che velocità tenderà a zero f. b. Calcolare quindi f e riscrivere l espressione trovata per f (ξ) in forma semplificata. In particolare, scrivere esplicitamente, in forma semplificata, Im f (ξ) e f (ξ).

3 Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Tema B Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria (rispondere a 3 domande su 4, a propria scelta) A. (6 punti). Per una successione di funzioni f n : Ω R, con Ω R n, definire le nozioni di convergenza puntuale e convergenza uniforme, commentandone la differenza. Enunciare quindi (senza dimostrazione) i vari teoremi studiati che, sotto opportune ipotesi che coinvolgono il concetto di convergenza uniforme, garantiscono che certe proprietà di f n si trasferiscono al limite f. Mostrare quindi con esempi che, se viene a cadere l ipotesi di convergenza uniforme, le conclusioni dei precedenti teoremi possono venire a cadere. B. (6 punti). Si enunci con precisione il teorema di Fubini-Tonelli che consente di trattare gli integrali doppi nella teoria di Lebesgue. Si mostri poi come si applica questo teorema nella dimostrazione del teorema sulla convoluzione di funzioni in L 1 (R n ). C. (6 punti). Dopo aver richiamato la definizione di spazio di Hilbert e di sistema ortonormale (finito), enunciare il teorema della proiezione su un sottospazio finito dimensionale di uno spazio di Hilbert. Dare quindi la definizione di sistema ortonormale (s.o.n.) numerabile e di serie di Fourier, in uno spazio di Hilbert, rispetto a un fissato s.o.n. numerabile. Mostrare come dal teorema della proiezione seguono la disuguaglianza di Bessel e la convergenza delle serie di Fourier (a un elemento dello spazio). Infine, dare la definizione di sistema ortonormale completo (s.o.n.c.) in uno spazio di Hilbert e enunciare con precisione il teorema che riguarda la trasformata e le serie di Fourier in uno spazio di Hilbert, rispetto a un fissato s.o.n.c. D. (6 punti). Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ) e enunciare con precisione le sue proprietà che riguardano: la trasformata come operatore lineare continuo tra opportuni spazi; trasformata della derivata; derivata della trasformata; trasformata della convoluzione. Dimostrare quindi due delle precedenti proprietà (per le formule delle derivate, è richiesto solo il caso di derivata prima e funzioni di una variabile). 3

4 Svolgere i seguenti esercizi 1. (5 punti). Di ciascuna delle seguenti affermazioni stabilire se è vera o falsa, giustificando la risposta. a. Se f C 0 0 (R) e g L 1 (R), allora f g L (R) b. Se f C 0 (R) e g L loc (R), allora f g L1 loc (R) c. Se f S (R) e g L 3 (R), allora f g L 1 (R) d. Se f L (R) e g L 1 (R), allora f g L (R) e. Se f L (R) e g L 1 (R), allora f g L (R). (4 punti). Siano 1 + ; g () = χ ( 1,1) (). a. Prima di eseguire calcoli, stabilire in base alle proprietà di f e g se la convoluzione f g è ben definita e appartiene a L 1 (R), o a L (R), se è eventualmente simmetrica pari o dispari, e se è continua (dimostrando l affermazione fatta). b. Calcolare quindi esplicitamente f g e semplificare l espressione ottenuta. 3. (6 punti). Si vuole calcolare la trasformata di Fourier di a. Osservando la funzione f (), prima di eseguire qualsiasi calcolo, dire a quale spazio funzionale appartiene f e a quale apparterrà perciò f; cosa è possibile prevedere riguardo a f (ξ) in base alla teoria, riguardo ai seguenti punti: se f è reale, immaginaria pura, o nessuna delle due; se f è pari, dispari, o nessuna delle due; che regolarità avrà f; con che velocità tenderà a zero f. b. Calcolare quindi f e riscrivere l espressione trovata per f (ξ) in forma semplificata. In particolare, scrivere esplicitamente, in forma semplificata, Im f (ξ) e f (ξ). 4

5 Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Svolgimento Tema A Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria (rispondere a 3 domande su 4, a propria scelta) A. (6 punti). Enunciare con precisione e dimostrare il teorema sulla continuità del limite uniforme di funzioni continue. Mostrare con opportuni contresempi la necessità delle ipotesi. Risposta: v. libro di testo, 1..1 B. (6 punti). Nel contesto della teoria dell integrale di Lebesgue, si enuncino con precisione il teorema sulla continuità di un integrale dipendente da un parametro e il teorema di derivazione sotto il segno di integrale per un integrale dipendente da un parametro, cioè una funzione del tipo F () = f (, y) dy, Ω e si dimostri il teorema di derivazione. Fare anche un esempio significativo incontrato nel corso, di applicazione teorica di ciascuno dei due teoremi. Risposta: v. libro di testo,.3.4 (e 7.1.1, ad esempio, per l applicazione alla continuità e alla derivata della trasformata di Fourier). C. (6 punti). Si dia la definizione di funzionale lineare continuo su uno spazio vettoriale normato, norma di un funzionale lineare continuo, spazio duale di uno spazio vettoriale normato. Si faccia qualche esempio di funzionale lineare continuo sugli spazi di funzioni incontrati nel corso e si faccia un esempio incontrato nel corso di caratterizzazione dello spazio duale di un certo spazio vettoriale normato. Risposta: v. libro di testo, 3. D. (6 punti). Dopo aver definito lo spazio S (R n ) delle funzioni a decrescenza rapida, enunciare e dimostrare (nel caso unidimensionale) le proprietà di questo spazio rilevanti dal punto di vista della teoria della trasformata di Fourier. Quindi mostrare come, sfruttando queste proprietà, è possibile definire la trasformata di Fourier di una funzione L (R n ). Risposta: v. libro di testo,

6 Svolgere i seguenti esercizi 1. (5 punti). Di ciascuna delle seguenti affermazioni stabilire se è vera o falsa, giustificando la risposta. a. Se f C 0 0 (R) e g L (R), allora f g L 1 (R) b. Se f C 0 (R) e g L 1 loc (R), allora f g L loc (R) c. Se f S (R) e g L 1 (R), allora f g L 3 (R) d. Se f L 1 (R) e g L (R), allora f g L (R) e. Se f L (R) e g L (R), allora f g L 1 (R) a. Vero. Poiché f C 0 0 (R), f g () f C 0 g (). Poiché f g è nulla fuori da un certo intervallo [a, b], e L [a, b] L 1 [a, b] (inclusione tra spazi L p su insiemi di misura finita), fg L 1 (R). b. Falso. Poiché f C 0 (R), su un intervallo [a, b] fissato si ha f g () f C0 [a,b] g (). Tuttavia il fatto che g L 1 [a, b] non implica che g L [a, b], quindi fg può non appartenere a L [a, b]. Ad esempio, 1 C 0 (R), g () = 1 L 1 loc (R) ma fg () = 1 / L loc (R). c. Vero. Se f S (R) allora f L 3 (R) dunque se g L 1 (R), per il teorema di Young f g L 3 (R). d. Vero. Se f L 1 (R) allora f C 0 (R) L (R), dunque se g L (R) è anche f g L (R). e. Vero. Se f L (R) allora f L (R) e se g L (R), per la disuguaglianza di Hölder f g L 1 (R). (4 punti). Siano 1 + ; g () = χ ( 1,1) (). a. Prima di eseguire calcoli, stabilire in base alle proprietà di f e g se la convoluzione f g è ben definita e appartiene a L 1 (R), o a L (R), se è eventualmente simmetrica pari o dispari, e se è continua (dimostrando l affermazione fatta). b. Calcolare quindi esplicitamente f g e semplificare l espressione ottenuta. a. f L (R) ma f / L 1 (R); g L 1 (R) quindi per il teorema di Young, f g L (R). Poiché f è dispari e g è pari, sarà f g dispari. Poiché (f g) () = y 1 + ( y) dy,

7 l integranda è continua rispetto a e y 1 + ( y) y + 1 c per ogni variabile in un intorno fissato di un punto 0 R qualsiasi fissato, e la costante c è una funzione integrabile (rispetto a y) in ( 1, 1), la convoluzione è continua. b. 1 y (f g) () = [ ( y) dy = 1 (1 log + ( y) )] 1 1 ( ) = 1 log 1 + ( 1) 1 + ( + 1) = 1 ( ) log + = 1 ( ) + + log Grafico di f, g e f g. 3. (6 punti). Si vuole calcolare la trasformata di Fourier di a. Osservando la funzione f (), prima di eseguire qualsiasi calcolo, dire a quale spazio funzionale appartiene f e a quale apparterrà perciò f; cosa è possibile prevedere riguardo a f (ξ) in base alla teoria, riguardo ai seguenti punti: se f è reale, immaginaria pura, o nessuna delle due; se f è pari, dispari, o nessuna delle due; che regolarità avrà f; con che velocità tenderà a zero f. b. Calcolare quindi f e riscrivere l espressione trovata per f (ξ) in forma semplificata. In particolare, scrivere esplicitamente, in forma semplificata, Im f (ξ) e f (ξ). 7

8 a. f L (R)\L 1 (R), quindi sarà f L (R) ma probabilmente f / C 0 (R); f è reale non simmetrica, f non sarà né reale né immaginaria pura, e senza simmetrie; f è infinitamente derivabile, quindi f tenderà a zero all infinito più rapidamente di ogni potenza di ; f tende a zero come 1/, quindi come già detto f () / L 1 (R) e potrebbe essere f / C 0 (R). b. La funzione f (z) ha poli del prim ordine nei punti z = 1 ± i. ( ) e f iξ ze (ξ) = R d = se ξ < 0 i Res izξ z( +z+5, 1 + i ) ze i Res izξ z +z+5, 1 i ( ) ze se ξ < 0 i izξ { z+ /z= 1+i = ( ) se ξ < 0 = ze i izξ z+ /z= 1 i { [ se ξ < 0 = [ ( 1 + i) e iξ e 4ξ] ( 1 i) e iξ e 4ξ] i ( 1+i)e iξ( 1+i) i i ( 1 i)e iξ( 1 i) i { [ ] Im f se ξ < 0 (ξ) = ( cos (ξ) sin (ξ)) e 4ξ [ ] ( cos (ξ) sin (ξ)) e 4ξ f { { se ξ < 0 (ξ) = 1 + i e4ξ se ξ < 0 1 i = 5e 4ξ e 4ξ 5e 4ξ = 5e 4 ξ Im f (ξ) f (ξ) 8

9 Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Svolgimento Tema B Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria (rispondere a 3 domande su 4, a propria scelta) A. (6 punti). Per una successione di funzioni f n : Ω R, con Ω R n, definire le nozioni di convergenza puntuale e convergenza uniforme, commentandone la differenza. Enunciare quindi (senza dimostrazione) i vari teoremi studiati che, sotto opportune ipotesi che coinvolgono il concetto di convergenza uniforme, garantiscono che certe proprietà di f n si trasferiscono al limite f. Mostrare quindi con esempi che, se viene a cadere l ipotesi di convergenza uniforme, le conclusioni dei precedenti teoremi possono venire a cadere. Risposta: v. libro di testo, 1..1, 1... B. (6 punti). Si enunci con precisione il teorema di Fubini-Tonelli che consente di trattare gli integrali doppi nella teoria di Lebesgue. Si mostri poi come si applica questo teorema nella dimostrazione del teorema sulla convoluzione di funzioni in L 1 (R n ). Risposta: v. libro di testo,.5,.6. C. (6 punti). Dopo aver richiamato la definizione di spazio di Hilbert e di sistema ortonormale (finito), enunciare il teorema della proiezione su un sottospazio finito dimensionale di uno spazio di Hilbert. Dare quindi la definizione di sistema ortonormale (s.o.n.) numerabile e di serie di Fourier, in uno spazio di Hilbert, rispetto a un fissato s.o.n. numerabile. Mostrare come dal teorema della proiezione seguono la disuguaglianza di Bessel e la convergenza delle serie di Fourier (a un elemento dello spazio). Infine, dare la definizione di sistema ortonormale completo (s.o.n.c.) in uno spazio di Hilbert e enunciare con precisione il teorema che riguarda la trasformata e le serie di Fourier in uno spazio di Hilbert, rispetto a un fissato s.o.n.c. Risposta: v. libro di testo, D. (6 punti). Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ) e enunciare con precisione le sue proprietà che riguardano: la trasformata come operatore lineare continuo tra opportuni spazi; trasformata della derivata; derivata della trasformata; trasformata della convoluzione. Dimostrare quindi due delle precedenti proprietà (per le formule delle derivate, è richiesto solo il caso di derivata prima e funzioni di una variabile). Risposta: v. libro di testo,

10 Svolgere i seguenti esercizi 1. (5 punti). Di ciascuna delle seguenti affermazioni stabilire se è vera o falsa, giustificando la risposta. a. Se f C 0 0 (R) e g L 1 (R), allora f g L (R) b. Se f C 0 (R) e g L loc (R), allora f g L1 loc (R) c. Se f S (R) e g L 3 (R), allora f g L 1 (R) d. Se f L (R) e g L 1 (R), allora f g L (R) e. Se f L (R) e g L 1 (R), allora f g L (R) a. Falso. Se f C 0 0 (R) e g L 1 (R), allora f g () f C 0 g (), inoltre f g si annulla fuori da un certo intervallo [a, b]. Tuttavia il fatto che g L 1 [a, b] non implica che g L [a, b], contresempio: g () = e e f () continua e diversa da zero in un intorno dell origine. b. Vero. Fissato un intervallo [a, b], f g () f C 0 [a,b] g () Se g L [a, b], allora g L 1 [a, b] (inclusione tra spazi L p su insiemi di misura finita), perciò f g L 1 [a, b]. c. Vero. Sia q l esponente coniugato di p = 3. Poiché f S (R) L q (R) e g L 3 (R), per la disuguaglianza di Hölder f g L 1 (R). d. Vero. Se f L (R) allora f L (R) e se g L 1 (R), per il teorema di Young f g L (R). e. Falso. Se f L (R) allora f L (R). Ora g L 1 (R) e il prodotto tra una funzione L 1 e una funzione L non sta necessariamente in L. Ad esempio: L (R) ; g () = e L 1 (R) f g / L (R).. (4 punti). Siano 1 + ; g () = χ ( 1,1) (). a. Prima di eseguire calcoli, stabilire in base alle proprietà di f e g se la convoluzione f g è ben definita e appartiene a L 1 (R), o a L (R), se è eventualmente simmetrica pari o dispari, e se è continua (dimostrando l affermazione fatta). b. Calcolare quindi esplicitamente f g e semplificare l espressione ottenuta. 10

11 a. f L (R) ma f / L 1 (R); g L 1 (R) quindi per il teorema di Young, f g L (R). Poiché f è dispari e g è pari, sarà f g dispari. Poiché (f g) () = 1 1 y 1 + ( y) dy, l integranda è continua rispetto a e y 1 + ( y) y + 1 c per ogni variabile in un intorno fissato di un punto 0 R qualsiasi fissato, e la costante c è una funzione integrabile (rispetto a y) in ( 1, 1), la convoluzione è continua. b. 1 y (f g) () = [ ( y) dy = 1 (1 log + ( y) )] 1 1 ( ) = 1 log 1 + ( 1) 1 + ( + 1) = 1 ( ) log + = 1 ( ) + + log Grafico di f, g e f g. 3. (6 punti). Si vuole calcolare la trasformata di Fourier di a. Osservando la funzione f (), prima di eseguire qualsiasi calcolo, dire a quale spazio funzionale appartiene f e a quale apparterrà perciò f; cosa è 11

12 possibile prevedere riguardo a f (ξ) in base alla teoria, riguardo ai seguenti punti: se f è reale, immaginaria pura, o nessuna delle due; se f è pari, dispari, o nessuna delle due; che regolarità avrà f; con che velocità tenderà a zero f. b. Calcolare quindi f e riscrivere l espressione trovata per f (ξ) in forma semplificata. In particolare, scrivere esplicitamente, in forma semplificata, Im f (ξ) e f (ξ). a. f L (R)\L 1 (R), quindi sarà f L (R) ma probabilmente f / C 0 (R); f è reale non simmetrica, f non sarà né reale né immaginaria pura, e senza simmetrie; f è infinitamente derivabile, quindi f tenderà a zero all infinito più rapidamente di ogni potenza di ; f tende a zero come 1/, quindi come già detto f () / L 1 (R) e potrebbe essere f / C 0 (R). b. La funzione f (z) ha poli del prim ordine nei punti z = 1 ± i. ( ) e f iξ ze (ξ) = R d = se ξ < 0 i Res izξ z( +z+5, 1 + i ) ze i Res izξ z +z+5, 1 i ( ) ze se ξ < 0 i izξ { z+ /z= 1+i = ( ) se ξ < 0 = ze i izξ z+ /z= 1 i { [ se ξ < 0 = [ ( 1 + i) e iξ e 4ξ] ( 1 i) e iξ e 4ξ] i ( 1+i)e iξ( 1+i) i i ( 1 i)e iξ( 1 i) i { [ ] Im f se ξ < 0 (ξ) = ( cos (ξ) sin (ξ)) e 4ξ [ ] ( cos (ξ) sin (ξ)) e 4ξ f { { se ξ < 0 (ξ) = 1 + i e4ξ se ξ < 0 1 i = 5e 4ξ e 4ξ 5e 4ξ = 5e 4 ξ Im f (ξ) f (ξ) 1

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere a

Dettagli

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 18 A.A. 17/18. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 217 A.A. 216/217. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom Es 1 Es 2 Es Tot. Punti Domande di teoria

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano April 20, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 7 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 3. Teoria della misura e dell

Dettagli

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 217 A.A. 216/217. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti Domande di teoria

Dettagli

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 9 A.A. 8/9. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Marco Bramanti Politecnico di Milano June 22, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano January 23, 2017 Parte 3. Teoria della misura e dell

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria

Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria Marco Bramanti Politecnico di Milano December 18, 2018 Prima metà del programma (domande di teoria della prima prova in

Dettagli

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 08 A.A. 07/08. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 1. Elementi di analisi funzionale.

Dettagli

Esame di Analisi Funzionale e Trasformate Terzo appello. Gennaio 2019 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Terzo appello. Gennaio 2019 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funionale e Trasformate Tero appello. Gennaio 19 A.A. 17/18. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom Es 1 Es Es Tot. Punti Domande di teoria rispondere a

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano October 28, 2016 1. Elementi di analisi funzionale 1.1.

Dettagli

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 215/216 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano November 4, 215 Parte 1. Richiami di analisi funzionale 1.

Dettagli

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2011/2012 2 Argomento della lezione N. 1 Fondamenti assiomatici. L unità immaginaria Argomento della lezione N. 2 Moduli e coniugati. Disuguaglianza

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Corso di Metodi Matematici per l Ingegneria A.A. 26/27 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Marco Bramanti Politecnico di Milano December 4, 26 Esercizi

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) June 1, 2015 1 Domande aperte 1.1 Equazione della corda vibrante e delle onde in dimensione superiore

Dettagli

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 28 A.A. 26/27. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom 2 Dom 3 Es Es 2 Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 6 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (prima parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (prima parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 214/215 (prima parte) April 15, 215 1 Domande aperte 1.1 Modelli di erenziali 1. Dedurre, dalla legge di Coulomb dell elettrostatica,

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 25/6 Appello del 27 settembre 26 Cognome: Nome N matr. o cod. persona: Domande di teoria rispondere a tre domande

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione.

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione. COMPLEMENTI DI MATEMATICA Corso di Laurea Magistrale in Ingegneria Elettrotecnica CM98sett.tex 6..2009 - lunedì (2 ore) Esercitazione del 6..2009 Risolvere tre esercizi per pagina, a scelta.. Si definisca

Dettagli

Registro delle lezioni

Registro delle lezioni Complementi di Analisi Matematica - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Registro delle lezioni Laura Poggiolini e Gianna Stefani 2 ottobre 2006, 2 ore, LP Il campo dei

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso.

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Il campo C dei numeri complessi. Fondamenti assiomatici del

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2017/2018. Prof. M. Bramanti. y = 1+y2

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2017/2018. Prof. M. Bramanti. y = 1+y2 Quarto appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 7/8. Prof. M. Bramanti Es. 3 5 6 7 Tot. Punti Cognome e nome in stampatello) codice persona o n di matricola) n d

Dettagli

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Fondamenti assiomatici del sistema di numeri L unita immaginaria. Convergenza per funzioni

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo sercizi del Corso di Istituzioni di Analisi Superiore, I modulo 1. sercizi su massimo e minimo limite 1. lim inf a n lim sup a n 2. Se a n b n per ogni n N, allora lim inf a n lim inf b n. Vale anche lim

Dettagli

Esercizi per il corso di Analisi 6.

Esercizi per il corso di Analisi 6. Esercizi per il corso di Analisi 6. 1. Si verifichi che uno spazio normato (X, ) è uno spazio vettoriale topologico con la topologia indotta dalla norma. Si verifichi poi che la norma è una funzione continua

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/7. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Fourier

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Fourier Corso di Metodi Matematici per l Ingegneria A.A. 6/7 Esercizi svolti sulla trasformata di Fourier Marco Bramanti Politecnico di Milano December 5, 6 Esercizi A. Esercizi sul calcolo di trasformate Esercizio

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 01/01. Prof. M. Bramanti 1 Tema n 1 4 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

LA TRASFORMATA DI FOURIER

LA TRASFORMATA DI FOURIER LA TASFOMATA DI FOUIE 1. Definizione della trasformata di Fourier Definizione 1.1. Sia u in L 1 ( e sia ξ in. La trasformata di Fourier di u è la funzione (1.1 F(u(ξ = e iξ x u(x dx. Ovviamente, non è

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI A.A. 2015/16 ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre Docenti: Prof. Gennaro Infante per i primi 6 crediti ed io per i rimanenti 6 crediti. REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE:

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 8/9 Prof. F. Cesi e C. Presilla Prova Finale Febbraio 1 Cognome Nome Canale Cesi (Astrofisica) Presilla (Fisica) intendo MANTENEE il voto degli esoneri 1 penalità

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria 13 giugno 2016 1. In base alla teoria studiata e giustificando la risposta, determinare (a) se la funzione f(x) = cos x è pari, dispari o nessuna delle due cose; x 5 (b) se la funzione g(x) = 2 x + x 3

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti Secondo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 8/9. Prof. M. Bramanti Es. 6 7 Tot. Punti Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI LIBRETTO DELLE LEZIONI DEL CORSO DI MODELLI E METODI MATEMATICI DELLA FISICA CORSI DI LAUREA TRIENNALI IN FISICA

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2017/2018. Prof. M. Bramanti. Tema n 1.

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2017/2018. Prof. M. Bramanti. Tema n 1. Secondo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 17/18. Prof. M. Bramanti 1 Tema n 1 5 6 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

Premessa. Milano, Settembre '93.

Premessa. Milano, Settembre '93. Premessa Questo testo raccoglie il materiale da me utilizzato, da qualche anno, per le esercitazioni del corso di Analisi III tenuto dal prof. Carlo Pagani presso la facoltà di Ingegneria del Politecnico

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Quesiti di Metodi Matematici per l Ingegneria

Quesiti di Metodi Matematici per l Ingegneria Quesiti di Metodi Matematici per l Ingegneria Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Metodi Matematici per l Ingegneria. Per una buona preparazione é consigliabile

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A. 2009 2010 PRIMA PARTE DEL CORSO F. ZANOLIN, UNIVERSITÀ DEGLI STUDI DI UDINE, DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA DELLE SCIENZE 206, 33100

Dettagli

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Quarto appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/. Prof. M. Bramanti Tema n 6 Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

Equazioni differenziali

Equazioni differenziali Analisi Matematica 2 Ing. Elettronica, a.a. 2017/2018. Politecnico di Milano Domande teoriche tipo per la prova orale Prof. M. Bramanti Si ricorda che il programma dettagliato del corso, con le indicazioni

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale Dip. Matematica - Università Roma Tre Prof. U. Bessi, S. Gabelli, G. Gentile, M. Pontecorvo febbraio 2006 Istruzioni. a) La sufficienza viene

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 16/17. Prof. M. Bramanti 1 Tema n 1 5 6 Tot. Cognome e nome in stampatello codice persona o n

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2/A

Modelli e Metodi Matematici della Fisica. Scritto 2/A Modelli e Metodi Matematici della Fisica. Scritto /A Cesi/Presilla A.A. 007 08 Nome Cognome Il voto dello scritto sostituisce gli esoneri 1 Devo verbalizzare il primo modulo da 4 crediti? S N problema

Dettagli

f(x) = E chiaro che in questo caso, l integrale di f si puo fare ed e finito: f(x)dx = dx = b a

f(x) = E chiaro che in questo caso, l integrale di f si puo fare ed e finito: f(x)dx = dx = b a 1. Lo spazio L 1 Avremo bisogno di calcolare integrali di funzioni definite su tutto R, e quindi ricordiamo brevemente alcuni esempi di funzioni integrabili. Definition 1. Si dice che una funzione f appartiene

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt.

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt. Jean Baptiste Joseph Fourier (1768 1830) La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 http://www-groups.dcs.st-and.ac.uk/

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 217 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale Dip. Matematica - Università Roma Tre Prof. U. Bessi, S. Gabelli, G. Gentile, M. Pontecorvo 3 Ottobre 2006 Istruzioni. a) La sufficienza

Dettagli

Secondo Appello di Analisi Matematica 2 Ing. Elettronica Politecnico di Milano A.A. 2014/2015. Prof. M. Bramanti Tema n 1

Secondo Appello di Analisi Matematica 2 Ing. Elettronica Politecnico di Milano A.A. 2014/2015. Prof. M. Bramanti Tema n 1 Es. 2 3 4 5 6 7 8 Tot. Punti Secondo Appello di Analisi Matematica 2 Ing. Elettronica Politecnico di Milano A.A. 204/205. Prof. M. ramanti Tema n Cognome e nome (in stampatello) codice persona n d'ordine

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Università degli Studi di Udine Anno Accademico 2016/2017

Università degli Studi di Udine Anno Accademico 2016/2017 Università degli Studi di Udine Anno Accademico 2016/2017 Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in Matematica Programma del Analisi Matematica II primo modulo e parte

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

Corsi di Laurea in Fisica, Fisica ed Astrofisica. Analisi A.A Foglio 6. f(x) = x 2 sen ( )

Corsi di Laurea in Fisica, Fisica ed Astrofisica. Analisi A.A Foglio 6. f(x) = x 2 sen ( ) Corsi di Laurea in Fisica, Fisica ed Astrofisica Analisi A.A. 007-008 - Foglio 6 6. Esercizio Data la funzione provare che: { f) = sen ) 0, α = 0, i) esiste un solo α R tale che f) è continua ovunque;

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzione del secondo compitino di Analisi e 2 AA 20/205 Luca Ghidelli, Giovanni Paolini, Leonardo Tolomeo febbraio 206 Esercizio Testo Dire per quali valori del parametro reale α, < α 3, la funzione

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2

Modelli e Metodi Matematici della Fisica. Scritto 2 Modelli e Metodi Matematici della Fisica Scritto Cesi/Presilla AA 6 7 Canale 1 Cesi Presilla Nome Cognome Il voto dello scritto rimpiazza gli esoneri 1 3 penalità problema voto 1 3 5 6 7 8 9 penalità ritardo

Dettagli

Analisi Matematica II. (1) Topologia di R n

Analisi Matematica II. (1) Topologia di R n Programma d esame di Analisi Matematica II e Complementi di Analisi Matematica per i corsi di laurea triennale in Ingegneria Chimica ed Ingegneria dell Energia Anno Accademico 2018/2019 (1) Topologia di

Dettagli

Universita degli Studi di Ancona Ingegneria delle Costruzioni edili e del Recupero Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008

Universita degli Studi di Ancona Ingegneria delle Costruzioni edili e del Recupero Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008 Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008 1. Fornire la definizione di funzione continua e dare un esempio delle tre diverse speci di discontinuità. Scrivere per esteso con ɛ e δ cosa

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 A ESERCIZIO 1. (6 punti) Data la funzione reale di due variabili reali f(x, y) = ln x 3y + 3y x 1 (a) determinare

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Eame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 5/6 Secondo Appello. 6 febbraio 5. Cognome: Nome N matr. o cod. perona: Domande di teoria ripondere a tre domande

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA 1. x 1 + x y

TEMI D ESAME DI ANALISI MATEMATICA 1. x 1 + x y TEMI D ESAME DI ANALISI MATEMATICA GRAZIANO CRASTA E LUIGI ORSINA, A.A. 203/4. SPAZI METRICI, TOPOLOGIA, COMPLETEZZA Esercizio.. Dimostrare che la funzione d(, y) := + y + y, y R, è una distanza su R.

Dettagli

Esercizi per il corso di Metodi di Matematici per l Ingegneria

Esercizi per il corso di Metodi di Matematici per l Ingegneria Esercizi per il corso di Metodi di Matematici per l Ingegneria M. Bramanti April 8, 22 Esempi ed esercizi sul passaggio al limite sotto il segno di integrale per l integrale di Lebesgue, e confronto con

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

( 1 π. (a n cos nt + b n sin nt) t R (3)

( 1 π. (a n cos nt + b n sin nt) t R (3) 7. SERIE TRIGONOMETRICHE E SERIE DI FOURIER Definizione 1. L p (R), p [1, + ), denota la classe di tutte le funzioni f : R C, misurabili secondo Lebesgue, periodiche con periodo per le quali il funzionale

Dettagli

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann 1 Definizione (Algebra): T P Ω è un'algebra se: A, B T A B T, Ω T A T A C T Se A i T A i T si dice σ-algebra Definizione (Misura):

Dettagli

A. Funzionali e operatori lineari continui, operatori integrali

A. Funzionali e operatori lineari continui, operatori integrali Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 013/014. Prof. M. Bramanti Esempi di domande teoriche da esame e esercizi (sulle parti 3, 4, 5 del corso) Le seguenti domande teoriche sono

Dettagli

Esercizi 8 12 gennaio 2009

Esercizi 8 12 gennaio 2009 Sia α > e Esercizi 8 2 gennaio 29 f(x, y = ( + x 2 + y 2 α. Dimostrare che f appartiene a L p ( 2, con α p >. Osserviamo innanzitutto che, essendo f continua, l integrale di f p su 2 è uguale all integrale

Dettagli

Esercizi di Analisi Reale

Esercizi di Analisi Reale sercizi di Analisi Reale Corso di Laurea in Matematica Terminologia. Sia R n un insieme misurabile. Una funzione positiva misurabile f su, cioè una funzione f : [, ] misurabile, ammette sempre integrale

Dettagli

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier.

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier. Lecce, 16/4/2008 1) Calcolare il valor principale del seguente integrale: x + 1 (x 2 + 4)x dx Y (t) 3Y (t) + 2Y (t) = H(t 1) e t t > 0, Y (0) = 0, Y (0) = 1, 3) Enunciare e dimostrare le regole di trasformazione

Dettagli