Condensatori e resistenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Condensatori e resistenze"

Transcript

1 Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto dagl student Lceal che s accngono ad affrontare l esame d stato. È trattato solo l caso delle corrent contnue. 1 Condensator Resstenze attere Collegament n sere e n parallelo Crcut RC Condensator I condensator sono de dspostv, costtut da due conduttor appaat, dett armature, n grado d accumulare carca. ss sono caratterzzat da una costante, detta capactà, data da C = Q V, dove Q è la carca accumulata e V è la dfferenza d potenzale tra le due armature. nche se le analoge draulche non sono sempre correttamente applcabl all elettromagnetsmo, n prma approssmazone un condensatore può essere paragonato a una coppa d serbato per lqud, per esempo a forma d paralleleppedo, dentc. Se ess contengono la stessa quanttà d lqudo, la dfferenza tra lvell raggunt ne due serbato è nulla. Se, medante un opportuno dspostvo, l lqudo vene trasferto da un serbatoo all altro, allora s produce una dfferenza d lvello, tanto pù grande quanto pù pccola è la sezone de parallelepped. Questo processo corrsponde alla carca del 1

2 Condensator e resstenze 2 condensatore: la quanttà d acqua n eccesso n un serbatoo rspetto all altro corrsponde alla carca Q, la dfferenza d lvello alla dfferenza d potenzale V. La mnore o maggore sezone orzzontale corrsponde alla mnore o maggore capactà. Se, dopo aver prodotto un certo dslvello, s collegano due serbato, s ha un flusso d lqudo che però dura solo fn quando s è rstablto l equlbro, per po cessare completamente. I condensator s rappresentano ne crcut elettrc con l smbolo seguente: C Fgura 1: Smbolo per condensator 2 Resstenze Le resstenze sono conduttor che collegano tra d loro var dspostv elettrc. C nteressamo esclusvamente alle resstenze ohmche, caratterzzate da una costante, detta resstenza, data dalla legge (d Ohm) R = V, dove è la corrente e V la dfferenza d potenzale. Ne crcut elettrc le resstenze s ndcano con l smbolo seguente: R Fgura 2: Smbolo per le resstenze Se l potenzale n è maggore che n, la corrente flusce da verso : s usa dre che l passaggo d corrente n una resstenza provoca una caduta d potenzale nel verso della corrente. Qualunque componente d un crcuto metallco dove crcol corrente ha una resstenza, ma, nella pratca, alcune part del crcuto hanno resstenze enormemente pù elevate che altre: per questo s usano schematzzare crcut con le resstenze concentrate solo n determnate zone, rappresentate col smbolo sopra ndcato, mentre le restant part sono consderate prve d resstenza e rappresentate con tratt d flo rettlneo. S deve notare che, su un tratto d flo rettlneo, l passaggo d corrente non provoca caduta d potenzale, ovvero che su quest tratt l potenzale è costante, esattamente come avvene per conduttor n equlbro elettrostatco. Proseguendo con l analoga draulca, e sempre tenendo conto de suo lmt, una resstenza può essere pensata come un tubo d collegamento fra due serbato che hanno lqudo a dverso lvello, e con la caratterstca d frenare l lqudo stesso nel passaggo Lucano attaa

3 Condensator e resstenze 3 da un serbatoo al altro. Se per esempo collego con una resstenza le due armature d un condensatore carco, avrò un passaggo d corrente molto forte all nzo, e po va va pù debole, man mano che la dfferenza d potenzale fra le due armature dmnusce fno ad annullars. È sostanzalmente quanto avverrebbe se collegass due serbato d acqua n cu l acqua s trov a dvers lvell. 3 attere Una battera (o pla, o generatore) è un dspostvo n grado d mantenere a suo cap una dfferenza d potenzale costante. Rprendendo l analoga draulca, n prma approssmazone una battera può essere pensata come una coppa d serbato per lqud, d cu uno contenente acqua fno ad una certa quota h e l altro vuoto. Se due serbato vengono collegat, s ha un flusso d acqua dal serbatoo peno verso quello vuoto. Il meccansmo nterno d funzonamento, a dfferenza d quello che succede ne condensator, è però n grado d rportare l acqua dal basso verso l alto, mantenendo costante la dfferenza d quota e l flusso nel tubo d collegamento. L analoga draulca c può anche far capre bene l fatto che, dopo che due serbato sono stat collegat, c è scuramente un po d rtardo nel rportare l acqua dal basso verso l alto: la dfferenza d lvello durante l funzonamento è un po pù pccola d quanto non sa a serbato scollegat. S usa schematzzare questo fatto dcendo che la battera è un dspostvo n grado d mantenere una dfferenza d potenzale fssa, connesso con una resstenza, detta resstenza nterna, che, durante l funzonamento, rende la dfferenza d potenzale effettva un po pù pccola d quella nomnale. Un generatore s dce deale se questa resstenza nterna è nulla (o meglo trascurable). La caratterstca dstntva d un generatore è la sua forza elettromotrce, ovvero la dfferenza d potenzale che esso è n grado d mantenere; essa s ndca generalmente con f o con e s rappresenta con l smbolo seguente: Fgura 3: Smbolo per le battere, o ple dove l segmento pù lungo ndca l punto a potenzale pù alto. S deve tenere conto che, per generator deal, è la dfferenza d potenzale sa a crcuto aperto (assenza d corrente) che a crcuto chuso (crcolazone d corrente); per generator real, coè con resstenza nterna non nulla, la dfferenza d potenzale a crcuto chuso è leggermente nferore rspetto a quella a crcuto aperto. Una battera collegata ad un condensatore provocherà la carca del condensatore stesso; una battera collegata ad una resstenza farà crcolare corrente nella resstenza stessa: s tratta de due crcut elettrc pù semplc possble. Lucano attaa

4 Condensator e resstenze 4 C +Q Q R Q = C = R Fgura 4: Condensatore e resstenza n un crcuto semplce 4 Collegament n sere e n parallelo Una stuazone molto comune nelle applcazon prevede collegament d due o pù condensator o resstenze, collegament che possono avvenre n sere o n parallelo. V 1 V 2 V 1 V 2 C 1 C2 R 1 R2 +Q Q +Q Q Fgura 5: Collegament n sere C 2 +Q 2 Q 2 2 R 2 +Q Q C 1 +Q 1 Q 1 1 R 1 Fgura 6: Collegament n parallelo La domanda che c possamo porre è la seguente: è possble sostture a due conden- Lucano attaa

5 Condensator e resstenze 5 sator [alle due resstenze] un unco condensatore [un unca resstenza], n modo che tutta le restante parte del crcuto rmanga nalterata, ovvero che non cambno le dfferenze d potenzale e la carca [la corrente] che l generatore spedsce su condensator [sulle resstenze]? In sostanza s tratta d sostture crcut d fgure 5 e 6 con crcut semplc come quell d fgura 4. La rsposta a questa domanda è affermatva e anz è facle calcolare la capactà [resstenza] del condensatore [della resstenza] da sostture: la chameremo capactà equvalente [resstenza equvalente]. Usamo le seguent nomenclature: V è la dfferenza d potenzale tra punt e; Q è la carca totale spedta dalla battera su condensator [ è la corrente totale fatta crcolare dalla battera nel crcuto]; C eq è la capactà equvalente [R eq è la resstenza equvalente]; Tenamo noltre conto che, per le propretà de condensator [delle resstenze], s deve avere: V = Q [ ; V = Req ]. C eq Possamo allora costrure la seguente tabella. Condensator In sere Resstenze V = V 1 + V 2 V = V 1 + V 2 Q = Q + Q C eq C 1 C 2 R = R 1 + R 2 1 = C eq C 1 C 2 R = R 1 + R 2 In parallelo Q = Q 1 + Q 2 = V C eq V = C 1 V + C 2 V = V + Q R eq R 1 R 2 1 C eq = C 1 + C 2 = R eq R 1 R 2 Lo schema proposto rende evdent le analoge e le dfferenze tra l caso de condensator e quello delle resstenze e, tra l altro, l fatto che la capactà è una caratterstca statca de conduttor, mentre la resstenza è una caratterstca dnamca. Lucano attaa

6 Condensator e resstenze 6 5 Crcut RC Un crcuto che preveda la presenza sa d un condensatore che d una resstenza s chama un crcuto RC: n esso la corrente contnua può crcolare solo durante la fase d carca o d scarca del condensatore, n quanto l condensatore può essere consderato equvalente a una nterruzone del crcuto. Consderamo l crcuto nella fase d carca. R K Fgura 7: Crcuto RC nella fase d carca lla chusura dell nterruttore K, la pla comnca a carcare l condensatore: fn tanto che l processo non è completato, e la carca sul condensatore non ha raggunto l suo valore massmo Q = C, nel crcuto flusce una corrente, avente ntestà massma subto dopo la chusura del crcuto (quando l condensatore è ancora scarco) e po ntenstà va va decrescente man mano che l condensatore s carca. Se ndchamo con q e V la carca e l potenzale sul condensatore n una fase ntermeda, possamo notare che sa q che V varano nel tempo: q = q(t) e V = V (t); la corrente che flusce nel crcuto è allora = q (t) = dq /dt. vremo qund: n t = 0 + (subto dopo la chusura del crcuto) la carca e l potenzale del condensatore saranno 0; n un stante ntermedo t, la carca e l potenzale del condensatore avranno raggunto valor q e V rspettvamente; alla fne del processo, la carca e l potenzale del condensatore avranno raggunto valor massm Q e rspettvamente, con Q = C. In tutte le fas la somma d tutte le dfferenze d potenzale nel crcuto deve essere 0. Dunque q C R = 0, ovvero q(t) C Rq (t) = 0. S tratta d un equazone che ha come ncognta la funzone q = q(t) e che stablsce un legame tra l ncognta e la sua dervata prma: un equazone d questo tpo s chama un equazone dfferenzale. Non è faclssmo (ma nemmeno troppo dffcle) trovarne le soluzon. Qu però c nteressa solo segnalare che la funzone ( ) q = q(t) = C 1 e t RC è l unca soluzone che soddsfa anche la condzone che, per t = 0, s abba q = 0. Lucano attaa

7 Condensator e resstenze 7 q C R 0.63 C O RC t O t Fgura 8: Grafco della carca e della corrente nella fase d carca d un crcuto RC S not, nella fgura 8, che dopo un tempo t = RC, la carca ha raggunto crca due terz del suo valore fnale. Per la fase d scarca del crcuto basta mmagnare, una volta carcato l condensatore, d elmnare la pla, collegando suo cap. R K Fgura 9: Crcuto RC nella fase d scarca L equazone del crcuto dfferrà dalla precedente solo per la mancanza del termne : q(t) C + Rq (t) = 0. C sarà la seguente modfca delle condzon: n t = 0 + (subto dopo la chusura del crcuto) la carca e l potenzale del condensatore avranno l valore massmo Q e, con Q = C; n un stante ntermedo t, la carca e l potenzale del condensatore saranno calat fno a raggungere valor q e V rspettvamente; alla fne del processo, la carca e l potenzale del condensatore saranno null. nche questa volta l equazone che fornsce la carca è un equazone dfferenzale, e l unca soluzone che verfca le condzon nzal date è: q = q(t) = Ce t RC. Questa volta grafc della carca e della corrente (anz del modulo della corrente, perchè, come dervata della carca, essa sarebbe negatva) sono: Lucano attaa

8 Condensator e resstenze 8 q C R 0.37 C O RC t O t Fgura 10: Grafco della carca e della corrente nella fase d scarca d un crcuto RC S not, nella fgura 10, che dopo un tempo t = RC, la carca è calata a crca un terzo del suo valore nzale. Lucano attaa

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

I simboli degli elementi di un circuito

I simboli degli elementi di un circuito I crcut elettrc Per mantenere attvo l flusso d carche all nterno d un conduttore, è necessaro che due estrem d un conduttore sano collegat tra loro n un crcuto elettrco. Le part prncpal d un crcuto elettrco

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

IL TRANSISTOR BIPOLARE (BJT)

IL TRANSISTOR BIPOLARE (BJT) IL TRANSISTOR BIPOLARE (BJT) 1 - Introduzone La parola transstor è la contrazone d transfer resstor (resstenza d trasfermento), e tende a sottolneare come questo dspostvo s dmostr n grado d trasferre una

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERAE Ingegnera Meccanca Roma Tre AA/011-01 APPUNTI PER I CORSO (Rpres ntegralmente e da me assemblat da test d bblografa) Roberto Renzett Bblografa: Paul J. Tpler Physcs Worth Publshers,

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Distributore di comando della motrice. Istruzione di controllo. Informazioni sulla sicurezza 1/5. con pedale / 3 Interruttori 1/2

Distributore di comando della motrice. Istruzione di controllo. Informazioni sulla sicurezza 1/5. con pedale / 3 Interruttori 1/2 Dstrbutore d comando della motrce con pedale / 3 Interruttor Istruzone d controllo Prma d nzare l controllo s raccomanda d leggere attentamente le nformazon d scurezza. Informazon sulla scurezza Il controllo

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Unità Didattica N 29. Campo magnetico variabile

Unità Didattica N 29. Campo magnetico variabile Untà Ddattca N 29 Campo magnetco varable 1) Il flusso del vettore B 2) Esperenze d Faraday sulle corrent ndotte 3) Legge d Faraday-Newmann-Lenz 4) Corrent d Foucoult 5) Il fenomeno dell'autonduzone 6)

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

V.5. Generatori e circuiti elettrici

V.5. Generatori e circuiti elettrici Corso d fsca generale a cura d Claudo Cereda rel. 4.2 dcembre 2004 Dfferenze d potenzale da contatto Ple ed accumulator Il collegamento delle resstenze La legge d Ohm per tratt d crcuto con generator La

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Elettricità e circuiti

Elettricità e circuiti Elettrctà e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà Effetto termco della corrente esstenze n sere e n parallelo Legg d Krchoff P. Maestro Elettrctà e crcut

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

ISIS L. Einaudi S.Giuseppe Vesuviano (NA) 2015/16- Saperi minimi di Fisica prof. Angelo Vitiello

ISIS L. Einaudi S.Giuseppe Vesuviano (NA) 2015/16- Saperi minimi di Fisica prof. Angelo Vitiello 15/16- Saper mnm d Fsca prof. Angelo Vtello Magnetzzazone. S dce che un corpo è magnetzzato (magnete o calamta) se ha la propretà d attrarre materale ferroso. Questo fenomeno fu scoperto n un mnerale d

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

impianti di prima pioggia

impianti di prima pioggia SHUNT ITALIANA TECHNOLOGY S.r.l. dvsone depurazone acque mpant d prma pogga un futuro per l acqua... 0867 CAPONAGO (MB) - Va G. Galle, - Tel. 0.95.96.6 - Fax 0.95.74..54 - dvacque@shunt.t - www.shunt.t

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

TORRI DI RAFFREDDAMENTO PER L ACQUA

TORRI DI RAFFREDDAMENTO PER L ACQUA TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,

Dettagli

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models Alessandro Pluchno Metastablty, Nonextensvty and Glassy Dynamcs n a Class of Long Range Hamltonan Models Dscussone Tes per l consegumento del ttolo Febbrao 2005 Tutor: Prof.A.Rapsarda E-mal: alessandro.pluchno@ct.nfn.t

Dettagli

AMPLIFICAZIONI. LS500B A sub. manuale

AMPLIFICAZIONI. LS500B A sub. manuale AMPLIFICAZIONI manuale AMPLIFICAZIONI ATTENZIONE! rferment del manuale Possono essere provocate stuazon potenzalmente percolose che possono arrecare leson personal. Possono essere provocate stuazon potenzalmente

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE UNIVERSITA DI PALERMO DIPARTIMENTO DI INGEGNERIA CIVILE AMBIENTALE E AEROSPAZIALE CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE a cura d: Prof. Ing. Gaspare Vvan e Ing. Mchele Torregrossa

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

7 Verifiche di stabilità

7 Verifiche di stabilità 7 Verfche d stabltà 7.1 Generaltà Note tutte le azon agent sul manufatto, vanno effettuate le verfche d stabltà dell opera d sostegno. Le azon da consderare sono fornte dalla spnta del terrapeno a monte,

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Realizzazione e studio di un oscillatore a denti di sega

Realizzazione e studio di un oscillatore a denti di sega 1 Realzzazone e stuo un oscllatore a ent sega Cenn teorc Lo scopo quest esperenza è quello stuare la cosetta tensone a ent sega, ovvero una tensone alternata, peroo T, che vara lnearmente con l tempo a

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Kit di conversione gas CELSIUS/Hydrosmart

Kit di conversione gas CELSIUS/Hydrosmart Kt d conversone gas CELSIUS/Hydrosmart IT (04.06) SM Indce 2 Indcazon per la scurezza 3 Legenda de smbol 3 1 Regolazone del gas - Celsus/Hydrosmart 4 1.1 Trasformazone gas 4 1.2 Impostazon d fabbrca 4

Dettagli

1. DESCRIZIONE GENERALE

1. DESCRIZIONE GENERALE 1. DESCRIZIONE GENERALE 1.1 Premessa L ntervento oggetto della presente relazone tecnca rguarda l mpanto d rvelazone e segnalazone ncend da realzzare a servzo del locale archvo dell edfco scolastco sto

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it Soluzon per lo scarco dat da tachgrafo nnovatv e facl da usare http://dtco.t Downloadkey II Moble Card Reader Card Reader Downloadtermnal DLD Short Range and DLD Wde Range Qual soluzon ho a dsposzone per

Dettagli

Misure su sistemi trifasi

Misure su sistemi trifasi Msure su sstem trfas - Msure su sstem trfas - Tp d collegamento Collegamento a stella Un sstema trfase è caratterzzato n generale da tre fl d lnea (L L L ) pù un eventuale quarto conduttore L detto conduttore

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

SESSIONE B DINAMICA IDENTIFICAZIONE DEI COEFFICIENTI DINAMICI DI SISTEMI MECCANICI TRAMITE LA TECNICA DELLE FUNZIONI MODULANTI

SESSIONE B DINAMICA IDENTIFICAZIONE DEI COEFFICIENTI DINAMICI DI SISTEMI MECCANICI TRAMITE LA TECNICA DELLE FUNZIONI MODULANTI Assocazone Italana per l Anals delle Sollectazon (AIAS) XXXI Convegno Nazonale 8-2 Settembre 22, Parma SESSIONE B DINAMICA IDENIFICAZIONE DEI COEFFICIENI DINAMICI DI SISEMI MECCANICI RAMIE LA ECNICA DELLE

Dettagli

Induttori e induttanza

Induttori e induttanza Induttor e nduttanza Un nduttore o nduttanza è un dspostvo elettronco che mmagazzna energa sottoforma d campo magnetco così come l condensatore mmagazzna energa sotto forma d campo elettrco. Il flusso

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli