Grafico delle funzioni elementari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grafico delle funzioni elementari"

Transcript

1 Grafico delle funzioni elementari Funzione lineare y = m + q m, q R C.E. R Non Limitata

2 Funzione valore assoluto y= C.E. R Limitata inferiormente in = 3 Funzione potenza y = n, n N, pari C.E. R Limitata inferiormente da = Non itata superiormente 4

3 Funzione potenza y= n, n N, dispari C.E. R Non itata, strett. crescente 5 Funzione potenza y= α, α R α= α> α< C.E.: R: Limitata inferiormente da = Non itata superiormente Strett. crescente 6 3

4 Funzione potenza y = m n, m, n Z Funzione esponenziale y = a C.E. R Limitata inferiormente, strett. crescente se a>, Strett. decrescente se <a< 8 4

5 Funzione logaritmo y = log a C.E. > Non itata, strett. crescente se a>, Strett. decrescente se <a< 9 Le coniche: la circonferenza ( ) +(y y ) = r + y = r (, y ) 5

6 Le coniche: l ellisse ( ) a + (y y ) b = a + y b = (, y ) Le coniche: l iperbole a - y b = 6

7 Le coniche: l iperbole equilatera y = k k < k > 3 Le coniche: la parabola y = a + b + c a > > 4 7

8 Le funzioni trigonometriche Funzioni trigonometriche elementari: y=sin, y=cos, y=tg, y=cotg Relazioni fondamentali: (sin ) + (cos ) =, tg = sin cos, cotg = cos sin 5 Le funzioni trigonometriche cotgα sinα tgα α cosα 6 8

9 Le funzioni trigonometriche y = sin C.E. R Immagine: [-,] Periodo=π 7 Le funzioni trigonometriche y = cos C.E. R Immagine:[-,] Periodo=π 8 9

10 Le funzioni trigonometriche y=tg C.E. R\ π + kπ Non Limitata Periodo=π 9 Le funzioni trigonometriche y=cotg C.E. R\ π + kπ Non Limitata Periodo=π

11 Le funzioni trigonometriche inverse la funzione arcoseno y=arcsin C.E. R: immagine:[ π, π ] Le funzioni trigonometriche inverse la funzione arcocoseno y=arcos C.E. R: Immagine: [, π]

12 Le funzioni trigonometriche inverse la funzione arcotangente y=arctg C.E. R Immagine: [ π,π ] 3 Operazioni sui grafici: traslazione sull asse X f(+k) f() f(- k) 4

13 Operazioni sui grafici: traslazione sull asse Y f()+k f() f()-k 5 Operazioni sui grafici: contrazione e dilatazione in direzione verticale y=kf() k > (dilatazione) f() k < (contrazione) 6 3

14 Operazioni sui grafici: compressione e dilatazione in direzione orizzontale y=f(k) k > (compressione) k < (dilatazione) 7 Operazioni sui grafici: y= f() y= ln() y=ln() 8 4

15 sin C.E.=R\ f(),,998,., Def. sia f() definita in A R, e sia un punto di accumulazione per A. Si dice che f() ha ite per che tende a, se : I f()- ε f() ε - δ (, ) ε δ ε escluso al più 5

16 In simboli f ( ) f ( ) y U f() l O V 6

17 Def. si definisce ite destro di f() per che tende a + : se f ( ) : f() - (, ) Def. si definisce ite sinistro di f() per che tende a - : se : f() - f ( ) (, ) 7

18 Teorema (unicità del ite) se f ( ) è unico Dimostrazione. Per assurdo: supponiamo che : con No Dimostrazione f ( ) in I(, f ( ) in I(,, ) ), Fissato f ( ) f ( ) No Dimostrazione f ) f ( ) ( in I(, ), min(, Assurdo! ) 8

19 Es. y C.E.=R\ ite Def. Sia f() definita in A R, e sia un punto di accumulazione per A. Si dice che f() ha ite + per che tende a, se M, : I(, ) f() M M M f ( ) 9

20 Def. Sia f() definita in A R, e sia un punto di accumulazione per A. Si dice che f() ha ite - per che tende a, se M, : I(, ) risulta M M f() M f ( ) Def. Asintoto verticale Se f ( ) Allora la retta verticale si chiama Asintoto verticale

21 asintoto verticale Def. Sia f() definita in A R, si dice che f() ha ite, per che tende a +, se:, K : I( K, ) risulta f()-l ε f ( )

22 Def. Asintoto orizzontale Se f ( ) Allora la retta orizzontale y si chiama Asintoto orizzontale arctg y asintoto orizz.

23 Def. Sia f() definita in A R, si dice che f() ha ite +, per che tende a + se: M, K : ( K, ) risulta M f()( M, ) M f ( ) Teorema (algebra dei iti) Se: f ( ) g( ) f ( ) g( ) f ( ) g( ) f ( ), g( ), g( ) 3

24 Convenzioni con a, a a, a ( ) b, b ( ) ( ) ( ) ( ) ( ) Convenzioni con a a Forme Indeterminate,,,, 4

25 a,, a a a,, a a Teorema del confronto Siano f(), f (), f () tre funzioni definite in sia un punto di accumulazione per A e f( ) f ( ) f( ) A R Se Allora f( ) f( ) f ( ) 5

26 Dimostrazione Se f ( ) ( ) allora per definizione di ite: f : f ( ) I, ) ( : f ( ) I, ) ( f ) f ( ) f ( ) ( I(, ), min(, ) Casi particolari di Teorema Se ; per I(,) es. f ( ) sin f f ( ) g( ) g( ) M ( ) g( ) 6

27 Dimostrazione. Per il teorema del confronto f ( ) g( ) M f ( ) Es. sin Limite di funzione composta Siano g:a B e f :B R : g( ) con = f(y ) y e y y f ( ) f ( g( )) 7

28 Limiti Notevoli sen() tg() cos( ) log a ( ) log a e e a log e a = misura dell angolo in radianti PH=sin QA=tg sin area( AO P) area( AOP) area( AOQ) sin tg sin cos H 8

29 9 Es. ) cos ( ) cos )( cos ( cos.. arctg e e e e

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Infiniti e Infinitesimi

Infiniti e Infinitesimi Infiniti e Infinitesimi Infiniti e Infinitesimi Def. Una funzione f() si dice infinitesima per (o per ), punto di accumulazione per il dominio di f(), se: f ( ) ( oppure f ( ) ) Infiniti e Infinitesimi

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Limiti di funzioni all infinito (1) lim f(x) = λ R x K>0 : x > K f(x) λ < ε (2) lim f(x) = x M>0 >0 K>0 : x > K f(x) > M (3) lim f(x) = x M>0 >0 K>0 : x > K f(x) < < M Se f(x) è definita in un intorno

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007 Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse 1 ottobre 007 Misura degli angoli Un angolo può essere misurato: mediante il confronto rispetto ad un angolo unitario (misura

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1 Topologia della retta reale. Concetto intuitivo di ite. Definizioni di ite. Teoremi sui iti. Applicazioni. Angela Donatiello TOPOLOGIA DELLA RETTA REALE Esiste una corrispondenza biunivoca tra l insieme

Dettagli

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso rappresenta l evoluzione di un fenomeno al passare del tempo. Se siamo interessati a sapere con che rapidità il fenomeno si evolve

Dettagli

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 =

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 = Limiti e continuità Risoluzione di forme indeterminate con polinomi Ordine di infinito e confronto di infiniti Alcuni iti notevoli Funzioni continue Esercizi sui iti ( 3 + 3) = (10 + 3 32 ) = 57 ( + 2

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x.

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x. 3 LIMITI 3. Operazioni in R {± } R + (+ ) = + + ( ) = R + = 0 = 0 > 0 (+ ) = + ( ) = < 0 (+ ) = ( ) = + > 0 0 + = + 0 = < 0 0 + = 0 = + (+ ) + (+ ) = + ( ) + ( ) = (+ ) (+ ) = + (+ ) ( ) = Non è possibile

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

MATEMATICA. Definizioni:

MATEMATICA. Definizioni: Definizioni: Funzione: dati due insiemi A e B, dove A è l insieme di partenze e B quello di arrivo, una funzione tra di essi è una relazione che ad ogni elemento dell insieme A associa uno e un solo elemento

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

Analisi Matematica, Ing. Civile a.a. 2013/2014 Prof.ssa M.R. Lancia - Prof.ssa S. Marconi

Analisi Matematica, Ing. Civile a.a. 2013/2014 Prof.ssa M.R. Lancia - Prof.ssa S. Marconi Analisi Matematica, Ing. Civile a.a. 0/04 Prof.ssa M.R. Lancia - Prof.ssa S. Marconi 0 Settembre Presentazione del corso. Richiami di insiemistica. Ottobre Insiemi di numeri reali. Intervalli. Estremo

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai iti Funzioni composte Siano g: A B e f: B C due funzioni. Allora si chiama funzione composta la funzione definita da:

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità.

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità. PROF.SSA MAIOLINO D. TEORIA SULLE DERIVATE SECONDA CONTINUITA DELLE FUNZIONI DERIVABILI Se una unzione y( è derivabile in un punto 0, allora è continua in 0. La condizione di continuità di una unzione

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 f : A R R A ' Funzioni Continue La funzione f si dice continua in f ( f ( se (e solo se A Ne seguono tre proprietà affinché f( sia continua in :. Devono esistere finiti il ite destro e sinistro di f( in.

Dettagli

Calcolo infinitesimale

Calcolo infinitesimale Calcolo infinitesimale L operazione di limite L operazione di limite ha lo scopo di descrivere il comportamento di una funzione nei pressi di un punto di accumulazione per il suo dominio. Limite finito

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Argomento2 Iparte Funzioni elementari e disequazioni

Argomento2 Iparte Funzioni elementari e disequazioni Argomento Iparte Funzioni elementari e disequazioni In questa lezione richiameremo alcune fra le più comuni funzioni di variabile reale, mettendone in evidenza le principali proprietà. Esamineremo in particolare

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria Classe III U. D. 1 Equazioni e disequazioni (ripasso) Aritmetica e Algebra Equazioni algebriche numeriche con δ 2. Disequazioni algebriche numeriche con δ 2. Sistemi di equazioni e/o disequazioni algebriche

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x M74sett.te 4a settimana Inizio 22/0/2007 Terzo ite fondamentale (sul libro, p. 3, è chiamato secondo ) e 0 =. La tangente al grafico nel punto (0,0) risulta y = (vedremo poi perché). Ricordare che e è

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 014/015 Esercizi sulle funzioni Esercizio 1. Determinare il dominio delle seguenti funzioni: + ; : + ; : + 1 ; : 1 ; : [, + [ 1 ; :

Dettagli

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio.

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio. GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE Funzione opposta y = Il grafico della funzione funzione f( x ). f( x ) si ottiene simmetrizzando rispetto all asse x, il grafico della f( x ) Appunti di

Dettagli

Diario del Corso di Analisi Matematica 1 - a.a. 2017/18 Prof. Anneliese Defranceschi

Diario del Corso di Analisi Matematica 1 - a.a. 2017/18 Prof. Anneliese Defranceschi Università di Trento Dip. di Ingegneria e Scienza dell Informazione CdL in Informatica, Ingegneria dell Informazione e delle Comunicazioni e Ingegneria dell Informazione e Organizzazione d Impresa Diario

Dettagli

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L Deinizione imite Approccio Intuitivo ( ) Man mano il valore di si avvicina a il valore di () si avvicina a ( 2 22 2 ) Possiamo precisare meglio: 5 ( 2 ) 5 () 5-(),968377 4,87459,2549,99 4,96,399,996838

Dettagli

Gli intervalli di R. (a, b R, a b)

Gli intervalli di R. (a, b R, a b) Deinizione (Funzione continua (A.Cauchy, 180)) Siano D R una unzione, D R, x 0 D. Si dice che è continua nel punto x 0 D, se per ogni ε > 0 esiste un δ > 0 per il quale è soddisatta questa condizione:

Dettagli

allora f (x) f (x 0 ) < ε D f R si dice continua, se è continua in ogni punto del suo dominio D. In simboli, D R è continua in x 0 D se:

allora f (x) f (x 0 ) < ε D f R si dice continua, se è continua in ogni punto del suo dominio D. In simboli, D R è continua in x 0 D se: Deinizione (Funzione continua (A.Cauchy, 180)) Siano D R una unzione, D R, x 0 D. Si dice che è continua nel punto x 0 D, se per ogni ε > 0 esiste un δ > 0 per il quale è soddisatta questa condizione:

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos Calcolo della derivata prima.0. f = 5 + 5 7.0. f sin +.0. f = log.0. f = log DERIVATE pag. = 5 ] 6 = f ' = cos + 7 [ ] f ' = f ' = f ' = cos sin = cos [ ].0.5 f = sin cos.0.6 ( f = )( + ) = 0 + 6 ].0.7

Dettagli

x x ' La funzione f si dice continua in x 0 se (e solo se) 0

x x ' La funzione f si dice continua in x 0 se (e solo se) 0 : A R R A ' Funzioni Continue La unzione si dice continua in ( ( se (e solo se A Ne seguono tre proprietà ainché ( sia continua in :. Devono esistere initi il ite destro e sinistro di ( in. Tali iti devono

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2013/14

Diario del Corso di Analisi Matematica - a.a. 2013/14 Diario del Corso di Analisi Matematica - a.a. 2013/14 16/09/13 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione (compitini

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Limiti di funzioni. Mauro Saita Versione provvisoria. Ottobre 2015

Limiti di funzioni. Mauro Saita  Versione provvisoria. Ottobre 2015 Limiti di funzioni Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2015 Indice 1 Limiti 2 1.1 Definizione di ite................................ 2 1.2 Alcuni teoremi sui iti..............................

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Argomento delle lezioni del corso di Analisi A.A

Argomento delle lezioni del corso di Analisi A.A Argomento delle lezioni del corso di Analisi A.A.2011-2012 30 gennaio 2012 Lezione 1-2 (5 ottobre 2011) Numeri naturali, interi, razionali. Definizione intuitiva dei reali attraverso la retta. Definizione

Dettagli

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. 2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

Università degli Studi di Roma - La Sapienza, Facoltà di Architettura Formulario di Matematica *

Università degli Studi di Roma - La Sapienza, Facoltà di Architettura Formulario di Matematica * Università degli Studi di Roma - La Sapienza, Facoltà di Architettura Formulario di Matematica *. Distanza tra due punti A ; ) e B ; ) del piano cartesiano: AB = ) + ) +. Punto medio M del segmento AB

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

LICEO GINNASIO JACOPO STELLINI

LICEO GINNASIO JACOPO STELLINI LICEO GINNASIO JACOPO STELLINI Piazza I Maggio, 26-33100 Udine Tel. 0432 504577 Fax. 0432 511490 Codice fiscale 80023240304 e-mail: info@liceostellini.it - Indirizzo Internet: www.stelliniudine.gov.it

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2018/19)

Diario del corso di Analisi Matematica 1 (a.a. 2018/19) Diario del corso di Analisi Matematica 1 (a.a. 2018/19) 17 settembre 2018 (2 ore) [Presentazione del corso di studi, da parte del Direttore di Dipartimento.] 19 settembre 2018 (2 ore) Presentazione del

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

SYLLABUS DI ANALISI 5B DON BOSCO

SYLLABUS DI ANALISI 5B DON BOSCO SYLLABUS DI ANALISI 5B DON BOSCO 2016-17 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure. Al contrario,

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti).

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti). 0 Limiti Diamoci da fare... (Soluzioni a pagina 47) Sia f () =, determinare δ affinché perogni + nell intervallo ( δ, + δ) f () 3 < oppure 0 f () 3 < 000. Dimostrare quindi che + = 3. Dimostrare, utilizzando

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2015/16 Prof. Anneliese Defranceschi

Diario del Corso di Analisi Matematica - a.a. 2015/16 Prof. Anneliese Defranceschi Diario del Corso di Analisi Matematica - a.a. 2015/16 Prof. Anneliese Defranceschi 1a SETTIMANA 22/09/15 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

ESERCIZI DI ANALISI MATEMATICA PER I CORSI DI LAUREA IN INFORMATICA. Tutor: Dottoressa Simona DI GIROLAMO

ESERCIZI DI ANALISI MATEMATICA PER I CORSI DI LAUREA IN INFORMATICA. Tutor: Dottoressa Simona DI GIROLAMO ESERCIZI DI ANALISI MATEMATICA PER I CORSI DI LAUREA IN INFORMATICA Tutor: Dottoressa Simona DI GIROLAMO ANNO ACCADEMICO 015-016 1 Funzioni Definizione 1.1 Dati due insiemi non vuoti A e B, si chiama funzione

Dettagli

Lezione 18 (8 gennaio) Limiti

Lezione 18 (8 gennaio) Limiti Lezione 18 (8 gennaio) Limiti Ripasso f x = ln 3 x 1 D = (1, + ) ln 3 x 1 + x 1 = ln 3 1 + 1 = ln 3 = ln(+ ) = + 0 + ln 3 x + x 1 = ln 3 + 1 = ln 3 + = ln(0+ ) = 1 Esempi di forme indeterminate x + x3

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 26 index 1 2 Continuità Cristina Turrini

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

CAP. VII FUNZIONI DERIVABILI

CAP. VII FUNZIONI DERIVABILI C Boccaccio Appunti di Analisi Matematica CAP VII CAP VII FUNZIONI DERIVABILI In molti problemi di varia natura (isica, economica, matematica, ecc ) si ha a che are con unzioni, delle quali importa determinare

Dettagli

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N PROGRAMMA DI ANALISI MATEMATICA L-A Corsi di Laurea in Ing. Informatica, Ing. dell Automazione, Ing. Elettrica (Prof. Ravaglia) Anno Accademico 2007/08 Simboli: I= introduzione intuitiva, D = definizione,

Dettagli

Argomenti svolti. 4. Venerdì 22 ottobre. 2 ora. Un po di logica elementare: proposizioni e loro negazione. Esercizi: 1 Sia. n + 1

Argomenti svolti. 4. Venerdì 22 ottobre. 2 ora. Un po di logica elementare: proposizioni e loro negazione. Esercizi: 1 Sia. n + 1 Argomenti svolti.. Lunedì 8 ottobre. ora. Presentazione del corso. Il campo R. Assiomi che riguardano le operazioni e prime loro conseguenze. 2. Martedì 9 ottobre. 2 ore. Annullamento del prodotto. Equazioni.

Dettagli

Argomento 3 Limiti e calcolo dei limiti I

Argomento 3 Limiti e calcolo dei limiti I Argomento 3 Limiti e calcolo dei iti I Distanza e intorni In tutta la trattazione che segue si parlerà indistintamente di un numero reale o del corrispondente punto sulla retta euclidea (vedi Arg.). Definizione

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

ESAME DI STATO 2009/10

ESAME DI STATO 2009/10 MATEMATICA & FISICA E DINTORNI Pasquale Spiezia ESAME DI STATO 9/ Scientifico Tradizionale PROBLEMI QUESITI 4 5 6 7 8 9 PROBLEMA Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza di centro

Dettagli

CLASSE 1B INSIEMI NUMERICI:

CLASSE 1B INSIEMI NUMERICI: IIS Via Silvestri 301 -Roma Plesso Volta. Indirizzo Elettronica ed Elettrotecnica Programma svolto di Matematica a.s. 2018/2019 Prof.ssa Claudia Dennetta CLASSE 1B INSIEMI NUMERICI: Numeri naturali: Le

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli