METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica"

Transcript

1

2 METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano e fornisce i dati che sono di guida al procedimento clinico STATISTICA E il mezzo oggettivo per la pianificazione delle indagini e l interpretazione dei risultati

3 forniscimi i risultati! per piacere!!!

4 Controllata STUDIO EPIDEMIOLOGICO Assegnazione Non controllata SPERIMENTALE OSSERVAZIONALE Campionamento Non randomizzato Randomizzato Malattia o Effetto Esposizione o Causa STUDI SU COMUNITA SPERIMENTAZIONI CLINICHE TRASVERSALE O RETROSPETTIVO PROSPETTICO studi relativi ad un periodo di tempo Esposizione o caratteristica al momento dello studio (TRASVERSALE) Storia dell esposizione o caratteristica precedenti al momento dello studio (RETROSPETTIVO)

5 FONTI DI DATI EPIDEMIOLOGICI E STATISTICI Le fonti di dati correnti si basano su un sistema misto con finalità generali, di carattere socio- demografiche, economiche e sanitarie La raccolta dei dati avviene a livello locale, regionale e nazionale con modalità e frequenza di rilevazione specifiche in base alle quali si possono distinguere: fonti universali e continue (mortalità e sue cause, infortuni sul lavoro ) fonti universali e sporadiche (censimenti) fonti campionarie e continue (registri di patologia, SDO,.) fonti campionarie e sporadiche (indagini osservazionali, sperimentali)

6

7

8

9 Descrittiva Si occupa della presentazione e sintesi dei dati Inferenziale Permette di trasferire le informazioni ottenute su un campione all intera popolazione La variabile è ciò che viene osservato o misurato e può assumere uno tra una serie definita di possibili valori

10 Quanto ciò che rileviamo su un campione rispecchia ciò che avviene nella popolazione? Oppure: Con che probabilità le misure rilevate sul campione ( stime) sono i veri valori della popolazione ( parametri) CAMPIONE Stime Media Varianza Conteggi Percentuali Estrazione del campione POPOLAZIONE Parametri Leggi della probabilità Statistica inferenziale

11 UNIVERSO SPECULARE PARAMETRI P R O G R A M M A R E Campionamento Disegno Sperimentale Stima di intervallo Test di ipotesi D E C I D E R E CAMPIONE DESCRIVERE STATISTICHE

12 Negli studi clinici i ricercatori dovrebbero generalmente essere interessati a determinare la grandezza di una differenza dell esito misurato fra gruppi di soggetti, piuttosto che ottenere una semplice indicazione della significatività o meno di tale differenza Di quanto la malattia ha modificato le concentrazioni ematiche medie? Di quanto il nuovo trattamento ha modificato la prognosi? Non solo la significatività statistica

13 Non bisogna equiparare la significatività statistica con l importanza clinica o la rilevanza biologica. piccole differenze, che pur rivestono uno scarso interesse, possono risultare statisticamente significative solo perché il campione studiato era di ampie dimensioni effetti importanti dal punto di vista clinico possono risultare non significativi solo perché il numero di soggetti studiati era piccolo E possibile stimare, al momento della pianificazione di uno studio la dimensione del campione più adeguata

14 STIME E LORO AFFIDABILITA L idea chiave su cui si basa l analisi statistica è che si possono eseguire osservazioni su un campione di soggetti e che da questo si possono compiere inferenze sulla popolazione rappresentata da tutti i soggetti con caratteristiche analoghe a quelle del campione Anche se ben pianificato uno studio può dare solo una idea della risposta cercata, a causa essenzialmente della variabilità casuale del campione stesso strettamente collegata, tra l altro, al numero di soggetti inclusi in uno studio Le quantità statistiche ottenute (medie, proporzioni, odds, coefficienti di regressione, etc.) sono stime imprecise dei veri valori nella popolazione generale

15 STIMA Una misura descrittiva calcolata dai dati di una popolazione è detta parametro. Una misura descrittiva calcolata dai dati di un campione è detta stima del parametro. L insieme dei metodi che ci consentono di estendere i risultati ottenuti dal campione a tutta la popolazione oggetto dello studio costituiscono la inferenza statistica. Stima dei parametri Verifica delle ipotesi

16 La stima è il calcolo, dai dati di un campione, di una qualche statistica, ed è una approssimazione del corrispondente parametro della popolazione da cui il campione è stato estratto. Stima puntuale: si calcola un singolo valore numerico per stimare il corrispondente parametro. Es. una media, una proporzione, una deviazione standard. Stima di intervallo: si calcola un intervallo di valori che, con un certo grado di probabilità, conterrà il parametro da stimare. Media Popolazione (parametro) Campione (stima) m Varianza 2 S 2

17 INTERVALLI DI CONFIDENZA Le stime di intervallo forniscono informazioni sia sul valore numerico del parametro incognito che sul grado di attendibilità della stima. La procedura di calcolo degli intervalli, detti di confidenza, si basa sulla determinazione di due limiti entro i quali, con una probabilità 1-, è contenuto il parametro, a partire dalle informazioni campionarie. 1- = P(L 1 L 2 ) con 0 1 L 1 e L 2 dipendenti dalla dimensione del campione 1- grado di attendibilità della stima ed è detto livello di confidenza stima (fattore di correzione errore della stima)

18 Lo scopo principale degli intervalli di confidenza è quello di indicare la Imprecisione delle stime campionarie come rappresentazione dei valori della popolazione L imprecisione della stima campionaria è indicata dall ampiezza degli intervalli: Più ampi sono gli intervalli Minore è la precisione L ampiezza dipende essenzialmente da tre fattori: dal numero di soggetti studiati (campioni poco numerosi, conclusioni inattendibili) dalla variabilità dei soggetti in studio (minore variabilità, stima più precisa) dal livello di confidenza (maggiore è il livello di confidenza, tanto più ampi sono gli intervalli)

19 mmhg Ipertensione no Ipertensione si Stato ipertensivo non noto Stato ipertensivo noto

20 All aumentare della numerosità campionaria l ampiezza dell intervallo si restringe mmhg N=900 Cardiopatia ipertensiva assente N=100 Cardiopatia ipertensiva presente

21 mmhg 155 All aumentare del livello di confidenza l ampiezza dell intervallo aumenta Livello di confidenza: 90% Livello di confidenza: 95% Livello di confidenza: 99%

22 mmhg All aumentare del livello di confidenza l ampiezza dell intervallo aumenta Livello di confidenza: 90% Livello di confidenza: 95% Livello di confidenza: 99%

23 SIGNIFICATIVITA STATISTICA Confronto tra il farmaco A e il farmaco B 1. Il farmaco A potrebbe essere effettivamente superiore al farmaco B 2. Qualche fattore che non è stato assolutamente controllato, per esempio l età dei pazienti, può essere responsabile della differenza (in questo caso si avrebbe un confronto viziato) 3. La differenza potrebbe essere dovuta alla variazione casuale Soltanto dopo aver escluso che sussistono i motivi 2 e 3, potremo concludere che A è superiore a B

24 IL VALORE P Molte volte il ricercatore indica il più basso livello di significatività al quale l ipotesi di ricerca (ipotesi nulla) può essere respinta. Questo livello è chiamato valore p ed esprime la probabilità che una differenza come quella osservata sia causata dal solo caso. L affermazione p<0.01 significa che è piccolissima la probabilità che la variazione casuale sia da sola responsabile della differenza, cosicché intendiamo in realtà affermare che il risultato è statisticamente significativo. Inversamente l affermazione p>0.10 implica che soltanto il caso può realmente spiegare la differenza osservata, la quale dovrà perciò essere catalogata come statisticamente non significativa.

25 Dimensione del campione e interpretazione dell assenza di significatività Una differenza statisticamente significativa è tale in quanto non può essere giustificata dal solo caso. Al contrario una differenza statisticamente non significativa non deve essere necessariamente attribuibile soltanto al caso. Di fronte ad una differenza non significativa l entità del campione è molto importante: con un campione piccolo è infatti probabile che l errore di campionamento sia elevato, il che conduce spesso ad una non significatività, anche quando la differenza osservata è tutt altro che casuale. E per questa ragione che un risultato statisticamente non significativo dovrebbe essere considerato quasi sempre come non conclusivo, piuttosto che come segno dell assenza di una vera differenza tra i gruppi confrontati.

26 Significatività clinica e significatività statistica E importante tenere sempre presente che un etichetta di significatività statistica non significa necessariamente che la differenza sia significativa dal punto di vista clinico. Con campioni di cospicua entità, piccolissime differenze, che possiedono poca o nessuna importanza clinica, possono rivelarsi statisticamente significative. Le implicazioni pratiche di qualsiasi risultato devono essere valutate su basi diverse da quelle esclusivamente statistiche.

27 La caratteristica essenziale di uno studio clinico è di usare i risultati ottenuti su un Campione di pazienti, per fare inferenza circa gli effetti del trattamento su una Popolazione di individui con caratteristiche patologiche tali da richiedere quel tipo di trattamento

28 IL DISEGNO DELLA RICERCA CLINICA Prima di iniziare una ricerca è indispensabile effettuare una progettazione accurata e un disegno adeguato, definendo in dettaglio le domande a cui la ricerca deve dare una risposta

29 DEFINIRE LO SCOPO DELLO STUDIO SPECIFICARE GLI OBIETTIVI E LE IPOTESI DI LAVORO DISEGNARE LO STUDIO SCRIVERE IL PROTOCOLLO CONDURRE LO STUDIO DEFINIRE UNA BUONA ORGANIZZAZIONE ANALIZZARE I DATI UTILIZZO DELLA STATISTICA DESCRITTIVA E DEI TESTS DI VERIFICA DELLE IPOTESI TRARRE LE CONCLUSIONI PUBBLICARE I RISULTATI

30 PER IMPOSTARE UNA SPERIMENTAZIONE BISOGNA POTER RISPONDERE ALLE SEGUENTI DOMANDE: 1. Qual è l obiettivo primario della ricerca 2. Esiste un protocollo scritto che indichi le procedure e i dati con cui raggiungere l obiettivo 3. L obiettivo primario è rilevante sotto il profilo scientifico, affronta problemi ancora irrisolti, aggiunge qualcosa al sapere scientifico attuale 4. Quali sono gli obiettivi secondari 5. Sono rispettate le normative che guidano la ricerca sperimentale (good laboratory practice o GLP), è garantita la protezione dei soggetti e la confidenzialità dei loro dati in ottemperanza alla dichiarazione di helsinki e alla good clinical practice GCP

31 QUANTI PAZIENTI DEVONO ESSERE RECLUTATI PER UNA SPECIFICA SPERIMENTAZIONE CLINICA 1. Dipende dalla dimensione degli effetti che Verranno osservati 2. Dipende dalle caratteristiche degli errori di I tipo e di II tipo utili per la definizione della dimensione e della potenza del test 3. Dipende dalla particolare misura che si vuole effettuare (risposta in termini di successo o fallimento, risposta in termini di tempo intercorso fra due eventi critici)

32 VERIFICA DELLE IPOTESI Obiettivo: guidare il clinico, il ricercatore o l amministratore a prendere una decisione riguardo ad un parametro della popolazione esaminando un campione di quella popolazione. L osservazione dei fenomeni porta alla formulazione di teorie che richiedono un conferma basata su una metodologia scientifica. IPOTESI di RICERCA IPOTESI STATISTICA Le ipotesi statistiche sono una formulazione delle ipotesi di ricerca in modo tale da poter essere valutate con opportune tecniche statistiche.

33 VERIFICA DELLE IPOTESI Analisi dei dati Assunzioni sul modello probabilistico, sui parametri, sul campione Formulazione dell ipotesi : nulla H 0 e alternativa H 1 Costruzione della statistica test e della sua distribuzione Definizione della Regola di Decisione e valutazione degli errori: rifiutare l ipotesi nulla vera accettare l ipotesi nulla falsa Decisione statistica e decisione clinica

34 ERRORE ALFA O ERRORE DI I TIPO L espressione p< indica la probabilita di una conclusione falsamente positiva (Un trattamento risulta migliore dell altro quando in realtà non lo è) tanto più piccolo è il valore di p tanto meno probabile è che i trattamenti posti a confronto abbiano un effetto simile

35 ERRORE BETA O ERRORE DI II TIPO Commettendo l errore beta si afferma che i trattamenti sono uguali quando in realtà essi sono differenti (falso negativo) l errore beta si verifica solitamente in caso di campioni di piccole dimensioni non si evidenzia un effetto favorevole quando questo è presente

36 0,05 0,045 0,04 0,035 0,03 H 0 Sani H 1 Malati Potenza del test: Probabilità di rifiutare l ipotesi nulla falsa 0,025 0, ,015 0,01 0, ETA Falsi negativi Falsi positivi Errore di secondo tipo: rischio di non rifiutare l ipotesi nulla falsa Errore di primo tipo: rischio di rifiutare l ipotesi nulla vera

37 RISCHIO DI ERRORI Ipotesi vera Ipotesi nulla H 0 Ipotesi alternativa H 1 Ipotesi accolta dopo il test Ipotesi nulla H 0 Ipotesi alternativa H 1 Esatta (1- ) Errore I specie Errore II specie Esatta (1- ) Rischio di prima specie o tipo: Respingere l ipotesi H 0 quando essa è vera = livello di significatività Rischio di seconda specie o tipo: Accettare l ipotesi H 0 quando è vera H 1 Potenza del test : 1- Respingere l ipotesi H 0 quando è vera l ipotesi alternativa H 1

38 POTENZA DI UNO STUDIO CLINICO La potenza di uno studio clinico è la sua capacità di fare emergere un effetto se questo esiste realmente Uno studio clinico con una bassa potenza è privo di ogni utilità in quanto avrà una probabilità molto scarsa di raggiungere l obiettivo che lo sperimentatore si prefigge Quando si parla di potenza di uno studio clinico ci si riferisce alla potenza statistica 1-ß che rappresenta la probabilità che la differenza attesa possa essere scoperta ad un predefinito livello di significativita Più alta è la potenza maggiore è la possibilità che la differenza minima attesa tra i gruppi in trattamento possa essere dimostrata

39 LA POTENZA DI UN TEST HA UN IMPATTO DIRETTO SULLA DIMENSIONE DEL CAMPIONE PIU GRANDE E LA POTENZA è ragionevole che non sia inferiore a 0.80 PIU GRANDE E LA DIMENSIONE DEL CAMPIONE

40 Generalmente un test ad una coda è più potente del corrispondente test a due code. Il test ad una coda va utilizzato solo se si è del tutto sicuri che una particolare disuguaglianza (direzione) è sempre dovuta al caso e perciò valutata come non significativa, per quanto ampia essa sia Raramente, comunque, ciò si verifica nella pratica

41 VERIFICA DELLE IPOTESI METODI PARAMETRICI Esistenza di distribuzioni METODI NON PARAMETRICI Non esistenza di distribuzioni TESTS t-student Analisi della varianza Confronto proporzioni CONFRONTO TRA GRUPPI TESTS sui RANGHI (Wilcoxon) Analisi della varianza non parametrica Correlazione Coefficiente di Pearson Regressione LEGAMI TRA VARIABILI Correlazione Coefficiente di Spearman Tabelle di contingenza

42 Verifica di ipotesi su medie Due gruppi Indipendenti Non indipendenti Distribuzione di Gauss Distribuzione non di Gauss Distribuzione di Gauss Distribuzione non di Gauss Test parametrici Test non parametrici Test parametrici Test non parametrici t - Student (varianze omogenee) t - Student (varianze non omogenee) Wilcoxon Somma dei Ranghi t - Student Wilcoxon Ranghi con segno t ( x 1 x2) ( 1 2) S n 2 p 1 S n 2 p 2 t ( x 1 x2) ( 1 2) S n S n t d S d d n

43 Verifica di ipotesi su medie più di due gruppi Indipendenti Non indipendenti Distribuzione di Gauss Distribuzione non di Gauss Distribuzione di Gauss Distribuzione non di Gauss Test parametrico Test non parametrici Test parametrici Test non parametrici Analisi della Varianza test F-Fisher Analisi della Varianza non parametrica Kruskal - Wallis Analisi della Varianza per misure ripetute Analisi della Varianza per misure ripetute test di Friedman

44 VERIFICA DI IPOTESI SULLE PROPORZIONI Confronto tra due proporzioni Campioni indipendenti Campioni non indipendenti Distribuzione binomiale approssimabile ad una Gauss Campione di piccole dimensioni SI NO Frequenza bassa nelle celle Test di McNemar Test z Test chi-quadro Test esatto di Fisher

45 RELAZIONI TRA VARIABILI Variabili Qualitativa Quantitativa Tabelle di contingenza Test del chi-quadro Una variabile dipendente Vs Una o più variabili indipendenti Con relazione causa-effetto Nessuna variabile dipendente Relazione del tipo interdipendenza Regressione Correlazione

Gabriella Serio. Cattedra di Statistica Medica Facoltà di Medicina e Chirurgia - Università degli Studi di Bari

Gabriella Serio. Cattedra di Statistica Medica Facoltà di Medicina e Chirurgia - Università degli Studi di Bari Gabriella Serio Cattedra di Statistica Medica Facoltà di Medicina e Chirurgia - Università degli Studi di Bari GOOD CLINICAL PRACTICE GCP LE GCP SONO UNO STANDARD IN BASE AL QUALE GLI STUDI CLINICI SONO

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA Tutti i test statistici di significatività assumono inizialmente la cosiddetta ipotesi zero (o ipotesi nulla) Quando si effettua il confronto fra due o più gruppi di dati, l'ipotesi

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Scelta del soggetto. Sviluppo del protocollo. Pretest e revisione del protocollo. Effettuazione dello studio. Analisi dei risultati

Scelta del soggetto. Sviluppo del protocollo. Pretest e revisione del protocollo. Effettuazione dello studio. Analisi dei risultati Ciclo della ricerca Scelta del soggetto Sviluppo del protocollo Pretest e revisione del protocollo Effettuazione dello studio Analisi dei risultati Conclusioni e loro pubblicazione ANATOMIA DELLA RICERCA:

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

PRINCìPI DI SPERIMENTAZIONE CLINICA

PRINCìPI DI SPERIMENTAZIONE CLINICA università degli studi di padova CICLO DI LEZIONI SCIENZE DI BASE PER I DOTTORATI DI RICERCA DELL AREA MEDICA anno accademico 2005/2006 PRINCìPI DI SPERIMENTAZIONE CLINICA Francesco Grigoletto Lo sviluppo

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE A.A. 2014-2015 Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE Utilizzare gli strumenti epidemiologici e statistici appropriati per ridurre l'area dell'incertezza nella rilevazione

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Trials clinici. Disegni di studio

Trials clinici. Disegni di studio Trials Clinici Dott.ssa Pamela Di Giovanni Studi descrittivi Disegni di studio Popolazioni Individui Studi analitici Osservazionali Sperimentali Studi di correlazione o ecologici Case report - Case series

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Principi generali. Vercelli 9-10 dicembre 2005. G. Bartolozzi - Firenze. Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli

Principi generali. Vercelli 9-10 dicembre 2005. G. Bartolozzi - Firenze. Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli Principi generali Carlo Federico Gauss Matematico tedesco 1777-1855 G. Bartolozzi - Firenze Vercelli 9-10 dicembre 2005 Oggi il nostro lavoro

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

LE META-ANALISI. Graziella D Arrigo, Fabio Provenzano, Claudia Torino, Carmine Zoccali, Giovanni Tripepi

LE META-ANALISI. Graziella D Arrigo, Fabio Provenzano, Claudia Torino, Carmine Zoccali, Giovanni Tripepi G Ital Nefrol 2011; 28 (5): 531-536 MASTER IN EPIDEMIOLOGIA CLINICA LE META-ANALISI Graziella D Arrigo, Fabio Provenzano, Claudia Torino, Carmine Zoccali, Giovanni Tripepi CNR-IBIM, Unità di Ricerca di

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

A.A. 2015/2016. Statistica Medica. Corso di. CdL in Fisioterapia CdL in Podologia

A.A. 2015/2016. Statistica Medica. Corso di. CdL in Fisioterapia CdL in Podologia A.A. 2015/2016 Corso di Statistica Medica CdL in Fisioterapia CdL in Podologia La statistica è la scienza che ha come fine lo studio quantitativo e qualitativo di un "collettivo". Studia i modi in cui

Dettagli

Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali:

Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali: Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali: la sensibilità diagnostica o clinica, la specificità diagnostica o clinica, l incidenza

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Laboratorio di Pedagogia Sperimentale. Indice

Laboratorio di Pedagogia Sperimentale. Indice INSEGNAMENTO DI LABORATORIO DI PEDAGOGIA SPERIMENTALE LEZIONE III INTRODUZIONE ALLA RICERCA SPERIMENTALE (PARTE III) PROF. VINCENZO BONAZZA Indice 1 L ipotesi -----------------------------------------------------------

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Classificazione degli studi epidemiologici

Classificazione degli studi epidemiologici Classificazione degli studi epidemiologici STUDI DESCRITTIVI - DI CORRELAZIONE O ECOLOGICI - CASE REPORT/SERIES - DI PREVALENZA O TRASVERSALI STUDI ANALITICI O OSSERVAZIONALI - A COORTE - CASO-CONTROLLO

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Tecniche di rilevazione statistica

Tecniche di rilevazione statistica Tecniche di rilevazione statistica Il disegno di ricerca Indagini censuarie e campionarie Indagini campionarie basate su questionario Introduzione al campionamento Il disegno di ricerca Con il termine

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

ARTICOLO SCIENTIFICO: ANALISI E VALUTAZIONE CRITICA DELLE INFORMAZIONI. critical appraisal BOSCARO GIANNI 1

ARTICOLO SCIENTIFICO: ANALISI E VALUTAZIONE CRITICA DELLE INFORMAZIONI. critical appraisal BOSCARO GIANNI 1 ARTICOLO SCIENTIFICO: ANALISI E VALUTAZIONE CRITICA DELLE INFORMAZIONI critical appraisal BOSCARO GIANNI 1 BOSCARO GIANNI 2 Analisi Statistica analisi descrittiva: descrizione dei dati campionari con grafici,

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

LEZIONI DI STATISTICA

LEZIONI DI STATISTICA ez10 l GIOVANNI GIRONE Ordinario nell'università di Bari TOMMASO SALVEMINI Ordinario nel!' Università di Roma LEZIONI DI STATISTICA Volume Secondo CACUCCI EDITORE - BARI - 1992 CENTRO " G. ASTENGO» INVENTARIO

Dettagli

STATISTICA A.A. 2009/2010. Dott. Alessandro Cucchi. alessandro.cucchi@unife.it DEFINIZIONE DI STATISTICA

STATISTICA A.A. 2009/2010. Dott. Alessandro Cucchi. alessandro.cucchi@unife.it DEFINIZIONE DI STATISTICA STATISTICA A.A. 2009/2010 Dott. Alessandro Cucchi alessandro.cucchi@unife.it DEFINIZIONE DI STATISTICA Analisi quantitativa dei fenomeni collettivi allo scopo di descriverli e di individuare leggi e modelli

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

I metodi per la misura della diagnosi

I metodi per la misura della diagnosi C.I. di Metodologia clinica I metodi per la misura della diagnosi Obiettivo Conoscere ed utilizzare i principali strumenti per interpretare l'attendibilità e la rilevanza dei test diagnostici ai fini della

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

ANALISI DEI DATI EPIDEMIOLOGICI

ANALISI DEI DATI EPIDEMIOLOGICI ANALISI DEI DATI EPIDEMIOLOGICI Cenni di statistica Che cosa è la statistica Statistica descrittiva e statistica inferenziale Test statistici di ipotesi Intervalli di confidenza Analisi stratificata TEST

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Metodologia epidemiologica

Metodologia epidemiologica Metodologia epidemiologica Verifica di ipotesi Quale test utilizzare? Statistica medica Alla fine di questa lezione dovreste essere in grado di: riconoscere i principali test utilizzati nel confronto di

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli