LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione"

Transcript

1 LEZIONE Prodotti sclri. Definizione Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2 = v 2, v 1 (il prodotto sclre è commuttivo); (PS2) per ogni v 1, v 2, v 3 V si h v 1, v 2 + v 3 = v 1, v 2 + v 1, v 3 (il prodotto sclre è distributivo rispetto ll somm); (PS3) per ogni α R e v 1, v 2 V si h α v 1, v 2 = αv 1, v 2 ; (PS4) per ogni v V \ { 0 V } si h v, v > 0 (il prodotto sclre è definito positivo). Osservzione Si V uno spzio vettorile su R. lcune ovvie proprietà dei prodotti sclri su V. i) Si v 0 V fissto. Allor l ppliczioni Elenchimo di seguito, v 0 : V R v v, v 0 è linere. Per l commuttività del prodotto sclre segue nche l linerità dell ppliczione v 0, : V R v v 0, v. Per quest doppi proprietà di linerità si dice spesso che il prodotto sclre è un ppliczione bilinere. ii) Si h llor che 0, v = v, 0 = 0 per ogni v V : in prticolre v, v = 0 se e solo se v = 0. iii) Chirmente se W V è un sottoinsieme h senso considerre l restrizione, W W, che è un prodotto sclre su W. 1 Typeset by AMS-TEX

2 PRODOTTI SCALARI Definizione Si V uno spzio vettorile su R munito di prodotto sclre,. Per ogni v V il numero v = v, v si dice modulo di v: i vettori di modulo 1 si dicono versori. Esempio Nello spzio V 3 (O) dei vettori pplicti in O si può definire un prodotto sclre in V 3 (O) ponendo ( ) v, w = v w cos( v w) per ogni coppi di vettori v, w V 3 (O) non nulli. Se O ı j k è un fissto sistem di riferimento nello spzio e v = v x ı + v y j + v z k, w = wx ı + w y j + w z k, è noto che v, w = v x w x + v y w y + v z w z. Esempio Si V = R n. Se x = (x 1,..., x n ) e y = (y 1,..., y n ) si definisce prodotto sclre stndrd Si noti che in tl cso risult x, y = x 1 y x n y n. x, y = x t y = xi n t y come prodotto di mtrici. Il ftto che tle ppliczione soddisfi le prorietà (PS1), (PS2) e (PS3) è evidente dll definizione. Per qunto rigurd l proprietà (PS4) si noti che x, x = x x 2 n : m un somm di numeri reli non negtivi, come lo sono i qudrti di numeri reli, è non negtiv ed è null se e solo se tutti gli ddendi sono nulli. Si noti che questo non è l unico possibile prodotto sclre che possimo definire su R n. Per esempio si verifichi che l ppliczione ((x 1, x 2 ), (y 1, y 2 )) 3x 1 y 1 + x 2 y 2 /2 è un prodotto sclre in R 2 diverso dl prodotto stndrd. Si noti che ( ) ( ) 3 0 y1 3x 1 y 1 + x 2 y 2 /2 = ( x 1 x 2 ). 0 1/4 Si V uno spzio vettorile su R munito di prodotto sclre,. Se v, w V \ { 0 V }, per ogni t R si h v 2 2t v, w + t 2 w 2 = v tw, v tw 0. Il primo membro di tle trinomio non può vere rdici distinte, dovendo ltrimenti cmbire di segno, quindi v, w 2 v 2 w 2 0: essendo v, w > 0 segue llor l cosiddett disuguglinz di Cuchy Schwrtz. y 2

3 LEZIONE 20 3 Proposizione Si V uno spzio vettorile su R munito di prodotto sclre,. Per ogni v, w V ( ) v, w v w Inoltre vle l uguglinz in ( ) se e solo se v e w sono proporzionli. Dimostrzione. Rimne d dimostrre l second ffermzione. Vle l uguglinz in ( ) se e solo se l equzione v 2 2t v, w +t 2 w 2 = 0 h soluzione, ovvero se e solo se v tw, v tw = 0 h soluzione, cioè se e solo se v = tw. Osservzione Si V uno spzio vettorile su R munito di prodotto sclre,. i) Se v, w V \ { 0 V } llor 1 v, w v w 1 : possimo perciò definire l ngolo fr v e w come ( ) v, w vw = rccos. v w Si h quindi v, w = v w cos( vw) che generlizz l ( ) prodotti sclri qulsisi. ii) Sempre d ricvimo l disuguglinz tringolre: v + w 2 = v + w, v + w = v 2 + v, w + w, v + w 2 = = v v, w + w 2 v v, w + w 2 v v w + w 2 = ( v + w ) 2, quindi v + w v + w. In modo nlogo verificre che v w v w. Esempio Si I = [, b] R non vuoto e si consideri nello spzio C 0 (I) l ppliczione f, g = b f(x)g(x)dx. Che le proprietà di prodotto sclre (PS1), (PS2), (PS3) sino soddisftte è ovvio. Inoltre il teorem dell permnenz del segno per funzioni continue ci ssicur che nche l condizione (PS4) è soddisftt. In questo cso l disuguglinz di Cuchy Schwrtz diviene b b b f(x)g(x)dx f(x) 2 dx g(x) 2 dx.

4 BASI ORTONORMALI Per ogni f C 0 (I) l quntità b f 2 = f(x) 2 dx viene dett norm L 2 di f Bsi ortonormli. Definizione Si V uno spzio vettorile su R munito di prodotto sclre,. I vettori v 1, v 2 V si dicono ortogonli (o perpendicolri) se v 1, v 2 = 0 ed in tl cso si scrive v 1 v 2. L insieme { v 1,..., v n } V si dice ortogonle se v i v j per i, j I con i j. L insieme { v 1,..., v n } V si dice ortonormle se è ortogonle ed i v i sono versori. Se V è finitmente generto, un bse ortonormle B = (v 1,..., v n ) è un bse di V tle che l insieme { v 1,..., v n } si ortonormle. In bse ll definizione concludimo che l insieme { v 1,..., v n } V è ortonormle se per ogni i, j = 1,..., n { 1 i = j, v i, v j = δ i,j = 0 i j. Esempio Si fissi un sistem di riferimento O ı j k nello spzio. Allor l insieme { ı, j, k } è ortonormle in V 3 (O) rispetto l prodotto sclre geometrico (si ved l Esempio ). Si noti che B = ( ı, j, k ) viene quindi d essere un bse ortonormle di V 3 (O). Esempio Si consideri lo spzio R n munito del prodotto sclre, definito nell Esempio Allor i vettori dell bse cnonic formno un insieme { e 1,..., e n } ortonormle: perciò l bse cnonic C = (e 1,..., e n ) è un bse ortonormle. Invece { e 1, e 2 } non è ortonormle rispetto l prodotto sclre ((x 1, x 2 ), (y 1, y 2 )) 3x 1 y 1 + x 2 y 2 /2 introdotto nello stesso esempio. Inftti è vero che e 1 e 2 m e 1 = 3 e e 2 = 1/ 2. Concludimo che, rispetto tle prodotto sclre, { e 1 / 3, 2e 2 } è ortonormle.

5 LEZIONE 20 5 Esempio Si consideri lo spzio V delle funzioni continue e periodiche di periodo 2π. Per esempio 1, cos px, sin px V per ogni p N (si noti che sin px e cos px hnno periodo minimo 2π/p). In V definimo f, g = 1 π π π f(x)g(x)dx : è fcile verificre che, è un prodotto sclre. Inoltre dll nlisi è noto che 1/ 2, 1/ 2 = 1 { 1 se p = q 0, cos px, cos qx = 0 se p q, sin px, cos qx = 0 { 1 se p = q 0, sin px, sin qx = 0 se p q, quindi, per ogni N N, l insieme { 1/ 2, cos px, sin qx } p,q=1,...,n è ortonormle. Abbimo visto che in tutti gli esempi trttti è sempre possibile determinre un bse ortonormle. Di ftto questo è un risultto generle che si può dimostrre in modo lgoritmico con il metodo di ortonormlizzzione di Grm Schmidt. Ci limiteremo d enuncire il seguente risultto. Proposizione Si V { 0 V } uno spzio vettorile finitmente generto su R munito di prodotto sclre,. Allor esistono in V bsi ortonormli. L importnz ed utilità delle bsi ortonormli è dt dll seguente Proposizione Si V uno spzio vettorile su R munito di prodotto sclre,. Si { v 1,..., v n } V è un insieme ortonormle. Allor: i) v 1,..., v n sono linermente indipendenti; ii) se V è finitmente generto e dim R (V ) = n, llor B = (v 1..., v n ) è un bse ortonormle di V e si h v = v, v 1 v v, v n v n per ogni v V. Dimostrzione. Per definizione { v 1,..., v n } V è un insieme di vettori ortonormli se e solo se { 0 se i j, v i, v j = 1 se i = j, quindi, se α 1 v α n v n = 0 è un relzione di dipendenz linere, si h 0 = 0, v j = α 1 v α n v n, v j = α 1 v 1, v j + + α n v n, v j = α j. In prticolre v 1,..., v n sono linermente indipendenti. Se V è finitmente generto e dim R (V ) = n, per l Proposizione , segue che B è un bse di V.

6 BASI ORTONORMALI In prticolre per ogni v V esistono α 1,..., α n R tli che v = α 1 v α n v n. Quindi v, v j = α 1 v α n v n, v j = α 1 v 1, v j + + α n v n, v j = α j per ogni j = 1,..., n. Il coefficiente v, v j viene spesso detto coefficiente di Fourier (di v rispetto v j ). Esempio Si consideri lo spzio R 3 munito del prodotto sclre, definito nell Esempio I tre vettori v 1 = 1/3(2, 2, 1), v 2 = 1/3(1, 2, 2) e v 3 = 1/3( 2, 1, 2) formno un insieme { v 1, v 2, v 3 } ortonormle, quindi B = (v 1, v 2, v 3 ) è un bse di R 3. Si v = (1, 1, 1) R 3. Allor v, v 1 = 5/3, v, v 2 = v, v 3 = 1/3: quindi, come è nche fcile verificre direttmente, risult v = 5 3 v v v Mtrici ortogonli. Fccimo un breve digressione su un importnte fmigli di mtrici, quelle ortogonli. Definizione P R n,n si dice ortogonle se t P P = I n. Prim di dre esempi di mtrici ortogonli, fccimo lcune osservzioni. Osservzione Si noti che l mtrice identità I n è ortogonle in bse ll definizione dt: nche ogni mtrice ottenut d I n cmbindo segno d un o più delle sue entrte è ortogonle. Si P R n,n ortogonle. i) Poiché t P P = I n, segue che P è invertibile e P 1 = t P : in prticolre si h nche P t P = I n. In mnier nlog si dimostr che se P t P = I n llor nche t P P = I n, cioè P è ortogonle se e solo se P t P = I n. ii) Si h 1 = det(i n ) = det( t P P ) = det( t P ) det(p ) = det(p ) 2, dunque det(p ) = ±1: qunto sopr osservto sull mtrice identità ci permette di ffermre che esistono mtrici di entrmbe i tipi. iii) Poiché l rig i esim di t P è l colonn i esim P i di P, l condizione t P P = I n si può leggere dicendo che il prodotto sclre stndrd (si ved l Esempio con l solit identificzione di R n con R n,1 ) delle colonne P i e P j di P è δ i,j : in ltre prole un mtrice è ortogonle se e solo se le sue colonne sono un insieme ortonormle, rispetto l prodotto sclre stndrd, di n vettori di R n,1. iv) In mnier simile, poiché nche P t P = I n, nche le righe di P formno un insieme ortonormle, rispetto l prodotto sclre stndrd, di n vettori di R 1,n.

7 LEZIONE 20 7 Le mtrici ortogonli si dividono, quindi, in due clssi non vuote, quelle con determinnte 1 e quelle con determinnte 1. H senso dre un nome questi due tipi di mtrici. Definizione Si P R n,n ortogonle. P si dice specile se det(p ) = 1 non specile det(p ) = 1. Grzie qunto osservto sopr, simo perciò in grdo di dre esempi non bnli di mtrici ortogonli. Esempio Le mtrici di R 3,3 P 1 = , P 2 = , sono ortogonli. L prim è non specile, l second specile. Esempio Determinimo tutte le mtrici ortogonli d ordine 2. Si ( ) p1,1 p P = 1,2 R 2,2 p 2,1 p 2,2 ortogonle. L condizione P t P = I 2 si trduce llor nel sistem p 2 1,1 + p 2 1,2 = 1 p 1,1 p 2,1 + p 1,2 p 2,2 = 0 p 2 2,1 + p 2 2,2 = 1. L prim e l terz equzione implicno l esistenz di ϑ, ϕ [0, 2π] tli che p 1,1 = cos ϑ, p 1,2 = sin ϑ, p 2,1 = sin ϕ, p 2,2 = cos ϕ. L second equzione è llor equivlente 0 = cos ϑ sin ϕ sin ϑ cos ϕ = sin(ϕ ϑ). In prticolre, meno di multipli di 2π, si deve vere o ϕ = ϑ ovvero ϕ = ϑ + π. Nel primo cso ( ) cos ϑ sin ϑ P =, sin ϑ cos ϑ (in tl cso P è ortogonle specile) nel secondo ( ) cos ϑ sin ϑ P = sin ϑ cos ϑ (in tl cso P è ortogonle non specile). Ricordimo un interpretzione geometric delle mtrici ortogonli specili già vist ll inizio del corso. Considerimo nel pino due sistemi di riferimento O ı j,

8 MATRICI ORTOGONALI O ı j e si ψ l ngolo misurto in senso ntiorrio fr i versori ı e ı. Allor si deve vere ı = ı + b j, j = c ı + d j e si h, per l Proposizione ii), = ı, ı = cos ψ, b = ı, j = sin ψ, c = j, ı = sin ψ, d = j, j = cos ψ. Se or considero v = x ı + y j = x ı + y j, sostituendo le espressioni ottenute sopr di ı e j in funzione di ı e j, tenendo conto che ( ı, j ) è un bse di V 2 (O), si ottiene ( ) ( ) ( ) x cos ψ sin ψ x y =. sin ψ cos ψ y Concludimo che le mtrici ortogonli specili corrispondono lle rotzioni nel pino. Per questo spesso indichimo con R ψ l mtrice ( cos ψ sin ψ sin ψ cos ψ Un nlog interpretzione può essere dt per mtrici ortogonli in R n,n con n 3. ).

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 9 Sommrio. Crtterizzimo l equivlenz elementre in termini di sistemi di isomorfismi przili e di giochi di Ehrenfeucht-Frïssé. 1. Giochi di Ehrenfeucht-Frïssé

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

13. Metodi Hilbertiani per la soluzione di problemi ai limiti

13. Metodi Hilbertiani per la soluzione di problemi ai limiti 13. Metodi Hilbertini per l soluzione di problemi i limiti Nell Sezione precedente bbimo sviluppto, nche se in form estremmente concis, lcuni spetti dell teori degli opertori lineri fr spzi normti, soffermndoci

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Sistemi lineari Sistemi lineari quadrati

Sistemi lineari Sistemi lineari quadrati Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia:

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia: SPAZI VETTORIALI CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V si sottospzio di V è che si: (λ w + µ u) V per ogni u, w V e ogni λ, µ R CONDIZIONE NECESSARIA (m NON SUFFICIENTE) perché

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 23 Ottobre 2013 1 Spzio L 2 Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Elementi di Calcolo Matriciale

Elementi di Calcolo Matriciale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 7 Ottobre Elementi di Clcolo Mtricile F. Cliò Mtrici: Definizioni e Simbologi Lezione 7 Ottobre Elementi di Clcolo Mtricile

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

1 Integrali impropri di funzioni continue

1 Integrali impropri di funzioni continue ntegrli impropri di funzioni continue. ntegrli impropri su intervlli semiperti Definizione Dt un funzione continu f : [, b) R, con b +, si dice che f è integrbile se esiste finito il t b f(x) dx ed in

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Appunti del corso di METODI MATEMATICI DELLA FISICA. Guido Cognola

Appunti del corso di METODI MATEMATICI DELLA FISICA. Guido Cognola Appunti del corso di METODI MATEMATICI DELLA FISICA Guido Cognol nno ccdemico 29-21 Questi ppunti sono essenzilmente l trscrizione in mnier schemtic e concis delle lezioni svolte nel corso di Metodi Mtemtici

Dettagli

Vettori e coordinate cartesiane

Vettori e coordinate cartesiane ettori e coordinte crtesine ettori nel pino crtesino Aimo già incontrto i ettori e li imo usti per indicre uno spostmento: se un punto si muoe nel pino dll posizione A ll posizione B, lo spostmento AB

Dettagli

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto:

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto: MAICI E DEEMINANI. LE MAICI Considerimo l seguente tbell di numeri presi d un estrzione del lotto: 7 8 > 8 7 H. 8 8 9 I numeri presenti sono disposti su righe e colonne. Essi costituiscono un insieme ordinto

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

Strutture algebriche

Strutture algebriche Strutture lgeriche Leggi di composizione L operzione di ddizione nell insieme dei nturli ssoci ogni coppi (m; n) di numeri nturli ncor un numero nturle s, risultto dell operzione. L ddizione costituisce

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Note di geometria. Prof. Domenico Olanda. Anno accademico

Note di geometria. Prof. Domenico Olanda. Anno accademico 1 Note di geometri Prof. Domenico Olnd Anno ccdemico 008-09 Prefzione Questo testo rccoglie lcune lezioni di geometri d me svolte negli nni ccdemici 008-009 per gli studenti del corso di lure in Mtemtic

Dettagli